Spaces:
Sleeping
Sleeping
Varun-Background Knowledge Report
Browse files
app.py
CHANGED
@@ -1,11 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
9 |
|
10 |
def respond(
|
11 |
message,
|
@@ -16,7 +17,7 @@ def respond(
|
|
16 |
top_p,
|
17 |
):
|
18 |
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
for val in history:
|
21 |
if val[0]:
|
22 |
messages.append({"role": "user", "content": val[0]})
|
@@ -27,38 +28,39 @@ def respond(
|
|
27 |
|
28 |
response = ""
|
29 |
|
30 |
-
for
|
31 |
messages,
|
32 |
max_tokens=max_tokens,
|
33 |
stream=True,
|
34 |
temperature=temperature,
|
35 |
top_p=top_p,
|
36 |
):
|
37 |
-
token =
|
38 |
-
|
39 |
response += token
|
|
|
40 |
yield response
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
""
|
46 |
-
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
-
|
62 |
|
|
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
+
# Step 1: Read your background info
|
5 |
+
with open("BACKGROUND.md", "r", encoding="utf-8") as f:
|
6 |
+
background_text = f.read()
|
|
|
7 |
|
8 |
+
# Step 2: Set up your InferenceClient (same as before)
|
9 |
+
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
10 |
|
11 |
def respond(
|
12 |
message,
|
|
|
17 |
top_p,
|
18 |
):
|
19 |
messages = [{"role": "system", "content": system_message}]
|
20 |
+
|
21 |
for val in history:
|
22 |
if val[0]:
|
23 |
messages.append({"role": "user", "content": val[0]})
|
|
|
28 |
|
29 |
response = ""
|
30 |
|
31 |
+
for msg in client.chat_completion(
|
32 |
messages,
|
33 |
max_tokens=max_tokens,
|
34 |
stream=True,
|
35 |
temperature=temperature,
|
36 |
top_p=top_p,
|
37 |
):
|
38 |
+
token = msg.choices[0].delta.content
|
|
|
39 |
response += token
|
40 |
+
# 'yield' returns partial responses for streaming
|
41 |
yield response
|
42 |
|
43 |
+
# Step 3: Build a Gradio Blocks interface with two Tabs
|
44 |
+
with gr.Blocks() as demo:
|
45 |
+
# (A) First Tab: Chat Interface
|
46 |
+
with gr.Tab("GPT Chat Agent"):
|
47 |
+
gr.Markdown("## Welcome to Varun's GPT Agent")
|
48 |
+
gr.Markdown("Feel free to ask questions about Varun’s journey, skills, and more!")
|
49 |
+
chat = gr.ChatInterface(
|
50 |
+
respond,
|
51 |
+
additional_inputs=[
|
52 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
53 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
54 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
55 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
56 |
+
],
|
57 |
+
)
|
58 |
|
59 |
+
# (B) Second Tab: Background Document
|
60 |
+
with gr.Tab("Varun's Background"):
|
61 |
+
gr.Markdown("# About Varun")
|
62 |
+
gr.Markdown(background_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
# Step 4: Launch
|
65 |
if __name__ == "__main__":
|
66 |
demo.launch()
|