Spaces:
				
			
			
	
			
			
		Paused
		
	
	
	
			
			
	
	
	
	
		
		
		Paused
		
	| from diffusers import ( | |
| StableDiffusionControlNetImg2ImgPipeline, | |
| AutoencoderTiny, | |
| ControlNetModel, | |
| ) | |
| from compel import Compel | |
| import torch | |
| from pipelines.utils.canny_gpu import SobelOperator | |
| try: | |
| import intel_extension_for_pytorch as ipex # type: ignore | |
| except: | |
| pass | |
| import psutil | |
| from config import Args | |
| from pydantic import BaseModel, Field | |
| from PIL import Image | |
| base_model = "SimianLuo/LCM_Dreamshaper_v7" | |
| taesd_model = "madebyollin/taesd" | |
| controlnet_model = "lllyasviel/control_v11p_sd15_canny" | |
| default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece" | |
| class Pipeline: | |
| class Info(BaseModel): | |
| name: str = "txt2img" | |
| description: str = "Generates an image from a text prompt" | |
| input_mode: str = "image" | |
| class InputParams(BaseModel): | |
| prompt: str = Field( | |
| default_prompt, | |
| title="Prompt", | |
| field="textarea", | |
| id="prompt", | |
| ) | |
| seed: int = Field( | |
| 2159232, min=0, title="Seed", field="seed", hide=True, id="seed" | |
| ) | |
| steps: int = Field( | |
| 4, min=2, max=15, title="Steps", field="range", hide=True, id="steps" | |
| ) | |
| width: int = Field( | |
| 512, min=2, max=15, title="Width", disabled=True, hide=True, id="width" | |
| ) | |
| height: int = Field( | |
| 512, min=2, max=15, title="Height", disabled=True, hide=True, id="height" | |
| ) | |
| guidance_scale: float = Field( | |
| 0.2, | |
| min=0, | |
| max=2, | |
| step=0.001, | |
| title="Guidance Scale", | |
| field="range", | |
| hide=True, | |
| id="guidance_scale", | |
| ) | |
| strength: float = Field( | |
| 0.5, | |
| min=0.25, | |
| max=1.0, | |
| step=0.001, | |
| title="Strength", | |
| field="range", | |
| hide=True, | |
| id="strength", | |
| ) | |
| controlnet_scale: float = Field( | |
| 0.8, | |
| min=0, | |
| max=1.0, | |
| step=0.001, | |
| title="Controlnet Scale", | |
| field="range", | |
| hide=True, | |
| id="controlnet_scale", | |
| ) | |
| controlnet_start: float = Field( | |
| 0.0, | |
| min=0, | |
| max=1.0, | |
| step=0.001, | |
| title="Controlnet Start", | |
| field="range", | |
| hide=True, | |
| id="controlnet_start", | |
| ) | |
| controlnet_end: float = Field( | |
| 1.0, | |
| min=0, | |
| max=1.0, | |
| step=0.001, | |
| title="Controlnet End", | |
| field="range", | |
| hide=True, | |
| id="controlnet_end", | |
| ) | |
| canny_low_threshold: float = Field( | |
| 0.31, | |
| min=0, | |
| max=1.0, | |
| step=0.001, | |
| title="Canny Low Threshold", | |
| field="range", | |
| hide=True, | |
| id="canny_low_threshold", | |
| ) | |
| canny_high_threshold: float = Field( | |
| 0.125, | |
| min=0, | |
| max=1.0, | |
| step=0.001, | |
| title="Canny High Threshold", | |
| field="range", | |
| hide=True, | |
| id="canny_high_threshold", | |
| ) | |
| debug_canny: bool = Field( | |
| False, | |
| title="Debug Canny", | |
| field="checkbox", | |
| hide=True, | |
| id="debug_canny", | |
| ) | |
| def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype): | |
| controlnet_canny = ControlNetModel.from_pretrained( | |
| controlnet_model, torch_dtype=torch_dtype | |
| ).to(device) | |
| if args.safety_checker: | |
| self.pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( | |
| base_model, controlnet=controlnet_canny | |
| ) | |
| else: | |
| self.pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( | |
| base_model, | |
| safety_checker=None, | |
| controlnet=controlnet_canny, | |
| ) | |
| if args.use_taesd: | |
| self.pipe.vae = AutoencoderTiny.from_pretrained( | |
| taesd_model, torch_dtype=torch_dtype, use_safetensors=True | |
| ) | |
| self.canny_torch = SobelOperator(device=device) | |
| self.pipe.set_progress_bar_config(disable=True) | |
| self.pipe.to(device=device, dtype=torch_dtype) | |
| self.pipe.unet.to(memory_format=torch.channels_last) | |
| # check if computer has less than 64GB of RAM using sys or os | |
| if psutil.virtual_memory().total < 64 * 1024**3: | |
| self.pipe.enable_attention_slicing() | |
| if args.torch_compile: | |
| self.pipe.unet = torch.compile( | |
| self.pipe.unet, mode="reduce-overhead", fullgraph=True | |
| ) | |
| self.pipe.vae = torch.compile( | |
| self.pipe.vae, mode="reduce-overhead", fullgraph=True | |
| ) | |
| self.pipe( | |
| prompt="warmup", | |
| image=[Image.new("RGB", (768, 768))], | |
| control_image=[Image.new("RGB", (768, 768))], | |
| ) | |
| self.compel_proc = Compel( | |
| tokenizer=self.pipe.tokenizer, | |
| text_encoder=self.pipe.text_encoder, | |
| truncate_long_prompts=False, | |
| ) | |
| def predict(self, params: "Pipeline.InputParams") -> Image.Image: | |
| generator = torch.manual_seed(params.seed) | |
| prompt_embeds = self.compel_proc(params.prompt) | |
| control_image = self.canny_torch( | |
| params.image, params.canny_low_threshold, params.canny_high_threshold | |
| ) | |
| results = self.pipe( | |
| image=params.image, | |
| control_image=control_image, | |
| prompt_embeds=prompt_embeds, | |
| generator=generator, | |
| strength=params.strength, | |
| num_inference_steps=params.steps, | |
| guidance_scale=params.guidance_scale, | |
| width=params.width, | |
| height=params.height, | |
| output_type="pil", | |
| controlnet_conditioning_scale=params.controlnet_scale, | |
| control_guidance_start=params.controlnet_start, | |
| control_guidance_end=params.controlnet_end, | |
| ) | |
| nsfw_content_detected = ( | |
| results.nsfw_content_detected[0] | |
| if "nsfw_content_detected" in results | |
| else False | |
| ) | |
| if nsfw_content_detected: | |
| return None | |
| result_image = results.images[0] | |
| if params.debug_canny: | |
| # paste control_image on top of result_image | |
| w0, h0 = (200, 200) | |
| control_image = control_image.resize((w0, h0)) | |
| w1, h1 = result_image.size | |
| result_image.paste(control_image, (w1 - w0, h1 - h0)) | |
| return result_image | |
