import gradio as gr from huggingface_hub import InferenceClient # Step 1: Read your background info with open("BACKGROUND.md", "r", encoding="utf-8") as f: background_text = f.read() # Step 2: Set up your InferenceClient (same as before) client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for msg in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = msg.choices[0].delta.content response += token # 'yield' returns partial responses for streaming yield response # Step 3: Build a Gradio Blocks interface with two Tabs with gr.Blocks() as demo: # (A) First Tab: Chat Interface with gr.Tab("GPT Chat Agent"): gr.Markdown("## Welcome to Varun's GPT Agent") gr.Markdown("Feel free to ask questions about Varun’s journey, skills, and more!") chat = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) # (B) Second Tab: Background Document with gr.Tab("Varun's Background"): gr.Markdown("# About Varun") gr.Markdown(background_text) # Step 4: Launch if __name__ == "__main__": demo.launch()