vmagotr1 commited on
Commit
a7682fa
·
verified ·
1 Parent(s): 8f20f8c

Varun-Background Knowledge Report

Browse files
Files changed (1) hide show
  1. app.py +29 -27
app.py CHANGED
@@ -1,11 +1,12 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
10
  def respond(
11
  message,
@@ -16,7 +17,7 @@ def respond(
16
  top_p,
17
  ):
18
  messages = [{"role": "system", "content": system_message}]
19
-
20
  for val in history:
21
  if val[0]:
22
  messages.append({"role": "user", "content": val[0]})
@@ -27,38 +28,39 @@ def respond(
27
 
28
  response = ""
29
 
30
- for message in client.chat_completion(
31
  messages,
32
  max_tokens=max_tokens,
33
  stream=True,
34
  temperature=temperature,
35
  top_p=top_p,
36
  ):
37
- token = message.choices[0].delta.content
38
-
39
  response += token
 
40
  yield response
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
 
 
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
 
4
+ # Step 1: Read your background info
5
+ with open("BACKGROUND.md", "r", encoding="utf-8") as f:
6
+ background_text = f.read()
 
7
 
8
+ # Step 2: Set up your InferenceClient (same as before)
9
+ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
10
 
11
  def respond(
12
  message,
 
17
  top_p,
18
  ):
19
  messages = [{"role": "system", "content": system_message}]
20
+
21
  for val in history:
22
  if val[0]:
23
  messages.append({"role": "user", "content": val[0]})
 
28
 
29
  response = ""
30
 
31
+ for msg in client.chat_completion(
32
  messages,
33
  max_tokens=max_tokens,
34
  stream=True,
35
  temperature=temperature,
36
  top_p=top_p,
37
  ):
38
+ token = msg.choices[0].delta.content
 
39
  response += token
40
+ # 'yield' returns partial responses for streaming
41
  yield response
42
 
43
+ # Step 3: Build a Gradio Blocks interface with two Tabs
44
+ with gr.Blocks() as demo:
45
+ # (A) First Tab: Chat Interface
46
+ with gr.Tab("GPT Chat Agent"):
47
+ gr.Markdown("## Welcome to Varun's GPT Agent")
48
+ gr.Markdown("Feel free to ask questions about Varun’s journey, skills, and more!")
49
+ chat = gr.ChatInterface(
50
+ respond,
51
+ additional_inputs=[
52
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
53
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
54
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
55
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
56
+ ],
57
+ )
58
 
59
+ # (B) Second Tab: Background Document
60
+ with gr.Tab("Varun's Background"):
61
+ gr.Markdown("# About Varun")
62
+ gr.Markdown(background_text)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
 
64
+ # Step 4: Launch
65
  if __name__ == "__main__":
66
  demo.launch()