vk commited on
Commit
45a6ede
·
1 Parent(s): 4247c78

first commit

Browse files
.gitignore ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .vscode/
2
+ .DS_Store
3
+ __pycache__/
4
+ *-checkpoint.ipynb
5
+ .venv
6
+ *.egg*
7
+ build/*
8
+ _C.*
9
+ *.pt
10
+ *.ipynb
11
+ outputs/*
12
+ training
13
+ notebooks
14
+ demo
15
+ checkpoints/*.pt
16
+ demo/backend/checkpoints/*.pt
app.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import hydra
3
+ from omegaconf import DictConfig
4
+ from sam2.build_sam import build_sam2
5
+ from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
6
+ from PIL import Image
7
+ from matplotlib import pyplot as plt
8
+ import numpy as np
9
+ import cv2
10
+ from glob import glob
11
+ import gradio as gr
12
+ import os
13
+ import hydra
14
+
15
+
16
+ def show_example(path):
17
+ return cv2.cvtColor(cv2.imread(path), cv2.COLOR_BGR2RGB)
18
+
19
+
20
+
21
+ def overlay_masks_on_image(image, anns, borders=True):
22
+ """
23
+ Overlays segmentation masks from 'anns' on top of 'image'.
24
+
25
+ Parameters:
26
+ image: np.ndarray (H, W, 3) — source RGB image
27
+ anns: list of dicts — each with a 'segmentation' key containing a boolean mask
28
+ borders: bool — whether to draw contours
29
+ show_mask: bool — whether to show each mask separately
30
+
31
+ Returns:
32
+ masked_image: np.ndarray (H, W, 3) — image with overlays
33
+ """
34
+ if len(anns) == 0:
35
+ return image
36
+
37
+ # Copy image to avoid modifying original
38
+ masked_image = image.copy().astype(np.float32) / 255.0
39
+
40
+ sorted_anns = sorted(anns, key=lambda x: x['area'], reverse=True)
41
+
42
+ for ann in sorted_anns:
43
+ m = ann['segmentation'].astype(bool)
44
+ color_mask = np.random.random(3) # RGB color
45
+ alpha = 0.5 # transparency
46
+
47
+
48
+
49
+ # Blend mask with source image
50
+ for c in range(3): # RGB channels
51
+ masked_image[:, :, c] = np.where(
52
+ m,
53
+ (1 - alpha) * masked_image[:, :, c] + alpha * color_mask[c],
54
+ masked_image[:, :, c]
55
+ )
56
+
57
+ if borders:
58
+ contours, _ = cv2.findContours(m.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
59
+ contours = [cv2.approxPolyDP(contour, epsilon=0.01 * cv2.arcLength(contour, True), closed=True)
60
+ for contour in contours]
61
+ cv2.drawContours(masked_image, contours, -1, color=(0, 0, 1), thickness=1)
62
+
63
+ return (masked_image * 255).astype(np.uint8)
64
+
65
+ def get_response(image):
66
+ image = np.array(image.convert("RGB"))
67
+ masks = mask_generator.generate(image)
68
+ return overlay_masks_on_image(image,masks)
69
+
70
+ def download_checkpoint():
71
+ os.system('wget https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_large.pt')
72
+
73
+
74
+
75
+ def load_model_cfg():
76
+ return SAM2AutomaticMaskGenerator(build_sam2(model_cfg, checkpoint, device='cpu'))
77
+
78
+
79
+ if __name__ == "__main__":
80
+
81
+ iface = gr.Interface(
82
+ cache_examples=False,
83
+ fn=get_response,
84
+ inputs=[gr.Image(type="pil")], # Accepts image input
85
+ examples=[[show_example('test-images/5fc8c5b53c.png')],[show_example('test-images/80719af02f.png')],[show_example('test-images/f32c7bd62b.png')]],
86
+ outputs=[gr.Image(type="numpy")],
87
+ title="Segmenting Microscopic images with Segment Anything",
88
+ description="Segmenting Microscopic images with Meta Segment Anything")
89
+
90
+
91
+ checkpoint = "sam2.1_hiera_large.pt"
92
+ model_cfg = "sam2.1_hiera_l.yaml"
93
+
94
+ if not os.path.exists(checkpoint):
95
+ print('Downloading checkpoint')
96
+ download_checkpoint()
97
+ print('Checkpoint Downloaded')
98
+
99
+ mask_generator = load_model_cfg()
100
+
101
+ iface.launch()
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ torch>=2.5.1
2
+ torchvision>=0.20.1
3
+ numpy>=1.24.4
4
+ tqdm>=4.66.1
5
+ opencv_python
6
+ hydra-core>=1.3.2
7
+ #-e .
sam2/__init__.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from hydra import initialize_config_module
8
+ from hydra.core.global_hydra import GlobalHydra
9
+
10
+ if not GlobalHydra.instance().is_initialized():
11
+ initialize_config_module("sam2", version_base="1.2")
sam2/automatic_mask_generator.py ADDED
@@ -0,0 +1,454 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ # Adapted from https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/automatic_mask_generator.py
8
+ from typing import Any, Dict, List, Optional, Tuple
9
+
10
+ import numpy as np
11
+ import torch
12
+ from torchvision.ops.boxes import batched_nms, box_area # type: ignore
13
+
14
+ from sam2.modeling.sam2_base import SAM2Base
15
+ from sam2.sam2_image_predictor import SAM2ImagePredictor
16
+ from sam2.utils.amg import (
17
+ area_from_rle,
18
+ batch_iterator,
19
+ batched_mask_to_box,
20
+ box_xyxy_to_xywh,
21
+ build_all_layer_point_grids,
22
+ calculate_stability_score,
23
+ coco_encode_rle,
24
+ generate_crop_boxes,
25
+ is_box_near_crop_edge,
26
+ mask_to_rle_pytorch,
27
+ MaskData,
28
+ remove_small_regions,
29
+ rle_to_mask,
30
+ uncrop_boxes_xyxy,
31
+ uncrop_masks,
32
+ uncrop_points,
33
+ )
34
+
35
+
36
+ class SAM2AutomaticMaskGenerator:
37
+ def __init__(
38
+ self,
39
+ model: SAM2Base,
40
+ points_per_side: Optional[int] = 32,
41
+ points_per_batch: int = 64,
42
+ pred_iou_thresh: float = 0.8,
43
+ stability_score_thresh: float = 0.95,
44
+ stability_score_offset: float = 1.0,
45
+ mask_threshold: float = 0.0,
46
+ box_nms_thresh: float = 0.7,
47
+ crop_n_layers: int = 0,
48
+ crop_nms_thresh: float = 0.7,
49
+ crop_overlap_ratio: float = 512 / 1500,
50
+ crop_n_points_downscale_factor: int = 1,
51
+ point_grids: Optional[List[np.ndarray]] = None,
52
+ min_mask_region_area: int = 0,
53
+ output_mode: str = "binary_mask",
54
+ use_m2m: bool = False,
55
+ multimask_output: bool = True,
56
+ **kwargs,
57
+ ) -> None:
58
+ """
59
+ Using a SAM 2 model, generates masks for the entire image.
60
+ Generates a grid of point prompts over the image, then filters
61
+ low quality and duplicate masks. The default settings are chosen
62
+ for SAM 2 with a HieraL backbone.
63
+
64
+ Arguments:
65
+ model (Sam): The SAM 2 model to use for mask prediction.
66
+ points_per_side (int or None): The number of points to be sampled
67
+ along one side of the image. The total number of points is
68
+ points_per_side**2. If None, 'point_grids' must provide explicit
69
+ point sampling.
70
+ points_per_batch (int): Sets the number of points run simultaneously
71
+ by the model. Higher numbers may be faster but use more GPU memory.
72
+ pred_iou_thresh (float): A filtering threshold in [0,1], using the
73
+ model's predicted mask quality.
74
+ stability_score_thresh (float): A filtering threshold in [0,1], using
75
+ the stability of the mask under changes to the cutoff used to binarize
76
+ the model's mask predictions.
77
+ stability_score_offset (float): The amount to shift the cutoff when
78
+ calculated the stability score.
79
+ mask_threshold (float): Threshold for binarizing the mask logits
80
+ box_nms_thresh (float): The box IoU cutoff used by non-maximal
81
+ suppression to filter duplicate masks.
82
+ crop_n_layers (int): If >0, mask prediction will be run again on
83
+ crops of the image. Sets the number of layers to run, where each
84
+ layer has 2**i_layer number of image crops.
85
+ crop_nms_thresh (float): The box IoU cutoff used by non-maximal
86
+ suppression to filter duplicate masks between different crops.
87
+ crop_overlap_ratio (float): Sets the degree to which crops overlap.
88
+ In the first crop layer, crops will overlap by this fraction of
89
+ the image length. Later layers with more crops scale down this overlap.
90
+ crop_n_points_downscale_factor (int): The number of points-per-side
91
+ sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
92
+ point_grids (list(np.ndarray) or None): A list over explicit grids
93
+ of points used for sampling, normalized to [0,1]. The nth grid in the
94
+ list is used in the nth crop layer. Exclusive with points_per_side.
95
+ min_mask_region_area (int): If >0, postprocessing will be applied
96
+ to remove disconnected regions and holes in masks with area smaller
97
+ than min_mask_region_area. Requires opencv.
98
+ output_mode (str): The form masks are returned in. Can be 'binary_mask',
99
+ 'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools.
100
+ For large resolutions, 'binary_mask' may consume large amounts of
101
+ memory.
102
+ use_m2m (bool): Whether to add a one step refinement using previous mask predictions.
103
+ multimask_output (bool): Whether to output multimask at each point of the grid.
104
+ """
105
+
106
+ assert (points_per_side is None) != (
107
+ point_grids is None
108
+ ), "Exactly one of points_per_side or point_grid must be provided."
109
+ if points_per_side is not None:
110
+ self.point_grids = build_all_layer_point_grids(
111
+ points_per_side,
112
+ crop_n_layers,
113
+ crop_n_points_downscale_factor,
114
+ )
115
+ elif point_grids is not None:
116
+ self.point_grids = point_grids
117
+ else:
118
+ raise ValueError("Can't have both points_per_side and point_grid be None.")
119
+
120
+ assert output_mode in [
121
+ "binary_mask",
122
+ "uncompressed_rle",
123
+ "coco_rle",
124
+ ], f"Unknown output_mode {output_mode}."
125
+ if output_mode == "coco_rle":
126
+ try:
127
+ from pycocotools import mask as mask_utils # type: ignore # noqa: F401
128
+ except ImportError as e:
129
+ print("Please install pycocotools")
130
+ raise e
131
+
132
+ self.predictor = SAM2ImagePredictor(
133
+ model,
134
+ max_hole_area=min_mask_region_area,
135
+ max_sprinkle_area=min_mask_region_area,
136
+ )
137
+ self.points_per_batch = points_per_batch
138
+ self.pred_iou_thresh = pred_iou_thresh
139
+ self.stability_score_thresh = stability_score_thresh
140
+ self.stability_score_offset = stability_score_offset
141
+ self.mask_threshold = mask_threshold
142
+ self.box_nms_thresh = box_nms_thresh
143
+ self.crop_n_layers = crop_n_layers
144
+ self.crop_nms_thresh = crop_nms_thresh
145
+ self.crop_overlap_ratio = crop_overlap_ratio
146
+ self.crop_n_points_downscale_factor = crop_n_points_downscale_factor
147
+ self.min_mask_region_area = min_mask_region_area
148
+ self.output_mode = output_mode
149
+ self.use_m2m = use_m2m
150
+ self.multimask_output = multimask_output
151
+
152
+ @classmethod
153
+ def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2AutomaticMaskGenerator":
154
+ """
155
+ Load a pretrained model from the Hugging Face hub.
156
+
157
+ Arguments:
158
+ model_id (str): The Hugging Face repository ID.
159
+ **kwargs: Additional arguments to pass to the model constructor.
160
+
161
+ Returns:
162
+ (SAM2AutomaticMaskGenerator): The loaded model.
163
+ """
164
+ from sam2.build_sam import build_sam2_hf
165
+
166
+ sam_model = build_sam2_hf(model_id, **kwargs)
167
+ return cls(sam_model, **kwargs)
168
+
169
+ @torch.no_grad()
170
+ def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:
171
+ """
172
+ Generates masks for the given image.
173
+
174
+ Arguments:
175
+ image (np.ndarray): The image to generate masks for, in HWC uint8 format.
176
+
177
+ Returns:
178
+ list(dict(str, any)): A list over records for masks. Each record is
179
+ a dict containing the following keys:
180
+ segmentation (dict(str, any) or np.ndarray): The mask. If
181
+ output_mode='binary_mask', is an array of shape HW. Otherwise,
182
+ is a dictionary containing the RLE.
183
+ bbox (list(float)): The box around the mask, in XYWH format.
184
+ area (int): The area in pixels of the mask.
185
+ predicted_iou (float): The model's own prediction of the mask's
186
+ quality. This is filtered by the pred_iou_thresh parameter.
187
+ point_coords (list(list(float))): The point coordinates input
188
+ to the model to generate this mask.
189
+ stability_score (float): A measure of the mask's quality. This
190
+ is filtered on using the stability_score_thresh parameter.
191
+ crop_box (list(float)): The crop of the image used to generate
192
+ the mask, given in XYWH format.
193
+ """
194
+
195
+ # Generate masks
196
+ mask_data = self._generate_masks(image)
197
+
198
+ # Encode masks
199
+ if self.output_mode == "coco_rle":
200
+ mask_data["segmentations"] = [
201
+ coco_encode_rle(rle) for rle in mask_data["rles"]
202
+ ]
203
+ elif self.output_mode == "binary_mask":
204
+ mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]]
205
+ else:
206
+ mask_data["segmentations"] = mask_data["rles"]
207
+
208
+ # Write mask records
209
+ curr_anns = []
210
+ for idx in range(len(mask_data["segmentations"])):
211
+ ann = {
212
+ "segmentation": mask_data["segmentations"][idx],
213
+ "area": area_from_rle(mask_data["rles"][idx]),
214
+ "bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(),
215
+ "predicted_iou": mask_data["iou_preds"][idx].item(),
216
+ "point_coords": [mask_data["points"][idx].tolist()],
217
+ "stability_score": mask_data["stability_score"][idx].item(),
218
+ "crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(),
219
+ }
220
+ curr_anns.append(ann)
221
+
222
+ return curr_anns
223
+
224
+ def _generate_masks(self, image: np.ndarray) -> MaskData:
225
+ orig_size = image.shape[:2]
226
+ crop_boxes, layer_idxs = generate_crop_boxes(
227
+ orig_size, self.crop_n_layers, self.crop_overlap_ratio
228
+ )
229
+
230
+ # Iterate over image crops
231
+ data = MaskData()
232
+ for crop_box, layer_idx in zip(crop_boxes, layer_idxs):
233
+ crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)
234
+ data.cat(crop_data)
235
+
236
+ # Remove duplicate masks between crops
237
+ if len(crop_boxes) > 1:
238
+ # Prefer masks from smaller crops
239
+ scores = 1 / box_area(data["crop_boxes"])
240
+ scores = scores.to(data["boxes"].device)
241
+ keep_by_nms = batched_nms(
242
+ data["boxes"].float(),
243
+ scores,
244
+ torch.zeros_like(data["boxes"][:, 0]), # categories
245
+ iou_threshold=self.crop_nms_thresh,
246
+ )
247
+ data.filter(keep_by_nms)
248
+ data.to_numpy()
249
+ return data
250
+
251
+ def _process_crop(
252
+ self,
253
+ image: np.ndarray,
254
+ crop_box: List[int],
255
+ crop_layer_idx: int,
256
+ orig_size: Tuple[int, ...],
257
+ ) -> MaskData:
258
+ # Crop the image and calculate embeddings
259
+ x0, y0, x1, y1 = crop_box
260
+ cropped_im = image[y0:y1, x0:x1, :]
261
+ cropped_im_size = cropped_im.shape[:2]
262
+ self.predictor.set_image(cropped_im)
263
+
264
+ # Get points for this crop
265
+ points_scale = np.array(cropped_im_size)[None, ::-1]
266
+ points_for_image = self.point_grids[crop_layer_idx] * points_scale
267
+
268
+ # Generate masks for this crop in batches
269
+ data = MaskData()
270
+ for (points,) in batch_iterator(self.points_per_batch, points_for_image):
271
+ batch_data = self._process_batch(
272
+ points, cropped_im_size, crop_box, orig_size, normalize=True
273
+ )
274
+ data.cat(batch_data)
275
+ del batch_data
276
+ self.predictor.reset_predictor()
277
+
278
+ # Remove duplicates within this crop.
279
+ keep_by_nms = batched_nms(
280
+ data["boxes"].float(),
281
+ data["iou_preds"],
282
+ torch.zeros_like(data["boxes"][:, 0]), # categories
283
+ iou_threshold=self.box_nms_thresh,
284
+ )
285
+ data.filter(keep_by_nms)
286
+
287
+ # Return to the original image frame
288
+ data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box)
289
+ data["points"] = uncrop_points(data["points"], crop_box)
290
+ data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))])
291
+
292
+ return data
293
+
294
+ def _process_batch(
295
+ self,
296
+ points: np.ndarray,
297
+ im_size: Tuple[int, ...],
298
+ crop_box: List[int],
299
+ orig_size: Tuple[int, ...],
300
+ normalize=False,
301
+ ) -> MaskData:
302
+ orig_h, orig_w = orig_size
303
+
304
+ # Run model on this batch
305
+ points = torch.as_tensor(
306
+ points, dtype=torch.float32, device=self.predictor.device
307
+ )
308
+ in_points = self.predictor._transforms.transform_coords(
309
+ points, normalize=normalize, orig_hw=im_size
310
+ )
311
+ in_labels = torch.ones(
312
+ in_points.shape[0], dtype=torch.int, device=in_points.device
313
+ )
314
+ masks, iou_preds, low_res_masks = self.predictor._predict(
315
+ in_points[:, None, :],
316
+ in_labels[:, None],
317
+ multimask_output=self.multimask_output,
318
+ return_logits=True,
319
+ )
320
+
321
+ # Serialize predictions and store in MaskData
322
+ data = MaskData(
323
+ masks=masks.flatten(0, 1),
324
+ iou_preds=iou_preds.flatten(0, 1),
325
+ points=points.repeat_interleave(masks.shape[1], dim=0),
326
+ low_res_masks=low_res_masks.flatten(0, 1),
327
+ )
328
+ del masks
329
+
330
+ if not self.use_m2m:
331
+ # Filter by predicted IoU
332
+ if self.pred_iou_thresh > 0.0:
333
+ keep_mask = data["iou_preds"] > self.pred_iou_thresh
334
+ data.filter(keep_mask)
335
+
336
+ # Calculate and filter by stability score
337
+ data["stability_score"] = calculate_stability_score(
338
+ data["masks"], self.mask_threshold, self.stability_score_offset
339
+ )
340
+ if self.stability_score_thresh > 0.0:
341
+ keep_mask = data["stability_score"] >= self.stability_score_thresh
342
+ data.filter(keep_mask)
343
+ else:
344
+ # One step refinement using previous mask predictions
345
+ in_points = self.predictor._transforms.transform_coords(
346
+ data["points"], normalize=normalize, orig_hw=im_size
347
+ )
348
+ labels = torch.ones(
349
+ in_points.shape[0], dtype=torch.int, device=in_points.device
350
+ )
351
+ masks, ious = self.refine_with_m2m(
352
+ in_points, labels, data["low_res_masks"], self.points_per_batch
353
+ )
354
+ data["masks"] = masks.squeeze(1)
355
+ data["iou_preds"] = ious.squeeze(1)
356
+
357
+ if self.pred_iou_thresh > 0.0:
358
+ keep_mask = data["iou_preds"] > self.pred_iou_thresh
359
+ data.filter(keep_mask)
360
+
361
+ data["stability_score"] = calculate_stability_score(
362
+ data["masks"], self.mask_threshold, self.stability_score_offset
363
+ )
364
+ if self.stability_score_thresh > 0.0:
365
+ keep_mask = data["stability_score"] >= self.stability_score_thresh
366
+ data.filter(keep_mask)
367
+
368
+ # Threshold masks and calculate boxes
369
+ data["masks"] = data["masks"] > self.mask_threshold
370
+ data["boxes"] = batched_mask_to_box(data["masks"])
371
+
372
+ # Filter boxes that touch crop boundaries
373
+ keep_mask = ~is_box_near_crop_edge(
374
+ data["boxes"], crop_box, [0, 0, orig_w, orig_h]
375
+ )
376
+ if not torch.all(keep_mask):
377
+ data.filter(keep_mask)
378
+
379
+ # Compress to RLE
380
+ data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w)
381
+ data["rles"] = mask_to_rle_pytorch(data["masks"])
382
+ del data["masks"]
383
+
384
+ return data
385
+
386
+ @staticmethod
387
+ def postprocess_small_regions(
388
+ mask_data: MaskData, min_area: int, nms_thresh: float
389
+ ) -> MaskData:
390
+ """
391
+ Removes small disconnected regions and holes in masks, then reruns
392
+ box NMS to remove any new duplicates.
393
+
394
+ Edits mask_data in place.
395
+
396
+ Requires open-cv as a dependency.
397
+ """
398
+ if len(mask_data["rles"]) == 0:
399
+ return mask_data
400
+
401
+ # Filter small disconnected regions and holes
402
+ new_masks = []
403
+ scores = []
404
+ for rle in mask_data["rles"]:
405
+ mask = rle_to_mask(rle)
406
+
407
+ mask, changed = remove_small_regions(mask, min_area, mode="holes")
408
+ unchanged = not changed
409
+ mask, changed = remove_small_regions(mask, min_area, mode="islands")
410
+ unchanged = unchanged and not changed
411
+
412
+ new_masks.append(torch.as_tensor(mask).unsqueeze(0))
413
+ # Give score=0 to changed masks and score=1 to unchanged masks
414
+ # so NMS will prefer ones that didn't need postprocessing
415
+ scores.append(float(unchanged))
416
+
417
+ # Recalculate boxes and remove any new duplicates
418
+ masks = torch.cat(new_masks, dim=0)
419
+ boxes = batched_mask_to_box(masks)
420
+ keep_by_nms = batched_nms(
421
+ boxes.float(),
422
+ torch.as_tensor(scores),
423
+ torch.zeros_like(boxes[:, 0]), # categories
424
+ iou_threshold=nms_thresh,
425
+ )
426
+
427
+ # Only recalculate RLEs for masks that have changed
428
+ for i_mask in keep_by_nms:
429
+ if scores[i_mask] == 0.0:
430
+ mask_torch = masks[i_mask].unsqueeze(0)
431
+ mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0]
432
+ mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly
433
+ mask_data.filter(keep_by_nms)
434
+
435
+ return mask_data
436
+
437
+ def refine_with_m2m(self, points, point_labels, low_res_masks, points_per_batch):
438
+ new_masks = []
439
+ new_iou_preds = []
440
+
441
+ for cur_points, cur_point_labels, low_res_mask in batch_iterator(
442
+ points_per_batch, points, point_labels, low_res_masks
443
+ ):
444
+ best_masks, best_iou_preds, _ = self.predictor._predict(
445
+ cur_points[:, None, :],
446
+ cur_point_labels[:, None],
447
+ mask_input=low_res_mask[:, None, :],
448
+ multimask_output=False,
449
+ return_logits=True,
450
+ )
451
+ new_masks.append(best_masks)
452
+ new_iou_preds.append(best_iou_preds)
453
+ masks = torch.cat(new_masks, dim=0)
454
+ return masks, torch.cat(new_iou_preds, dim=0)
sam2/benchmark.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import os
8
+ import time
9
+
10
+ import numpy as np
11
+ import torch
12
+ from tqdm import tqdm
13
+
14
+ from sam2.build_sam import build_sam2_video_predictor
15
+
16
+ # Only cuda supported
17
+ assert torch.cuda.is_available()
18
+ device = torch.device("cuda")
19
+
20
+ torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
21
+ if torch.cuda.get_device_properties(0).major >= 8:
22
+ # turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
23
+ torch.backends.cuda.matmul.allow_tf32 = True
24
+ torch.backends.cudnn.allow_tf32 = True
25
+
26
+ # Config and checkpoint
27
+ sam2_checkpoint = "checkpoints/sam2.1_hiera_base_plus.pt"
28
+ model_cfg = "configs/sam2.1/sam2.1_hiera_b+.yaml"
29
+
30
+ # Build video predictor with vos_optimized=True setting
31
+ predictor = build_sam2_video_predictor(
32
+ model_cfg, sam2_checkpoint, device=device, vos_optimized=True
33
+ )
34
+
35
+
36
+ # Initialize with video
37
+ video_dir = "notebooks/videos/bedroom"
38
+ # scan all the JPEG frame names in this directory
39
+ frame_names = [
40
+ p
41
+ for p in os.listdir(video_dir)
42
+ if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
43
+ ]
44
+ frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
45
+ inference_state = predictor.init_state(video_path=video_dir)
46
+
47
+
48
+ # Number of runs, warmup etc
49
+ warm_up, runs = 5, 25
50
+ verbose = True
51
+ num_frames = len(frame_names)
52
+ total, count = 0, 0
53
+ torch.cuda.empty_cache()
54
+
55
+ # We will select an object with a click.
56
+ # See video_predictor_example.ipynb for more detailed explanation
57
+ ann_frame_idx, ann_obj_id = 0, 1
58
+ # Add a positive click at (x, y) = (210, 350)
59
+ # For labels, `1` means positive click
60
+ points = np.array([[210, 350]], dtype=np.float32)
61
+ labels = np.array([1], np.int32)
62
+
63
+ _, out_obj_ids, out_mask_logits = predictor.add_new_points_or_box(
64
+ inference_state=inference_state,
65
+ frame_idx=ann_frame_idx,
66
+ obj_id=ann_obj_id,
67
+ points=points,
68
+ labels=labels,
69
+ )
70
+
71
+ # Warmup and then average FPS over several runs
72
+ with torch.autocast("cuda", torch.bfloat16):
73
+ with torch.inference_mode():
74
+ for i in tqdm(range(runs), disable=not verbose, desc="Benchmarking"):
75
+ start = time.time()
76
+ # Start tracking
77
+ for (
78
+ out_frame_idx,
79
+ out_obj_ids,
80
+ out_mask_logits,
81
+ ) in predictor.propagate_in_video(inference_state):
82
+ pass
83
+
84
+ end = time.time()
85
+ total += end - start
86
+ count += 1
87
+ if i == warm_up - 1:
88
+ print("Warmup FPS: ", count * num_frames / total)
89
+ total = 0
90
+ count = 0
91
+
92
+ print("FPS: ", count * num_frames / total)
sam2/build_sam.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import logging
8
+ import os
9
+
10
+ import torch
11
+ from hydra import compose
12
+ from hydra.utils import instantiate
13
+ from omegaconf import OmegaConf
14
+
15
+ import sam2
16
+
17
+ # Check if the user is running Python from the parent directory of the sam2 repo
18
+ # (i.e. the directory where this repo is cloned into) -- this is not supported since
19
+ # it could shadow the sam2 package and cause issues.
20
+ if os.path.isdir(os.path.join(sam2.__path__[0], "sam2")):
21
+ # If the user has "sam2/sam2" in their path, they are likey importing the repo itself
22
+ # as "sam2" rather than importing the "sam2" python package (i.e. "sam2/sam2" directory).
23
+ # This typically happens because the user is running Python from the parent directory
24
+ # that contains the sam2 repo they cloned.
25
+ raise RuntimeError(
26
+ "You're likely running Python from the parent directory of the sam2 repository "
27
+ "(i.e. the directory where https://github.com/facebookresearch/sam2 is cloned into). "
28
+ "This is not supported since the `sam2` Python package could be shadowed by the "
29
+ "repository name (the repository is also named `sam2` and contains the Python package "
30
+ "in `sam2/sam2`). Please run Python from another directory (e.g. from the repo dir "
31
+ "rather than its parent dir, or from your home directory) after installing SAM 2."
32
+ )
33
+
34
+
35
+ HF_MODEL_ID_TO_FILENAMES = {
36
+ "facebook/sam2-hiera-tiny": (
37
+ "configs/sam2/sam2_hiera_t.yaml",
38
+ "sam2_hiera_tiny.pt",
39
+ ),
40
+ "facebook/sam2-hiera-small": (
41
+ "configs/sam2/sam2_hiera_s.yaml",
42
+ "sam2_hiera_small.pt",
43
+ ),
44
+ "facebook/sam2-hiera-base-plus": (
45
+ "configs/sam2/sam2_hiera_b+.yaml",
46
+ "sam2_hiera_base_plus.pt",
47
+ ),
48
+ "facebook/sam2-hiera-large": (
49
+ "configs/sam2/sam2_hiera_l.yaml",
50
+ "sam2_hiera_large.pt",
51
+ ),
52
+ "facebook/sam2.1-hiera-tiny": (
53
+ "configs/sam2.1/sam2.1_hiera_t.yaml",
54
+ "sam2.1_hiera_tiny.pt",
55
+ ),
56
+ "facebook/sam2.1-hiera-small": (
57
+ "configs/sam2.1/sam2.1_hiera_s.yaml",
58
+ "sam2.1_hiera_small.pt",
59
+ ),
60
+ "facebook/sam2.1-hiera-base-plus": (
61
+ "configs/sam2.1/sam2.1_hiera_b+.yaml",
62
+ "sam2.1_hiera_base_plus.pt",
63
+ ),
64
+ "facebook/sam2.1-hiera-large": (
65
+ "configs/sam2.1/sam2.1_hiera_l.yaml",
66
+ "sam2.1_hiera_large.pt",
67
+ ),
68
+ }
69
+
70
+
71
+ def build_sam2(
72
+ config_file,
73
+ ckpt_path=None,
74
+ device="cuda",
75
+ mode="eval",
76
+ hydra_overrides_extra=[],
77
+ apply_postprocessing=True,
78
+ **kwargs,
79
+ ):
80
+
81
+ if apply_postprocessing:
82
+ hydra_overrides_extra = hydra_overrides_extra.copy()
83
+ hydra_overrides_extra += [
84
+ # dynamically fall back to multi-mask if the single mask is not stable
85
+ "++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
86
+ "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
87
+ "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
88
+ ]
89
+ # Read config and init model
90
+ cfg = compose(config_name=config_file, overrides=hydra_overrides_extra)
91
+ OmegaConf.resolve(cfg)
92
+ model = instantiate(cfg.model, _recursive_=True)
93
+ _load_checkpoint(model, ckpt_path)
94
+ model = model.to(device)
95
+ if mode == "eval":
96
+ model.eval()
97
+ return model
98
+
99
+
100
+ def build_sam2_video_predictor(
101
+ config_file,
102
+ ckpt_path=None,
103
+ device="cuda",
104
+ mode="eval",
105
+ hydra_overrides_extra=[],
106
+ apply_postprocessing=True,
107
+ vos_optimized=False,
108
+ **kwargs,
109
+ ):
110
+ hydra_overrides = [
111
+ "++model._target_=sam2.sam2_video_predictor.SAM2VideoPredictor",
112
+ ]
113
+ if vos_optimized:
114
+ hydra_overrides = [
115
+ "++model._target_=sam2.sam2_video_predictor.SAM2VideoPredictorVOS",
116
+ "++model.compile_image_encoder=True", # Let sam2_base handle this
117
+ ]
118
+
119
+ if apply_postprocessing:
120
+ hydra_overrides_extra = hydra_overrides_extra.copy()
121
+ hydra_overrides_extra += [
122
+ # dynamically fall back to multi-mask if the single mask is not stable
123
+ "++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
124
+ "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
125
+ "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
126
+ # the sigmoid mask logits on interacted frames with clicks in the memory encoder so that the encoded masks are exactly as what users see from clicking
127
+ "++model.binarize_mask_from_pts_for_mem_enc=true",
128
+ # fill small holes in the low-res masks up to `fill_hole_area` (before resizing them to the original video resolution)
129
+ "++model.fill_hole_area=8",
130
+ ]
131
+ hydra_overrides.extend(hydra_overrides_extra)
132
+
133
+ # Read config and init model
134
+ cfg = compose(config_name=config_file, overrides=hydra_overrides)
135
+ OmegaConf.resolve(cfg)
136
+ model = instantiate(cfg.model, _recursive_=True)
137
+ _load_checkpoint(model, ckpt_path)
138
+ model = model.to(device)
139
+ if mode == "eval":
140
+ model.eval()
141
+ return model
142
+
143
+
144
+ def _hf_download(model_id):
145
+ from huggingface_hub import hf_hub_download
146
+
147
+ config_name, checkpoint_name = HF_MODEL_ID_TO_FILENAMES[model_id]
148
+ ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name)
149
+ return config_name, ckpt_path
150
+
151
+
152
+ def build_sam2_hf(model_id, **kwargs):
153
+ config_name, ckpt_path = _hf_download(model_id)
154
+ return build_sam2(config_file=config_name, ckpt_path=ckpt_path, **kwargs)
155
+
156
+
157
+ def build_sam2_video_predictor_hf(model_id, **kwargs):
158
+ config_name, ckpt_path = _hf_download(model_id)
159
+ return build_sam2_video_predictor(
160
+ config_file=config_name, ckpt_path=ckpt_path, **kwargs
161
+ )
162
+
163
+
164
+ def _load_checkpoint(model, ckpt_path):
165
+ if ckpt_path is not None:
166
+ sd = torch.load(ckpt_path, map_location="cpu", weights_only=True)["model"]
167
+ missing_keys, unexpected_keys = model.load_state_dict(sd)
168
+ if missing_keys:
169
+ logging.error(missing_keys)
170
+ raise RuntimeError()
171
+ if unexpected_keys:
172
+ logging.error(unexpected_keys)
173
+ raise RuntimeError()
174
+ logging.info("Loaded checkpoint sucessfully")
sam2/configs/sam2.1/sam2.1_hiera_b+.yaml ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+
3
+ # Model
4
+ model:
5
+ _target_: sam2.modeling.sam2_base.SAM2Base
6
+ image_encoder:
7
+ _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
8
+ scalp: 1
9
+ trunk:
10
+ _target_: sam2.modeling.backbones.hieradet.Hiera
11
+ embed_dim: 112
12
+ num_heads: 2
13
+ neck:
14
+ _target_: sam2.modeling.backbones.image_encoder.FpnNeck
15
+ position_encoding:
16
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
17
+ num_pos_feats: 256
18
+ normalize: true
19
+ scale: null
20
+ temperature: 10000
21
+ d_model: 256
22
+ backbone_channel_list: [896, 448, 224, 112]
23
+ fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
24
+ fpn_interp_model: nearest
25
+
26
+ memory_attention:
27
+ _target_: sam2.modeling.memory_attention.MemoryAttention
28
+ d_model: 256
29
+ pos_enc_at_input: true
30
+ layer:
31
+ _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
32
+ activation: relu
33
+ dim_feedforward: 2048
34
+ dropout: 0.1
35
+ pos_enc_at_attn: false
36
+ self_attention:
37
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
38
+ rope_theta: 10000.0
39
+ feat_sizes: [64, 64]
40
+ embedding_dim: 256
41
+ num_heads: 1
42
+ downsample_rate: 1
43
+ dropout: 0.1
44
+ d_model: 256
45
+ pos_enc_at_cross_attn_keys: true
46
+ pos_enc_at_cross_attn_queries: false
47
+ cross_attention:
48
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
49
+ rope_theta: 10000.0
50
+ feat_sizes: [64, 64]
51
+ rope_k_repeat: True
52
+ embedding_dim: 256
53
+ num_heads: 1
54
+ downsample_rate: 1
55
+ dropout: 0.1
56
+ kv_in_dim: 64
57
+ num_layers: 4
58
+
59
+ memory_encoder:
60
+ _target_: sam2.modeling.memory_encoder.MemoryEncoder
61
+ out_dim: 64
62
+ position_encoding:
63
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
64
+ num_pos_feats: 64
65
+ normalize: true
66
+ scale: null
67
+ temperature: 10000
68
+ mask_downsampler:
69
+ _target_: sam2.modeling.memory_encoder.MaskDownSampler
70
+ kernel_size: 3
71
+ stride: 2
72
+ padding: 1
73
+ fuser:
74
+ _target_: sam2.modeling.memory_encoder.Fuser
75
+ layer:
76
+ _target_: sam2.modeling.memory_encoder.CXBlock
77
+ dim: 256
78
+ kernel_size: 7
79
+ padding: 3
80
+ layer_scale_init_value: 1e-6
81
+ use_dwconv: True # depth-wise convs
82
+ num_layers: 2
83
+
84
+ num_maskmem: 7
85
+ image_size: 1024
86
+ # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
87
+ sigmoid_scale_for_mem_enc: 20.0
88
+ sigmoid_bias_for_mem_enc: -10.0
89
+ use_mask_input_as_output_without_sam: true
90
+ # Memory
91
+ directly_add_no_mem_embed: true
92
+ no_obj_embed_spatial: true
93
+ # use high-resolution feature map in the SAM mask decoder
94
+ use_high_res_features_in_sam: true
95
+ # output 3 masks on the first click on initial conditioning frames
96
+ multimask_output_in_sam: true
97
+ # SAM heads
98
+ iou_prediction_use_sigmoid: True
99
+ # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
100
+ use_obj_ptrs_in_encoder: true
101
+ add_tpos_enc_to_obj_ptrs: true
102
+ proj_tpos_enc_in_obj_ptrs: true
103
+ use_signed_tpos_enc_to_obj_ptrs: true
104
+ only_obj_ptrs_in_the_past_for_eval: true
105
+ # object occlusion prediction
106
+ pred_obj_scores: true
107
+ pred_obj_scores_mlp: true
108
+ fixed_no_obj_ptr: true
109
+ # multimask tracking settings
110
+ multimask_output_for_tracking: true
111
+ use_multimask_token_for_obj_ptr: true
112
+ multimask_min_pt_num: 0
113
+ multimask_max_pt_num: 1
114
+ use_mlp_for_obj_ptr_proj: true
115
+ # Compilation flag
116
+ compile_image_encoder: False
sam2/configs/sam2.1/sam2.1_hiera_l.yaml ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+
3
+ # Model
4
+ model:
5
+ _target_: sam2.modeling.sam2_base.SAM2Base
6
+ image_encoder:
7
+ _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
8
+ scalp: 1
9
+ trunk:
10
+ _target_: sam2.modeling.backbones.hieradet.Hiera
11
+ embed_dim: 144
12
+ num_heads: 2
13
+ stages: [2, 6, 36, 4]
14
+ global_att_blocks: [23, 33, 43]
15
+ window_pos_embed_bkg_spatial_size: [7, 7]
16
+ window_spec: [8, 4, 16, 8]
17
+ neck:
18
+ _target_: sam2.modeling.backbones.image_encoder.FpnNeck
19
+ position_encoding:
20
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
21
+ num_pos_feats: 256
22
+ normalize: true
23
+ scale: null
24
+ temperature: 10000
25
+ d_model: 256
26
+ backbone_channel_list: [1152, 576, 288, 144]
27
+ fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
28
+ fpn_interp_model: nearest
29
+
30
+ memory_attention:
31
+ _target_: sam2.modeling.memory_attention.MemoryAttention
32
+ d_model: 256
33
+ pos_enc_at_input: true
34
+ layer:
35
+ _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
36
+ activation: relu
37
+ dim_feedforward: 2048
38
+ dropout: 0.1
39
+ pos_enc_at_attn: false
40
+ self_attention:
41
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
42
+ rope_theta: 10000.0
43
+ feat_sizes: [64, 64]
44
+ embedding_dim: 256
45
+ num_heads: 1
46
+ downsample_rate: 1
47
+ dropout: 0.1
48
+ d_model: 256
49
+ pos_enc_at_cross_attn_keys: true
50
+ pos_enc_at_cross_attn_queries: false
51
+ cross_attention:
52
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
53
+ rope_theta: 10000.0
54
+ feat_sizes: [64, 64]
55
+ rope_k_repeat: True
56
+ embedding_dim: 256
57
+ num_heads: 1
58
+ downsample_rate: 1
59
+ dropout: 0.1
60
+ kv_in_dim: 64
61
+ num_layers: 4
62
+
63
+ memory_encoder:
64
+ _target_: sam2.modeling.memory_encoder.MemoryEncoder
65
+ out_dim: 64
66
+ position_encoding:
67
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
68
+ num_pos_feats: 64
69
+ normalize: true
70
+ scale: null
71
+ temperature: 10000
72
+ mask_downsampler:
73
+ _target_: sam2.modeling.memory_encoder.MaskDownSampler
74
+ kernel_size: 3
75
+ stride: 2
76
+ padding: 1
77
+ fuser:
78
+ _target_: sam2.modeling.memory_encoder.Fuser
79
+ layer:
80
+ _target_: sam2.modeling.memory_encoder.CXBlock
81
+ dim: 256
82
+ kernel_size: 7
83
+ padding: 3
84
+ layer_scale_init_value: 1e-6
85
+ use_dwconv: True # depth-wise convs
86
+ num_layers: 2
87
+
88
+ num_maskmem: 7
89
+ image_size: 1024
90
+ # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
91
+ sigmoid_scale_for_mem_enc: 20.0
92
+ sigmoid_bias_for_mem_enc: -10.0
93
+ use_mask_input_as_output_without_sam: true
94
+ # Memory
95
+ directly_add_no_mem_embed: true
96
+ no_obj_embed_spatial: true
97
+ # use high-resolution feature map in the SAM mask decoder
98
+ use_high_res_features_in_sam: true
99
+ # output 3 masks on the first click on initial conditioning frames
100
+ multimask_output_in_sam: true
101
+ # SAM heads
102
+ iou_prediction_use_sigmoid: True
103
+ # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
104
+ use_obj_ptrs_in_encoder: true
105
+ add_tpos_enc_to_obj_ptrs: true
106
+ proj_tpos_enc_in_obj_ptrs: true
107
+ use_signed_tpos_enc_to_obj_ptrs: true
108
+ only_obj_ptrs_in_the_past_for_eval: true
109
+ # object occlusion prediction
110
+ pred_obj_scores: true
111
+ pred_obj_scores_mlp: true
112
+ fixed_no_obj_ptr: true
113
+ # multimask tracking settings
114
+ multimask_output_for_tracking: true
115
+ use_multimask_token_for_obj_ptr: true
116
+ multimask_min_pt_num: 0
117
+ multimask_max_pt_num: 1
118
+ use_mlp_for_obj_ptr_proj: true
119
+ # Compilation flag
120
+ compile_image_encoder: False
sam2/configs/sam2.1/sam2.1_hiera_s.yaml ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+
3
+ # Model
4
+ model:
5
+ _target_: sam2.modeling.sam2_base.SAM2Base
6
+ image_encoder:
7
+ _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
8
+ scalp: 1
9
+ trunk:
10
+ _target_: sam2.modeling.backbones.hieradet.Hiera
11
+ embed_dim: 96
12
+ num_heads: 1
13
+ stages: [1, 2, 11, 2]
14
+ global_att_blocks: [7, 10, 13]
15
+ window_pos_embed_bkg_spatial_size: [7, 7]
16
+ neck:
17
+ _target_: sam2.modeling.backbones.image_encoder.FpnNeck
18
+ position_encoding:
19
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
20
+ num_pos_feats: 256
21
+ normalize: true
22
+ scale: null
23
+ temperature: 10000
24
+ d_model: 256
25
+ backbone_channel_list: [768, 384, 192, 96]
26
+ fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
27
+ fpn_interp_model: nearest
28
+
29
+ memory_attention:
30
+ _target_: sam2.modeling.memory_attention.MemoryAttention
31
+ d_model: 256
32
+ pos_enc_at_input: true
33
+ layer:
34
+ _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
35
+ activation: relu
36
+ dim_feedforward: 2048
37
+ dropout: 0.1
38
+ pos_enc_at_attn: false
39
+ self_attention:
40
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
41
+ rope_theta: 10000.0
42
+ feat_sizes: [64, 64]
43
+ embedding_dim: 256
44
+ num_heads: 1
45
+ downsample_rate: 1
46
+ dropout: 0.1
47
+ d_model: 256
48
+ pos_enc_at_cross_attn_keys: true
49
+ pos_enc_at_cross_attn_queries: false
50
+ cross_attention:
51
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
52
+ rope_theta: 10000.0
53
+ feat_sizes: [64, 64]
54
+ rope_k_repeat: True
55
+ embedding_dim: 256
56
+ num_heads: 1
57
+ downsample_rate: 1
58
+ dropout: 0.1
59
+ kv_in_dim: 64
60
+ num_layers: 4
61
+
62
+ memory_encoder:
63
+ _target_: sam2.modeling.memory_encoder.MemoryEncoder
64
+ out_dim: 64
65
+ position_encoding:
66
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
67
+ num_pos_feats: 64
68
+ normalize: true
69
+ scale: null
70
+ temperature: 10000
71
+ mask_downsampler:
72
+ _target_: sam2.modeling.memory_encoder.MaskDownSampler
73
+ kernel_size: 3
74
+ stride: 2
75
+ padding: 1
76
+ fuser:
77
+ _target_: sam2.modeling.memory_encoder.Fuser
78
+ layer:
79
+ _target_: sam2.modeling.memory_encoder.CXBlock
80
+ dim: 256
81
+ kernel_size: 7
82
+ padding: 3
83
+ layer_scale_init_value: 1e-6
84
+ use_dwconv: True # depth-wise convs
85
+ num_layers: 2
86
+
87
+ num_maskmem: 7
88
+ image_size: 1024
89
+ # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
90
+ sigmoid_scale_for_mem_enc: 20.0
91
+ sigmoid_bias_for_mem_enc: -10.0
92
+ use_mask_input_as_output_without_sam: true
93
+ # Memory
94
+ directly_add_no_mem_embed: true
95
+ no_obj_embed_spatial: true
96
+ # use high-resolution feature map in the SAM mask decoder
97
+ use_high_res_features_in_sam: true
98
+ # output 3 masks on the first click on initial conditioning frames
99
+ multimask_output_in_sam: true
100
+ # SAM heads
101
+ iou_prediction_use_sigmoid: True
102
+ # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
103
+ use_obj_ptrs_in_encoder: true
104
+ add_tpos_enc_to_obj_ptrs: true
105
+ proj_tpos_enc_in_obj_ptrs: true
106
+ use_signed_tpos_enc_to_obj_ptrs: true
107
+ only_obj_ptrs_in_the_past_for_eval: true
108
+ # object occlusion prediction
109
+ pred_obj_scores: true
110
+ pred_obj_scores_mlp: true
111
+ fixed_no_obj_ptr: true
112
+ # multimask tracking settings
113
+ multimask_output_for_tracking: true
114
+ use_multimask_token_for_obj_ptr: true
115
+ multimask_min_pt_num: 0
116
+ multimask_max_pt_num: 1
117
+ use_mlp_for_obj_ptr_proj: true
118
+ # Compilation flag
119
+ compile_image_encoder: False
sam2/configs/sam2.1/sam2.1_hiera_t.yaml ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+
3
+ # Model
4
+ model:
5
+ _target_: sam2.modeling.sam2_base.SAM2Base
6
+ image_encoder:
7
+ _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
8
+ scalp: 1
9
+ trunk:
10
+ _target_: sam2.modeling.backbones.hieradet.Hiera
11
+ embed_dim: 96
12
+ num_heads: 1
13
+ stages: [1, 2, 7, 2]
14
+ global_att_blocks: [5, 7, 9]
15
+ window_pos_embed_bkg_spatial_size: [7, 7]
16
+ neck:
17
+ _target_: sam2.modeling.backbones.image_encoder.FpnNeck
18
+ position_encoding:
19
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
20
+ num_pos_feats: 256
21
+ normalize: true
22
+ scale: null
23
+ temperature: 10000
24
+ d_model: 256
25
+ backbone_channel_list: [768, 384, 192, 96]
26
+ fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
27
+ fpn_interp_model: nearest
28
+
29
+ memory_attention:
30
+ _target_: sam2.modeling.memory_attention.MemoryAttention
31
+ d_model: 256
32
+ pos_enc_at_input: true
33
+ layer:
34
+ _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
35
+ activation: relu
36
+ dim_feedforward: 2048
37
+ dropout: 0.1
38
+ pos_enc_at_attn: false
39
+ self_attention:
40
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
41
+ rope_theta: 10000.0
42
+ feat_sizes: [64, 64]
43
+ embedding_dim: 256
44
+ num_heads: 1
45
+ downsample_rate: 1
46
+ dropout: 0.1
47
+ d_model: 256
48
+ pos_enc_at_cross_attn_keys: true
49
+ pos_enc_at_cross_attn_queries: false
50
+ cross_attention:
51
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
52
+ rope_theta: 10000.0
53
+ feat_sizes: [64, 64]
54
+ rope_k_repeat: True
55
+ embedding_dim: 256
56
+ num_heads: 1
57
+ downsample_rate: 1
58
+ dropout: 0.1
59
+ kv_in_dim: 64
60
+ num_layers: 4
61
+
62
+ memory_encoder:
63
+ _target_: sam2.modeling.memory_encoder.MemoryEncoder
64
+ out_dim: 64
65
+ position_encoding:
66
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
67
+ num_pos_feats: 64
68
+ normalize: true
69
+ scale: null
70
+ temperature: 10000
71
+ mask_downsampler:
72
+ _target_: sam2.modeling.memory_encoder.MaskDownSampler
73
+ kernel_size: 3
74
+ stride: 2
75
+ padding: 1
76
+ fuser:
77
+ _target_: sam2.modeling.memory_encoder.Fuser
78
+ layer:
79
+ _target_: sam2.modeling.memory_encoder.CXBlock
80
+ dim: 256
81
+ kernel_size: 7
82
+ padding: 3
83
+ layer_scale_init_value: 1e-6
84
+ use_dwconv: True # depth-wise convs
85
+ num_layers: 2
86
+
87
+ num_maskmem: 7
88
+ image_size: 1024
89
+ # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
90
+ # SAM decoder
91
+ sigmoid_scale_for_mem_enc: 20.0
92
+ sigmoid_bias_for_mem_enc: -10.0
93
+ use_mask_input_as_output_without_sam: true
94
+ # Memory
95
+ directly_add_no_mem_embed: true
96
+ no_obj_embed_spatial: true
97
+ # use high-resolution feature map in the SAM mask decoder
98
+ use_high_res_features_in_sam: true
99
+ # output 3 masks on the first click on initial conditioning frames
100
+ multimask_output_in_sam: true
101
+ # SAM heads
102
+ iou_prediction_use_sigmoid: True
103
+ # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
104
+ use_obj_ptrs_in_encoder: true
105
+ add_tpos_enc_to_obj_ptrs: true
106
+ proj_tpos_enc_in_obj_ptrs: true
107
+ use_signed_tpos_enc_to_obj_ptrs: true
108
+ only_obj_ptrs_in_the_past_for_eval: true
109
+ # object occlusion prediction
110
+ pred_obj_scores: true
111
+ pred_obj_scores_mlp: true
112
+ fixed_no_obj_ptr: true
113
+ # multimask tracking settings
114
+ multimask_output_for_tracking: true
115
+ use_multimask_token_for_obj_ptr: true
116
+ multimask_min_pt_num: 0
117
+ multimask_max_pt_num: 1
118
+ use_mlp_for_obj_ptr_proj: true
119
+ # Compilation flag
120
+ # HieraT does not currently support compilation, should always be set to False
121
+ compile_image_encoder: False
sam2/csrc/connected_components.cu ADDED
@@ -0,0 +1,289 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ // All rights reserved.
3
+
4
+ // This source code is licensed under the license found in the
5
+ // LICENSE file in the root directory of this source tree.
6
+
7
+ // adapted from https://github.com/zsef123/Connected_components_PyTorch
8
+ // with license found in the LICENSE_cctorch file in the root directory.
9
+ #include <ATen/cuda/CUDAContext.h>
10
+ #include <cuda.h>
11
+ #include <cuda_runtime.h>
12
+ #include <torch/extension.h>
13
+ #include <torch/script.h>
14
+ #include <vector>
15
+
16
+ // 2d
17
+ #define BLOCK_ROWS 16
18
+ #define BLOCK_COLS 16
19
+
20
+ namespace cc2d {
21
+
22
+ template <typename T>
23
+ __device__ __forceinline__ unsigned char hasBit(T bitmap, unsigned char pos) {
24
+ return (bitmap >> pos) & 1;
25
+ }
26
+
27
+ __device__ int32_t find(const int32_t* s_buf, int32_t n) {
28
+ while (s_buf[n] != n)
29
+ n = s_buf[n];
30
+ return n;
31
+ }
32
+
33
+ __device__ int32_t find_n_compress(int32_t* s_buf, int32_t n) {
34
+ const int32_t id = n;
35
+ while (s_buf[n] != n) {
36
+ n = s_buf[n];
37
+ s_buf[id] = n;
38
+ }
39
+ return n;
40
+ }
41
+
42
+ __device__ void union_(int32_t* s_buf, int32_t a, int32_t b) {
43
+ bool done;
44
+ do {
45
+ a = find(s_buf, a);
46
+ b = find(s_buf, b);
47
+
48
+ if (a < b) {
49
+ int32_t old = atomicMin(s_buf + b, a);
50
+ done = (old == b);
51
+ b = old;
52
+ } else if (b < a) {
53
+ int32_t old = atomicMin(s_buf + a, b);
54
+ done = (old == a);
55
+ a = old;
56
+ } else
57
+ done = true;
58
+
59
+ } while (!done);
60
+ }
61
+
62
+ __global__ void
63
+ init_labeling(int32_t* label, const uint32_t W, const uint32_t H) {
64
+ const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
65
+ const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
66
+ const uint32_t idx = row * W + col;
67
+
68
+ if (row < H && col < W)
69
+ label[idx] = idx;
70
+ }
71
+
72
+ __global__ void
73
+ merge(uint8_t* img, int32_t* label, const uint32_t W, const uint32_t H) {
74
+ const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
75
+ const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
76
+ const uint32_t idx = row * W + col;
77
+
78
+ if (row >= H || col >= W)
79
+ return;
80
+
81
+ uint32_t P = 0;
82
+
83
+ if (img[idx])
84
+ P |= 0x777;
85
+ if (row + 1 < H && img[idx + W])
86
+ P |= 0x777 << 4;
87
+ if (col + 1 < W && img[idx + 1])
88
+ P |= 0x777 << 1;
89
+
90
+ if (col == 0)
91
+ P &= 0xEEEE;
92
+ if (col + 1 >= W)
93
+ P &= 0x3333;
94
+ else if (col + 2 >= W)
95
+ P &= 0x7777;
96
+
97
+ if (row == 0)
98
+ P &= 0xFFF0;
99
+ if (row + 1 >= H)
100
+ P &= 0xFF;
101
+
102
+ if (P > 0) {
103
+ // If need check about top-left pixel(if flag the first bit) and hit the
104
+ // top-left pixel
105
+ if (hasBit(P, 0) && img[idx - W - 1]) {
106
+ union_(label, idx, idx - 2 * W - 2); // top left block
107
+ }
108
+
109
+ if ((hasBit(P, 1) && img[idx - W]) || (hasBit(P, 2) && img[idx - W + 1]))
110
+ union_(label, idx, idx - 2 * W); // top bottom block
111
+
112
+ if (hasBit(P, 3) && img[idx + 2 - W])
113
+ union_(label, idx, idx - 2 * W + 2); // top right block
114
+
115
+ if ((hasBit(P, 4) && img[idx - 1]) || (hasBit(P, 8) && img[idx + W - 1]))
116
+ union_(label, idx, idx - 2); // just left block
117
+ }
118
+ }
119
+
120
+ __global__ void compression(int32_t* label, const int32_t W, const int32_t H) {
121
+ const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
122
+ const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
123
+ const uint32_t idx = row * W + col;
124
+
125
+ if (row < H && col < W)
126
+ find_n_compress(label, idx);
127
+ }
128
+
129
+ __global__ void final_labeling(
130
+ const uint8_t* img,
131
+ int32_t* label,
132
+ const int32_t W,
133
+ const int32_t H) {
134
+ const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
135
+ const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
136
+ const uint32_t idx = row * W + col;
137
+
138
+ if (row >= H || col >= W)
139
+ return;
140
+
141
+ int32_t y = label[idx] + 1;
142
+
143
+ if (img[idx])
144
+ label[idx] = y;
145
+ else
146
+ label[idx] = 0;
147
+
148
+ if (col + 1 < W) {
149
+ if (img[idx + 1])
150
+ label[idx + 1] = y;
151
+ else
152
+ label[idx + 1] = 0;
153
+
154
+ if (row + 1 < H) {
155
+ if (img[idx + W + 1])
156
+ label[idx + W + 1] = y;
157
+ else
158
+ label[idx + W + 1] = 0;
159
+ }
160
+ }
161
+
162
+ if (row + 1 < H) {
163
+ if (img[idx + W])
164
+ label[idx + W] = y;
165
+ else
166
+ label[idx + W] = 0;
167
+ }
168
+ }
169
+
170
+ __global__ void init_counting(
171
+ const int32_t* label,
172
+ int32_t* count_init,
173
+ const int32_t W,
174
+ const int32_t H) {
175
+ const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y);
176
+ const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x);
177
+ const uint32_t idx = row * W + col;
178
+
179
+ if (row >= H || col >= W)
180
+ return;
181
+
182
+ int32_t y = label[idx];
183
+ if (y > 0) {
184
+ int32_t count_idx = y - 1;
185
+ atomicAdd(count_init + count_idx, 1);
186
+ }
187
+ }
188
+
189
+ __global__ void final_counting(
190
+ const int32_t* label,
191
+ const int32_t* count_init,
192
+ int32_t* count_final,
193
+ const int32_t W,
194
+ const int32_t H) {
195
+ const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y);
196
+ const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x);
197
+ const uint32_t idx = row * W + col;
198
+
199
+ if (row >= H || col >= W)
200
+ return;
201
+
202
+ int32_t y = label[idx];
203
+ if (y > 0) {
204
+ int32_t count_idx = y - 1;
205
+ count_final[idx] = count_init[count_idx];
206
+ } else {
207
+ count_final[idx] = 0;
208
+ }
209
+ }
210
+
211
+ } // namespace cc2d
212
+
213
+ std::vector<torch::Tensor> get_connected_componnets(
214
+ const torch::Tensor& inputs) {
215
+ AT_ASSERTM(inputs.is_cuda(), "inputs must be a CUDA tensor");
216
+ AT_ASSERTM(inputs.ndimension() == 4, "inputs must be [N, 1, H, W] shape");
217
+ AT_ASSERTM(
218
+ inputs.scalar_type() == torch::kUInt8, "inputs must be a uint8 type");
219
+
220
+ const uint32_t N = inputs.size(0);
221
+ const uint32_t C = inputs.size(1);
222
+ const uint32_t H = inputs.size(2);
223
+ const uint32_t W = inputs.size(3);
224
+
225
+ AT_ASSERTM(C == 1, "inputs must be [N, 1, H, W] shape");
226
+ AT_ASSERTM((H % 2) == 0, "height must be an even number");
227
+ AT_ASSERTM((W % 2) == 0, "width must be an even number");
228
+
229
+ // label must be uint32_t
230
+ auto label_options =
231
+ torch::TensorOptions().dtype(torch::kInt32).device(inputs.device());
232
+ torch::Tensor labels = torch::zeros({N, C, H, W}, label_options);
233
+ torch::Tensor counts_init = torch::zeros({N, C, H, W}, label_options);
234
+ torch::Tensor counts_final = torch::zeros({N, C, H, W}, label_options);
235
+
236
+ dim3 grid = dim3(
237
+ ((W + 1) / 2 + BLOCK_COLS - 1) / BLOCK_COLS,
238
+ ((H + 1) / 2 + BLOCK_ROWS - 1) / BLOCK_ROWS);
239
+ dim3 block = dim3(BLOCK_COLS, BLOCK_ROWS);
240
+ dim3 grid_count =
241
+ dim3((W + BLOCK_COLS) / BLOCK_COLS, (H + BLOCK_ROWS) / BLOCK_ROWS);
242
+ dim3 block_count = dim3(BLOCK_COLS, BLOCK_ROWS);
243
+ cudaStream_t stream = at::cuda::getCurrentCUDAStream();
244
+
245
+ for (int n = 0; n < N; n++) {
246
+ uint32_t offset = n * H * W;
247
+
248
+ cc2d::init_labeling<<<grid, block, 0, stream>>>(
249
+ labels.data_ptr<int32_t>() + offset, W, H);
250
+ cc2d::merge<<<grid, block, 0, stream>>>(
251
+ inputs.data_ptr<uint8_t>() + offset,
252
+ labels.data_ptr<int32_t>() + offset,
253
+ W,
254
+ H);
255
+ cc2d::compression<<<grid, block, 0, stream>>>(
256
+ labels.data_ptr<int32_t>() + offset, W, H);
257
+ cc2d::final_labeling<<<grid, block, 0, stream>>>(
258
+ inputs.data_ptr<uint8_t>() + offset,
259
+ labels.data_ptr<int32_t>() + offset,
260
+ W,
261
+ H);
262
+
263
+ // get the counting of each pixel
264
+ cc2d::init_counting<<<grid_count, block_count, 0, stream>>>(
265
+ labels.data_ptr<int32_t>() + offset,
266
+ counts_init.data_ptr<int32_t>() + offset,
267
+ W,
268
+ H);
269
+ cc2d::final_counting<<<grid_count, block_count, 0, stream>>>(
270
+ labels.data_ptr<int32_t>() + offset,
271
+ counts_init.data_ptr<int32_t>() + offset,
272
+ counts_final.data_ptr<int32_t>() + offset,
273
+ W,
274
+ H);
275
+ }
276
+
277
+ // returned values are [labels, counts]
278
+ std::vector<torch::Tensor> outputs;
279
+ outputs.push_back(labels);
280
+ outputs.push_back(counts_final);
281
+ return outputs;
282
+ }
283
+
284
+ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
285
+ m.def(
286
+ "get_connected_componnets",
287
+ &get_connected_componnets,
288
+ "get_connected_componnets");
289
+ }
sam2/modeling/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
sam2/modeling/backbones/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
sam2/modeling/backbones/hieradet.py ADDED
@@ -0,0 +1,317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import logging
8
+ from functools import partial
9
+ from typing import List, Tuple, Union
10
+
11
+ import torch
12
+ import torch.nn as nn
13
+ import torch.nn.functional as F
14
+ from iopath.common.file_io import g_pathmgr
15
+
16
+ from sam2.modeling.backbones.utils import (
17
+ PatchEmbed,
18
+ window_partition,
19
+ window_unpartition,
20
+ )
21
+
22
+ from sam2.modeling.sam2_utils import DropPath, MLP
23
+
24
+
25
+ def do_pool(x: torch.Tensor, pool: nn.Module, norm: nn.Module = None) -> torch.Tensor:
26
+ if pool is None:
27
+ return x
28
+ # (B, H, W, C) -> (B, C, H, W)
29
+ x = x.permute(0, 3, 1, 2)
30
+ x = pool(x)
31
+ # (B, C, H', W') -> (B, H', W', C)
32
+ x = x.permute(0, 2, 3, 1)
33
+ if norm:
34
+ x = norm(x)
35
+
36
+ return x
37
+
38
+
39
+ class MultiScaleAttention(nn.Module):
40
+ def __init__(
41
+ self,
42
+ dim: int,
43
+ dim_out: int,
44
+ num_heads: int,
45
+ q_pool: nn.Module = None,
46
+ ):
47
+ super().__init__()
48
+
49
+ self.dim = dim
50
+ self.dim_out = dim_out
51
+ self.num_heads = num_heads
52
+ self.q_pool = q_pool
53
+ self.qkv = nn.Linear(dim, dim_out * 3)
54
+ self.proj = nn.Linear(dim_out, dim_out)
55
+
56
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
57
+ B, H, W, _ = x.shape
58
+ # qkv with shape (B, H * W, 3, nHead, C)
59
+ qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1)
60
+ # q, k, v with shape (B, H * W, nheads, C)
61
+ q, k, v = torch.unbind(qkv, 2)
62
+
63
+ # Q pooling (for downsample at stage changes)
64
+ if self.q_pool:
65
+ q = do_pool(q.reshape(B, H, W, -1), self.q_pool)
66
+ H, W = q.shape[1:3] # downsampled shape
67
+ q = q.reshape(B, H * W, self.num_heads, -1)
68
+
69
+ # Torch's SDPA expects [B, nheads, H*W, C] so we transpose
70
+ x = F.scaled_dot_product_attention(
71
+ q.transpose(1, 2),
72
+ k.transpose(1, 2),
73
+ v.transpose(1, 2),
74
+ )
75
+ # Transpose back
76
+ x = x.transpose(1, 2)
77
+ x = x.reshape(B, H, W, -1)
78
+
79
+ x = self.proj(x)
80
+
81
+ return x
82
+
83
+
84
+ class MultiScaleBlock(nn.Module):
85
+ def __init__(
86
+ self,
87
+ dim: int,
88
+ dim_out: int,
89
+ num_heads: int,
90
+ mlp_ratio: float = 4.0,
91
+ drop_path: float = 0.0,
92
+ norm_layer: Union[nn.Module, str] = "LayerNorm",
93
+ q_stride: Tuple[int, int] = None,
94
+ act_layer: nn.Module = nn.GELU,
95
+ window_size: int = 0,
96
+ ):
97
+ super().__init__()
98
+
99
+ if isinstance(norm_layer, str):
100
+ norm_layer = partial(getattr(nn, norm_layer), eps=1e-6)
101
+
102
+ self.dim = dim
103
+ self.dim_out = dim_out
104
+ self.norm1 = norm_layer(dim)
105
+
106
+ self.window_size = window_size
107
+
108
+ self.pool, self.q_stride = None, q_stride
109
+ if self.q_stride:
110
+ self.pool = nn.MaxPool2d(
111
+ kernel_size=q_stride, stride=q_stride, ceil_mode=False
112
+ )
113
+
114
+ self.attn = MultiScaleAttention(
115
+ dim,
116
+ dim_out,
117
+ num_heads=num_heads,
118
+ q_pool=self.pool,
119
+ )
120
+ self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
121
+
122
+ self.norm2 = norm_layer(dim_out)
123
+ self.mlp = MLP(
124
+ dim_out,
125
+ int(dim_out * mlp_ratio),
126
+ dim_out,
127
+ num_layers=2,
128
+ activation=act_layer,
129
+ )
130
+
131
+ if dim != dim_out:
132
+ self.proj = nn.Linear(dim, dim_out)
133
+
134
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
135
+ shortcut = x # B, H, W, C
136
+ x = self.norm1(x)
137
+
138
+ # Skip connection
139
+ if self.dim != self.dim_out:
140
+ shortcut = do_pool(self.proj(x), self.pool)
141
+
142
+ # Window partition
143
+ window_size = self.window_size
144
+ if window_size > 0:
145
+ H, W = x.shape[1], x.shape[2]
146
+ x, pad_hw = window_partition(x, window_size)
147
+
148
+ # Window Attention + Q Pooling (if stage change)
149
+ x = self.attn(x)
150
+ if self.q_stride:
151
+ # Shapes have changed due to Q pooling
152
+ window_size = self.window_size // self.q_stride[0]
153
+ H, W = shortcut.shape[1:3]
154
+
155
+ pad_h = (window_size - H % window_size) % window_size
156
+ pad_w = (window_size - W % window_size) % window_size
157
+ pad_hw = (H + pad_h, W + pad_w)
158
+
159
+ # Reverse window partition
160
+ if self.window_size > 0:
161
+ x = window_unpartition(x, window_size, pad_hw, (H, W))
162
+
163
+ x = shortcut + self.drop_path(x)
164
+ # MLP
165
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
166
+ return x
167
+
168
+
169
+ class Hiera(nn.Module):
170
+ """
171
+ Reference: https://arxiv.org/abs/2306.00989
172
+ """
173
+
174
+ def __init__(
175
+ self,
176
+ embed_dim: int = 96, # initial embed dim
177
+ num_heads: int = 1, # initial number of heads
178
+ drop_path_rate: float = 0.0, # stochastic depth
179
+ q_pool: int = 3, # number of q_pool stages
180
+ q_stride: Tuple[int, int] = (2, 2), # downsample stride bet. stages
181
+ stages: Tuple[int, ...] = (2, 3, 16, 3), # blocks per stage
182
+ dim_mul: float = 2.0, # dim_mul factor at stage shift
183
+ head_mul: float = 2.0, # head_mul factor at stage shift
184
+ window_pos_embed_bkg_spatial_size: Tuple[int, int] = (14, 14),
185
+ # window size per stage, when not using global att.
186
+ window_spec: Tuple[int, ...] = (
187
+ 8,
188
+ 4,
189
+ 14,
190
+ 7,
191
+ ),
192
+ # global attn in these blocks
193
+ global_att_blocks: Tuple[int, ...] = (
194
+ 12,
195
+ 16,
196
+ 20,
197
+ ),
198
+ weights_path=None,
199
+ return_interm_layers=True, # return feats from every stage
200
+ ):
201
+ super().__init__()
202
+
203
+ assert len(stages) == len(window_spec)
204
+ self.window_spec = window_spec
205
+
206
+ depth = sum(stages)
207
+ self.q_stride = q_stride
208
+ self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]
209
+ assert 0 <= q_pool <= len(self.stage_ends[:-1])
210
+ self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool]
211
+ self.return_interm_layers = return_interm_layers
212
+
213
+ self.patch_embed = PatchEmbed(
214
+ embed_dim=embed_dim,
215
+ )
216
+ # Which blocks have global att?
217
+ self.global_att_blocks = global_att_blocks
218
+
219
+ # Windowed positional embedding (https://arxiv.org/abs/2311.05613)
220
+ self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size
221
+ self.pos_embed = nn.Parameter(
222
+ torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size)
223
+ )
224
+ self.pos_embed_window = nn.Parameter(
225
+ torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0])
226
+ )
227
+
228
+ dpr = [
229
+ x.item() for x in torch.linspace(0, drop_path_rate, depth)
230
+ ] # stochastic depth decay rule
231
+
232
+ cur_stage = 1
233
+ self.blocks = nn.ModuleList()
234
+
235
+ for i in range(depth):
236
+ dim_out = embed_dim
237
+ # lags by a block, so first block of
238
+ # next stage uses an initial window size
239
+ # of previous stage and final window size of current stage
240
+ window_size = self.window_spec[cur_stage - 1]
241
+
242
+ if self.global_att_blocks is not None:
243
+ window_size = 0 if i in self.global_att_blocks else window_size
244
+
245
+ if i - 1 in self.stage_ends:
246
+ dim_out = int(embed_dim * dim_mul)
247
+ num_heads = int(num_heads * head_mul)
248
+ cur_stage += 1
249
+
250
+ block = MultiScaleBlock(
251
+ dim=embed_dim,
252
+ dim_out=dim_out,
253
+ num_heads=num_heads,
254
+ drop_path=dpr[i],
255
+ q_stride=self.q_stride if i in self.q_pool_blocks else None,
256
+ window_size=window_size,
257
+ )
258
+
259
+ embed_dim = dim_out
260
+ self.blocks.append(block)
261
+
262
+ self.channel_list = (
263
+ [self.blocks[i].dim_out for i in self.stage_ends[::-1]]
264
+ if return_interm_layers
265
+ else [self.blocks[-1].dim_out]
266
+ )
267
+
268
+ if weights_path is not None:
269
+ with g_pathmgr.open(weights_path, "rb") as f:
270
+ chkpt = torch.load(f, map_location="cpu")
271
+ logging.info("loading Hiera", self.load_state_dict(chkpt, strict=False))
272
+
273
+ def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor:
274
+ h, w = hw
275
+ window_embed = self.pos_embed_window
276
+ pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic")
277
+ pos_embed = pos_embed + window_embed.tile(
278
+ [x // y for x, y in zip(pos_embed.shape, window_embed.shape)]
279
+ )
280
+ pos_embed = pos_embed.permute(0, 2, 3, 1)
281
+ return pos_embed
282
+
283
+ def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
284
+ x = self.patch_embed(x)
285
+ # x: (B, H, W, C)
286
+
287
+ # Add pos embed
288
+ x = x + self._get_pos_embed(x.shape[1:3])
289
+
290
+ outputs = []
291
+ for i, blk in enumerate(self.blocks):
292
+ x = blk(x)
293
+ if (i == self.stage_ends[-1]) or (
294
+ i in self.stage_ends and self.return_interm_layers
295
+ ):
296
+ feats = x.permute(0, 3, 1, 2)
297
+ outputs.append(feats)
298
+
299
+ return outputs
300
+
301
+ def get_layer_id(self, layer_name):
302
+ # https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py#L33
303
+ num_layers = self.get_num_layers()
304
+
305
+ if layer_name.find("rel_pos") != -1:
306
+ return num_layers + 1
307
+ elif layer_name.find("pos_embed") != -1:
308
+ return 0
309
+ elif layer_name.find("patch_embed") != -1:
310
+ return 0
311
+ elif layer_name.find("blocks") != -1:
312
+ return int(layer_name.split("blocks")[1].split(".")[1]) + 1
313
+ else:
314
+ return num_layers + 1
315
+
316
+ def get_num_layers(self) -> int:
317
+ return len(self.blocks)
sam2/modeling/backbones/image_encoder.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from typing import List, Optional
8
+
9
+ import torch
10
+ import torch.nn as nn
11
+ import torch.nn.functional as F
12
+
13
+
14
+ class ImageEncoder(nn.Module):
15
+ def __init__(
16
+ self,
17
+ trunk: nn.Module,
18
+ neck: nn.Module,
19
+ scalp: int = 0,
20
+ ):
21
+ super().__init__()
22
+ self.trunk = trunk
23
+ self.neck = neck
24
+ self.scalp = scalp
25
+ assert (
26
+ self.trunk.channel_list == self.neck.backbone_channel_list
27
+ ), f"Channel dims of trunk and neck do not match. Trunk: {self.trunk.channel_list}, neck: {self.neck.backbone_channel_list}"
28
+
29
+ def forward(self, sample: torch.Tensor):
30
+ # Forward through backbone
31
+ features, pos = self.neck(self.trunk(sample))
32
+ if self.scalp > 0:
33
+ # Discard the lowest resolution features
34
+ features, pos = features[: -self.scalp], pos[: -self.scalp]
35
+
36
+ src = features[-1]
37
+ output = {
38
+ "vision_features": src,
39
+ "vision_pos_enc": pos,
40
+ "backbone_fpn": features,
41
+ }
42
+ return output
43
+
44
+
45
+ class FpnNeck(nn.Module):
46
+ """
47
+ A modified variant of Feature Pyramid Network (FPN) neck
48
+ (we remove output conv and also do bicubic interpolation similar to ViT
49
+ pos embed interpolation)
50
+ """
51
+
52
+ def __init__(
53
+ self,
54
+ position_encoding: nn.Module,
55
+ d_model: int,
56
+ backbone_channel_list: List[int],
57
+ kernel_size: int = 1,
58
+ stride: int = 1,
59
+ padding: int = 0,
60
+ fpn_interp_model: str = "bilinear",
61
+ fuse_type: str = "sum",
62
+ fpn_top_down_levels: Optional[List[int]] = None,
63
+ ):
64
+ """Initialize the neck
65
+ :param trunk: the backbone
66
+ :param position_encoding: the positional encoding to use
67
+ :param d_model: the dimension of the model
68
+ :param neck_norm: the normalization to use
69
+ """
70
+ super().__init__()
71
+ self.position_encoding = position_encoding
72
+ self.convs = nn.ModuleList()
73
+ self.backbone_channel_list = backbone_channel_list
74
+ self.d_model = d_model
75
+ for dim in backbone_channel_list:
76
+ current = nn.Sequential()
77
+ current.add_module(
78
+ "conv",
79
+ nn.Conv2d(
80
+ in_channels=dim,
81
+ out_channels=d_model,
82
+ kernel_size=kernel_size,
83
+ stride=stride,
84
+ padding=padding,
85
+ ),
86
+ )
87
+
88
+ self.convs.append(current)
89
+ self.fpn_interp_model = fpn_interp_model
90
+ assert fuse_type in ["sum", "avg"]
91
+ self.fuse_type = fuse_type
92
+
93
+ # levels to have top-down features in its outputs
94
+ # e.g. if fpn_top_down_levels is [2, 3], then only outputs of level 2 and 3
95
+ # have top-down propagation, while outputs of level 0 and level 1 have only
96
+ # lateral features from the same backbone level.
97
+ if fpn_top_down_levels is None:
98
+ # default is to have top-down features on all levels
99
+ fpn_top_down_levels = range(len(self.convs))
100
+ self.fpn_top_down_levels = list(fpn_top_down_levels)
101
+
102
+ def forward(self, xs: List[torch.Tensor]):
103
+
104
+ out = [None] * len(self.convs)
105
+ pos = [None] * len(self.convs)
106
+ assert len(xs) == len(self.convs)
107
+ # fpn forward pass
108
+ # see https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/fpn.py
109
+ prev_features = None
110
+ # forward in top-down order (from low to high resolution)
111
+ n = len(self.convs) - 1
112
+ for i in range(n, -1, -1):
113
+ x = xs[i]
114
+ lateral_features = self.convs[n - i](x)
115
+ if i in self.fpn_top_down_levels and prev_features is not None:
116
+ top_down_features = F.interpolate(
117
+ prev_features.to(dtype=torch.float32),
118
+ scale_factor=2.0,
119
+ mode=self.fpn_interp_model,
120
+ align_corners=(
121
+ None if self.fpn_interp_model == "nearest" else False
122
+ ),
123
+ antialias=False,
124
+ )
125
+ prev_features = lateral_features + top_down_features
126
+ if self.fuse_type == "avg":
127
+ prev_features /= 2
128
+ else:
129
+ prev_features = lateral_features
130
+ x_out = prev_features
131
+ out[i] = x_out
132
+ pos[i] = self.position_encoding(x_out).to(x_out.dtype)
133
+
134
+ return out, pos
sam2/modeling/backbones/utils.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ """Some utilities for backbones, in particular for windowing"""
8
+
9
+ from typing import Tuple
10
+
11
+ import torch
12
+ import torch.nn as nn
13
+ import torch.nn.functional as F
14
+
15
+
16
+ def window_partition(x, window_size):
17
+ """
18
+ Partition into non-overlapping windows with padding if needed.
19
+ Args:
20
+ x (tensor): input tokens with [B, H, W, C].
21
+ window_size (int): window size.
22
+ Returns:
23
+ windows: windows after partition with [B * num_windows, window_size, window_size, C].
24
+ (Hp, Wp): padded height and width before partition
25
+ """
26
+ B, H, W, C = x.shape
27
+
28
+ pad_h = (window_size - H % window_size) % window_size
29
+ pad_w = (window_size - W % window_size) % window_size
30
+ if pad_h > 0 or pad_w > 0:
31
+ x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
32
+ Hp, Wp = H + pad_h, W + pad_w
33
+
34
+ x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
35
+ windows = x.permute(0, 1, 3, 2, 4, 5).reshape(-1, window_size, window_size, C)
36
+ return windows, (Hp, Wp)
37
+
38
+
39
+ def window_unpartition(windows, window_size, pad_hw, hw):
40
+ """
41
+ Window unpartition into original sequences and removing padding.
42
+ Args:
43
+ x (tensor): input tokens with [B * num_windows, window_size, window_size, C].
44
+ window_size (int): window size.
45
+ pad_hw (Tuple): padded height and width (Hp, Wp).
46
+ hw (Tuple): original height and width (H, W) before padding.
47
+ Returns:
48
+ x: unpartitioned sequences with [B, H, W, C].
49
+ """
50
+ Hp, Wp = pad_hw
51
+ H, W = hw
52
+ B = windows.shape[0] // (Hp * Wp // window_size // window_size)
53
+ x = windows.reshape(
54
+ B, Hp // window_size, Wp // window_size, window_size, window_size, -1
55
+ )
56
+ x = x.permute(0, 1, 3, 2, 4, 5).reshape(B, Hp, Wp, -1)
57
+
58
+ if Hp > H or Wp > W:
59
+ x = x[:, :H, :W, :]
60
+ return x
61
+
62
+
63
+ class PatchEmbed(nn.Module):
64
+ """
65
+ Image to Patch Embedding.
66
+ """
67
+
68
+ def __init__(
69
+ self,
70
+ kernel_size: Tuple[int, ...] = (7, 7),
71
+ stride: Tuple[int, ...] = (4, 4),
72
+ padding: Tuple[int, ...] = (3, 3),
73
+ in_chans: int = 3,
74
+ embed_dim: int = 768,
75
+ ):
76
+ """
77
+ Args:
78
+ kernel_size (Tuple): kernel size of the projection layer.
79
+ stride (Tuple): stride of the projection layer.
80
+ padding (Tuple): padding size of the projection layer.
81
+ in_chans (int): Number of input image channels.
82
+ embed_dim (int): embed_dim (int): Patch embedding dimension.
83
+ """
84
+ super().__init__()
85
+ self.proj = nn.Conv2d(
86
+ in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
87
+ )
88
+
89
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
90
+ x = self.proj(x)
91
+ # B C H W -> B H W C
92
+ x = x.permute(0, 2, 3, 1)
93
+ return x
sam2/modeling/memory_attention.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from typing import Optional
8
+
9
+ import torch
10
+ from torch import nn, Tensor
11
+
12
+ from sam2.modeling.sam.transformer import RoPEAttention
13
+
14
+ from sam2.modeling.sam2_utils import get_activation_fn, get_clones
15
+
16
+
17
+ class MemoryAttentionLayer(nn.Module):
18
+
19
+ def __init__(
20
+ self,
21
+ activation: str,
22
+ cross_attention: nn.Module,
23
+ d_model: int,
24
+ dim_feedforward: int,
25
+ dropout: float,
26
+ pos_enc_at_attn: bool,
27
+ pos_enc_at_cross_attn_keys: bool,
28
+ pos_enc_at_cross_attn_queries: bool,
29
+ self_attention: nn.Module,
30
+ ):
31
+ super().__init__()
32
+ self.d_model = d_model
33
+ self.dim_feedforward = dim_feedforward
34
+ self.dropout_value = dropout
35
+ self.self_attn = self_attention
36
+ self.cross_attn_image = cross_attention
37
+
38
+ # Implementation of Feedforward model
39
+ self.linear1 = nn.Linear(d_model, dim_feedforward)
40
+ self.dropout = nn.Dropout(dropout)
41
+ self.linear2 = nn.Linear(dim_feedforward, d_model)
42
+
43
+ self.norm1 = nn.LayerNorm(d_model)
44
+ self.norm2 = nn.LayerNorm(d_model)
45
+ self.norm3 = nn.LayerNorm(d_model)
46
+ self.dropout1 = nn.Dropout(dropout)
47
+ self.dropout2 = nn.Dropout(dropout)
48
+ self.dropout3 = nn.Dropout(dropout)
49
+
50
+ self.activation_str = activation
51
+ self.activation = get_activation_fn(activation)
52
+
53
+ # Where to add pos enc
54
+ self.pos_enc_at_attn = pos_enc_at_attn
55
+ self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries
56
+ self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys
57
+
58
+ def _forward_sa(self, tgt, query_pos):
59
+ # Self-Attention
60
+ tgt2 = self.norm1(tgt)
61
+ q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2
62
+ tgt2 = self.self_attn(q, k, v=tgt2)
63
+ tgt = tgt + self.dropout1(tgt2)
64
+ return tgt
65
+
66
+ def _forward_ca(self, tgt, memory, query_pos, pos, num_k_exclude_rope=0):
67
+ kwds = {}
68
+ if num_k_exclude_rope > 0:
69
+ assert isinstance(self.cross_attn_image, RoPEAttention)
70
+ kwds = {"num_k_exclude_rope": num_k_exclude_rope}
71
+
72
+ # Cross-Attention
73
+ tgt2 = self.norm2(tgt)
74
+ tgt2 = self.cross_attn_image(
75
+ q=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2,
76
+ k=memory + pos if self.pos_enc_at_cross_attn_keys else memory,
77
+ v=memory,
78
+ **kwds,
79
+ )
80
+ tgt = tgt + self.dropout2(tgt2)
81
+ return tgt
82
+
83
+ def forward(
84
+ self,
85
+ tgt,
86
+ memory,
87
+ pos: Optional[Tensor] = None,
88
+ query_pos: Optional[Tensor] = None,
89
+ num_k_exclude_rope: int = 0,
90
+ ) -> torch.Tensor:
91
+
92
+ # Self-Attn, Cross-Attn
93
+ tgt = self._forward_sa(tgt, query_pos)
94
+ tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope)
95
+ # MLP
96
+ tgt2 = self.norm3(tgt)
97
+ tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
98
+ tgt = tgt + self.dropout3(tgt2)
99
+ return tgt
100
+
101
+
102
+ class MemoryAttention(nn.Module):
103
+ def __init__(
104
+ self,
105
+ d_model: int,
106
+ pos_enc_at_input: bool,
107
+ layer: nn.Module,
108
+ num_layers: int,
109
+ batch_first: bool = True, # Do layers expect batch first input?
110
+ ):
111
+ super().__init__()
112
+ self.d_model = d_model
113
+ self.layers = get_clones(layer, num_layers)
114
+ self.num_layers = num_layers
115
+ self.norm = nn.LayerNorm(d_model)
116
+ self.pos_enc_at_input = pos_enc_at_input
117
+ self.batch_first = batch_first
118
+
119
+ def forward(
120
+ self,
121
+ curr: torch.Tensor, # self-attention inputs
122
+ memory: torch.Tensor, # cross-attention inputs
123
+ curr_pos: Optional[Tensor] = None, # pos_enc for self-attention inputs
124
+ memory_pos: Optional[Tensor] = None, # pos_enc for cross-attention inputs
125
+ num_obj_ptr_tokens: int = 0, # number of object pointer *tokens*
126
+ ):
127
+ if isinstance(curr, list):
128
+ assert isinstance(curr_pos, list)
129
+ assert len(curr) == len(curr_pos) == 1
130
+ curr, curr_pos = (
131
+ curr[0],
132
+ curr_pos[0],
133
+ )
134
+
135
+ assert (
136
+ curr.shape[1] == memory.shape[1]
137
+ ), "Batch size must be the same for curr and memory"
138
+
139
+ output = curr
140
+ if self.pos_enc_at_input and curr_pos is not None:
141
+ output = output + 0.1 * curr_pos
142
+
143
+ if self.batch_first:
144
+ # Convert to batch first
145
+ output = output.transpose(0, 1)
146
+ curr_pos = curr_pos.transpose(0, 1)
147
+ memory = memory.transpose(0, 1)
148
+ memory_pos = memory_pos.transpose(0, 1)
149
+
150
+ for layer in self.layers:
151
+ kwds = {}
152
+ if isinstance(layer.cross_attn_image, RoPEAttention):
153
+ kwds = {"num_k_exclude_rope": num_obj_ptr_tokens}
154
+
155
+ output = layer(
156
+ tgt=output,
157
+ memory=memory,
158
+ pos=memory_pos,
159
+ query_pos=curr_pos,
160
+ **kwds,
161
+ )
162
+ normed_output = self.norm(output)
163
+
164
+ if self.batch_first:
165
+ # Convert back to seq first
166
+ normed_output = normed_output.transpose(0, 1)
167
+ curr_pos = curr_pos.transpose(0, 1)
168
+
169
+ return normed_output
sam2/modeling/memory_encoder.py ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import math
8
+ from typing import Tuple
9
+
10
+ import torch
11
+ import torch.nn as nn
12
+ import torch.nn.functional as F
13
+
14
+ from sam2.modeling.sam2_utils import DropPath, get_clones, LayerNorm2d
15
+
16
+
17
+ class MaskDownSampler(nn.Module):
18
+ """
19
+ Progressively downsample a mask by total_stride, each time by stride.
20
+ Note that LayerNorm is applied per *token*, like in ViT.
21
+
22
+ With each downsample (by a factor stride**2), channel capacity increases by the same factor.
23
+ In the end, we linearly project to embed_dim channels.
24
+ """
25
+
26
+ def __init__(
27
+ self,
28
+ embed_dim=256,
29
+ kernel_size=4,
30
+ stride=4,
31
+ padding=0,
32
+ total_stride=16,
33
+ activation=nn.GELU,
34
+ ):
35
+ super().__init__()
36
+ num_layers = int(math.log2(total_stride) // math.log2(stride))
37
+ assert stride**num_layers == total_stride
38
+ self.encoder = nn.Sequential()
39
+ mask_in_chans, mask_out_chans = 1, 1
40
+ for _ in range(num_layers):
41
+ mask_out_chans = mask_in_chans * (stride**2)
42
+ self.encoder.append(
43
+ nn.Conv2d(
44
+ mask_in_chans,
45
+ mask_out_chans,
46
+ kernel_size=kernel_size,
47
+ stride=stride,
48
+ padding=padding,
49
+ )
50
+ )
51
+ self.encoder.append(LayerNorm2d(mask_out_chans))
52
+ self.encoder.append(activation())
53
+ mask_in_chans = mask_out_chans
54
+
55
+ self.encoder.append(nn.Conv2d(mask_out_chans, embed_dim, kernel_size=1))
56
+
57
+ def forward(self, x):
58
+ return self.encoder(x)
59
+
60
+
61
+ # Lightly adapted from ConvNext (https://github.com/facebookresearch/ConvNeXt)
62
+ class CXBlock(nn.Module):
63
+ r"""ConvNeXt Block. There are two equivalent implementations:
64
+ (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
65
+ (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
66
+ We use (2) as we find it slightly faster in PyTorch
67
+
68
+ Args:
69
+ dim (int): Number of input channels.
70
+ drop_path (float): Stochastic depth rate. Default: 0.0
71
+ layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
72
+ """
73
+
74
+ def __init__(
75
+ self,
76
+ dim,
77
+ kernel_size=7,
78
+ padding=3,
79
+ drop_path=0.0,
80
+ layer_scale_init_value=1e-6,
81
+ use_dwconv=True,
82
+ ):
83
+ super().__init__()
84
+ self.dwconv = nn.Conv2d(
85
+ dim,
86
+ dim,
87
+ kernel_size=kernel_size,
88
+ padding=padding,
89
+ groups=dim if use_dwconv else 1,
90
+ ) # depthwise conv
91
+ self.norm = LayerNorm2d(dim, eps=1e-6)
92
+ self.pwconv1 = nn.Linear(
93
+ dim, 4 * dim
94
+ ) # pointwise/1x1 convs, implemented with linear layers
95
+ self.act = nn.GELU()
96
+ self.pwconv2 = nn.Linear(4 * dim, dim)
97
+ self.gamma = (
98
+ nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
99
+ if layer_scale_init_value > 0
100
+ else None
101
+ )
102
+ self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
103
+
104
+ def forward(self, x):
105
+ input = x
106
+ x = self.dwconv(x)
107
+ x = self.norm(x)
108
+ x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
109
+ x = self.pwconv1(x)
110
+ x = self.act(x)
111
+ x = self.pwconv2(x)
112
+ if self.gamma is not None:
113
+ x = self.gamma * x
114
+ x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
115
+
116
+ x = input + self.drop_path(x)
117
+ return x
118
+
119
+
120
+ class Fuser(nn.Module):
121
+ def __init__(self, layer, num_layers, dim=None, input_projection=False):
122
+ super().__init__()
123
+ self.proj = nn.Identity()
124
+ self.layers = get_clones(layer, num_layers)
125
+
126
+ if input_projection:
127
+ assert dim is not None
128
+ self.proj = nn.Conv2d(dim, dim, kernel_size=1)
129
+
130
+ def forward(self, x):
131
+ # normally x: (N, C, H, W)
132
+ x = self.proj(x)
133
+ for layer in self.layers:
134
+ x = layer(x)
135
+ return x
136
+
137
+
138
+ class MemoryEncoder(nn.Module):
139
+ def __init__(
140
+ self,
141
+ out_dim,
142
+ mask_downsampler,
143
+ fuser,
144
+ position_encoding,
145
+ in_dim=256, # in_dim of pix_feats
146
+ ):
147
+ super().__init__()
148
+
149
+ self.mask_downsampler = mask_downsampler
150
+
151
+ self.pix_feat_proj = nn.Conv2d(in_dim, in_dim, kernel_size=1)
152
+ self.fuser = fuser
153
+ self.position_encoding = position_encoding
154
+ self.out_proj = nn.Identity()
155
+ if out_dim != in_dim:
156
+ self.out_proj = nn.Conv2d(in_dim, out_dim, kernel_size=1)
157
+
158
+ def forward(
159
+ self,
160
+ pix_feat: torch.Tensor,
161
+ masks: torch.Tensor,
162
+ skip_mask_sigmoid: bool = False,
163
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
164
+ ## Process masks
165
+ # sigmoid, so that less domain shift from gt masks which are bool
166
+ if not skip_mask_sigmoid:
167
+ masks = F.sigmoid(masks)
168
+ masks = self.mask_downsampler(masks)
169
+
170
+ ## Fuse pix_feats and downsampled masks
171
+ # in case the visual features are on CPU, cast them to CUDA
172
+ pix_feat = pix_feat.to(masks.device)
173
+
174
+ x = self.pix_feat_proj(pix_feat)
175
+ x = x + masks
176
+ x = self.fuser(x)
177
+ x = self.out_proj(x)
178
+
179
+ pos = self.position_encoding(x).to(x.dtype)
180
+
181
+ return {"vision_features": x, "vision_pos_enc": [pos]}
sam2/modeling/position_encoding.py ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import math
8
+ from typing import Any, Optional, Tuple
9
+
10
+ import numpy as np
11
+
12
+ import torch
13
+ from torch import nn
14
+
15
+
16
+ class PositionEmbeddingSine(nn.Module):
17
+ """
18
+ This is a more standard version of the position embedding, very similar to the one
19
+ used by the Attention Is All You Need paper, generalized to work on images.
20
+ """
21
+
22
+ def __init__(
23
+ self,
24
+ num_pos_feats,
25
+ temperature: int = 10000,
26
+ normalize: bool = True,
27
+ scale: Optional[float] = None,
28
+ # Following settings only relevant
29
+ # for warmping up cache for compilation
30
+ warmup_cache: bool = True,
31
+ image_size: int = 1024,
32
+ strides: Tuple[int] = (4, 8, 16, 32),
33
+ ):
34
+ super().__init__()
35
+ assert num_pos_feats % 2 == 0, "Expecting even model width"
36
+ self.num_pos_feats = num_pos_feats // 2
37
+ self.temperature = temperature
38
+ self.normalize = normalize
39
+ if scale is not None and normalize is False:
40
+ raise ValueError("normalize should be True if scale is passed")
41
+ if scale is None:
42
+ scale = 2 * math.pi
43
+ self.scale = scale
44
+
45
+ self.cache = {}
46
+ if warmup_cache and torch.cuda.is_available():
47
+ # Warmup cache for cuda, to help with compilation
48
+ device = torch.device("cuda")
49
+ for stride in strides:
50
+ cache_key = (image_size // stride, image_size // stride)
51
+ self._pe(1, device, *cache_key)
52
+
53
+ def _encode_xy(self, x, y):
54
+ # The positions are expected to be normalized
55
+ assert len(x) == len(y) and x.ndim == y.ndim == 1
56
+ x_embed = x * self.scale
57
+ y_embed = y * self.scale
58
+
59
+ dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
60
+ dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
61
+
62
+ pos_x = x_embed[:, None] / dim_t
63
+ pos_y = y_embed[:, None] / dim_t
64
+ pos_x = torch.stack(
65
+ (pos_x[:, 0::2].sin(), pos_x[:, 1::2].cos()), dim=2
66
+ ).flatten(1)
67
+ pos_y = torch.stack(
68
+ (pos_y[:, 0::2].sin(), pos_y[:, 1::2].cos()), dim=2
69
+ ).flatten(1)
70
+ return pos_x, pos_y
71
+
72
+ @torch.no_grad()
73
+ def encode_boxes(self, x, y, w, h):
74
+ pos_x, pos_y = self._encode_xy(x, y)
75
+ pos = torch.cat((pos_y, pos_x, h[:, None], w[:, None]), dim=1)
76
+ return pos
77
+
78
+ encode = encode_boxes # Backwards compatibility
79
+
80
+ @torch.no_grad()
81
+ def encode_points(self, x, y, labels):
82
+ (bx, nx), (by, ny), (bl, nl) = x.shape, y.shape, labels.shape
83
+ assert bx == by and nx == ny and bx == bl and nx == nl
84
+ pos_x, pos_y = self._encode_xy(x.flatten(), y.flatten())
85
+ pos_x, pos_y = pos_x.reshape(bx, nx, -1), pos_y.reshape(by, ny, -1)
86
+ pos = torch.cat((pos_y, pos_x, labels[:, :, None]), dim=2)
87
+ return pos
88
+
89
+ @torch.no_grad()
90
+ def _pe(self, B, device, *cache_key):
91
+ H, W = cache_key
92
+ if cache_key in self.cache:
93
+ return self.cache[cache_key].to(device)[None].repeat(B, 1, 1, 1)
94
+
95
+ y_embed = (
96
+ torch.arange(1, H + 1, dtype=torch.float32, device=device)
97
+ .view(1, -1, 1)
98
+ .repeat(B, 1, W)
99
+ )
100
+ x_embed = (
101
+ torch.arange(1, W + 1, dtype=torch.float32, device=device)
102
+ .view(1, 1, -1)
103
+ .repeat(B, H, 1)
104
+ )
105
+
106
+ if self.normalize:
107
+ eps = 1e-6
108
+ y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
109
+ x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
110
+
111
+ dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=device)
112
+ dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
113
+
114
+ pos_x = x_embed[:, :, :, None] / dim_t
115
+ pos_y = y_embed[:, :, :, None] / dim_t
116
+ pos_x = torch.stack(
117
+ (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
118
+ ).flatten(3)
119
+ pos_y = torch.stack(
120
+ (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
121
+ ).flatten(3)
122
+ pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
123
+ self.cache[cache_key] = pos[0]
124
+ return pos
125
+
126
+ @torch.no_grad()
127
+ def forward(self, x: torch.Tensor):
128
+ B = x.shape[0]
129
+ cache_key = (x.shape[-2], x.shape[-1])
130
+ return self._pe(B, x.device, *cache_key)
131
+
132
+
133
+ class PositionEmbeddingRandom(nn.Module):
134
+ """
135
+ Positional encoding using random spatial frequencies.
136
+ """
137
+
138
+ def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
139
+ super().__init__()
140
+ if scale is None or scale <= 0.0:
141
+ scale = 1.0
142
+ self.register_buffer(
143
+ "positional_encoding_gaussian_matrix",
144
+ scale * torch.randn((2, num_pos_feats)),
145
+ )
146
+
147
+ def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
148
+ """Positionally encode points that are normalized to [0,1]."""
149
+ # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
150
+ coords = 2 * coords - 1
151
+ coords = coords @ self.positional_encoding_gaussian_matrix
152
+ coords = 2 * np.pi * coords
153
+ # outputs d_1 x ... x d_n x C shape
154
+ return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
155
+
156
+ def forward(self, size: Tuple[int, int]) -> torch.Tensor:
157
+ """Generate positional encoding for a grid of the specified size."""
158
+ h, w = size
159
+ device: Any = self.positional_encoding_gaussian_matrix.device
160
+ grid = torch.ones((h, w), device=device, dtype=torch.float32)
161
+ y_embed = grid.cumsum(dim=0) - 0.5
162
+ x_embed = grid.cumsum(dim=1) - 0.5
163
+ y_embed = y_embed / h
164
+ x_embed = x_embed / w
165
+
166
+ pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
167
+ return pe.permute(2, 0, 1) # C x H x W
168
+
169
+ def forward_with_coords(
170
+ self, coords_input: torch.Tensor, image_size: Tuple[int, int]
171
+ ) -> torch.Tensor:
172
+ """Positionally encode points that are not normalized to [0,1]."""
173
+ coords = coords_input.clone()
174
+ coords[:, :, 0] = coords[:, :, 0] / image_size[1]
175
+ coords[:, :, 1] = coords[:, :, 1] / image_size[0]
176
+ return self._pe_encoding(coords.to(torch.float)) # B x N x C
177
+
178
+
179
+ # Rotary Positional Encoding, adapted from:
180
+ # 1. https://github.com/meta-llama/codellama/blob/main/llama/model.py
181
+ # 2. https://github.com/naver-ai/rope-vit
182
+ # 3. https://github.com/lucidrains/rotary-embedding-torch
183
+
184
+
185
+ def init_t_xy(end_x: int, end_y: int):
186
+ t = torch.arange(end_x * end_y, dtype=torch.float32)
187
+ t_x = (t % end_x).float()
188
+ t_y = torch.div(t, end_x, rounding_mode="floor").float()
189
+ return t_x, t_y
190
+
191
+
192
+ def compute_axial_cis(dim: int, end_x: int, end_y: int, theta: float = 10000.0):
193
+ freqs_x = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim))
194
+ freqs_y = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim))
195
+
196
+ t_x, t_y = init_t_xy(end_x, end_y)
197
+ freqs_x = torch.outer(t_x, freqs_x)
198
+ freqs_y = torch.outer(t_y, freqs_y)
199
+ freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x)
200
+ freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y)
201
+ return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1)
202
+
203
+
204
+ def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
205
+ ndim = x.ndim
206
+ assert 0 <= 1 < ndim
207
+ assert freqs_cis.shape == (x.shape[-2], x.shape[-1])
208
+ shape = [d if i >= ndim - 2 else 1 for i, d in enumerate(x.shape)]
209
+ return freqs_cis.view(*shape)
210
+
211
+
212
+ def apply_rotary_enc(
213
+ xq: torch.Tensor,
214
+ xk: torch.Tensor,
215
+ freqs_cis: torch.Tensor,
216
+ repeat_freqs_k: bool = False,
217
+ ):
218
+ xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
219
+ xk_ = (
220
+ torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
221
+ if xk.shape[-2] != 0
222
+ else None
223
+ )
224
+ freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
225
+ xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
226
+ if xk_ is None:
227
+ # no keys to rotate, due to dropout
228
+ return xq_out.type_as(xq).to(xq.device), xk
229
+ # repeat freqs along seq_len dim to match k seq_len
230
+ if repeat_freqs_k:
231
+ r = xk_.shape[-2] // xq_.shape[-2]
232
+ if freqs_cis.is_cuda:
233
+ freqs_cis = freqs_cis.repeat(*([1] * (freqs_cis.ndim - 2)), r, 1)
234
+ else:
235
+ # torch.repeat on complex numbers may not be supported on non-CUDA devices
236
+ # (freqs_cis has 4 dims and we repeat on dim 2) so we use expand + flatten
237
+ freqs_cis = freqs_cis.unsqueeze(2).expand(-1, -1, r, -1, -1).flatten(2, 3)
238
+ xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
239
+ return xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device)
sam2/modeling/sam/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
sam2/modeling/sam/mask_decoder.py ADDED
@@ -0,0 +1,295 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from typing import List, Optional, Tuple, Type
8
+
9
+ import torch
10
+ from torch import nn
11
+
12
+ from sam2.modeling.sam2_utils import LayerNorm2d, MLP
13
+
14
+
15
+ class MaskDecoder(nn.Module):
16
+ def __init__(
17
+ self,
18
+ *,
19
+ transformer_dim: int,
20
+ transformer: nn.Module,
21
+ num_multimask_outputs: int = 3,
22
+ activation: Type[nn.Module] = nn.GELU,
23
+ iou_head_depth: int = 3,
24
+ iou_head_hidden_dim: int = 256,
25
+ use_high_res_features: bool = False,
26
+ iou_prediction_use_sigmoid=False,
27
+ dynamic_multimask_via_stability=False,
28
+ dynamic_multimask_stability_delta=0.05,
29
+ dynamic_multimask_stability_thresh=0.98,
30
+ pred_obj_scores: bool = False,
31
+ pred_obj_scores_mlp: bool = False,
32
+ use_multimask_token_for_obj_ptr: bool = False,
33
+ ) -> None:
34
+ """
35
+ Predicts masks given an image and prompt embeddings, using a
36
+ transformer architecture.
37
+
38
+ Arguments:
39
+ transformer_dim (int): the channel dimension of the transformer
40
+ transformer (nn.Module): the transformer used to predict masks
41
+ num_multimask_outputs (int): the number of masks to predict
42
+ when disambiguating masks
43
+ activation (nn.Module): the type of activation to use when
44
+ upscaling masks
45
+ iou_head_depth (int): the depth of the MLP used to predict
46
+ mask quality
47
+ iou_head_hidden_dim (int): the hidden dimension of the MLP
48
+ used to predict mask quality
49
+ """
50
+ super().__init__()
51
+ self.transformer_dim = transformer_dim
52
+ self.transformer = transformer
53
+
54
+ self.num_multimask_outputs = num_multimask_outputs
55
+
56
+ self.iou_token = nn.Embedding(1, transformer_dim)
57
+ self.num_mask_tokens = num_multimask_outputs + 1
58
+ self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
59
+
60
+ self.pred_obj_scores = pred_obj_scores
61
+ if self.pred_obj_scores:
62
+ self.obj_score_token = nn.Embedding(1, transformer_dim)
63
+ self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
64
+
65
+ self.output_upscaling = nn.Sequential(
66
+ nn.ConvTranspose2d(
67
+ transformer_dim, transformer_dim // 4, kernel_size=2, stride=2
68
+ ),
69
+ LayerNorm2d(transformer_dim // 4),
70
+ activation(),
71
+ nn.ConvTranspose2d(
72
+ transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2
73
+ ),
74
+ activation(),
75
+ )
76
+ self.use_high_res_features = use_high_res_features
77
+ if use_high_res_features:
78
+ self.conv_s0 = nn.Conv2d(
79
+ transformer_dim, transformer_dim // 8, kernel_size=1, stride=1
80
+ )
81
+ self.conv_s1 = nn.Conv2d(
82
+ transformer_dim, transformer_dim // 4, kernel_size=1, stride=1
83
+ )
84
+
85
+ self.output_hypernetworks_mlps = nn.ModuleList(
86
+ [
87
+ MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
88
+ for i in range(self.num_mask_tokens)
89
+ ]
90
+ )
91
+
92
+ self.iou_prediction_head = MLP(
93
+ transformer_dim,
94
+ iou_head_hidden_dim,
95
+ self.num_mask_tokens,
96
+ iou_head_depth,
97
+ sigmoid_output=iou_prediction_use_sigmoid,
98
+ )
99
+ if self.pred_obj_scores:
100
+ self.pred_obj_score_head = nn.Linear(transformer_dim, 1)
101
+ if pred_obj_scores_mlp:
102
+ self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3)
103
+
104
+ # When outputting a single mask, optionally we can dynamically fall back to the best
105
+ # multimask output token if the single mask output token gives low stability scores.
106
+ self.dynamic_multimask_via_stability = dynamic_multimask_via_stability
107
+ self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta
108
+ self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh
109
+
110
+ def forward(
111
+ self,
112
+ image_embeddings: torch.Tensor,
113
+ image_pe: torch.Tensor,
114
+ sparse_prompt_embeddings: torch.Tensor,
115
+ dense_prompt_embeddings: torch.Tensor,
116
+ multimask_output: bool,
117
+ repeat_image: bool,
118
+ high_res_features: Optional[List[torch.Tensor]] = None,
119
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
120
+ """
121
+ Predict masks given image and prompt embeddings.
122
+
123
+ Arguments:
124
+ image_embeddings (torch.Tensor): the embeddings from the image encoder
125
+ image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
126
+ sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
127
+ dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
128
+ multimask_output (bool): Whether to return multiple masks or a single
129
+ mask.
130
+
131
+ Returns:
132
+ torch.Tensor: batched predicted masks
133
+ torch.Tensor: batched predictions of mask quality
134
+ torch.Tensor: batched SAM token for mask output
135
+ """
136
+ masks, iou_pred, mask_tokens_out, object_score_logits = self.predict_masks(
137
+ image_embeddings=image_embeddings,
138
+ image_pe=image_pe,
139
+ sparse_prompt_embeddings=sparse_prompt_embeddings,
140
+ dense_prompt_embeddings=dense_prompt_embeddings,
141
+ repeat_image=repeat_image,
142
+ high_res_features=high_res_features,
143
+ )
144
+
145
+ # Select the correct mask or masks for output
146
+ if multimask_output:
147
+ masks = masks[:, 1:, :, :]
148
+ iou_pred = iou_pred[:, 1:]
149
+ elif self.dynamic_multimask_via_stability and not self.training:
150
+ masks, iou_pred = self._dynamic_multimask_via_stability(masks, iou_pred)
151
+ else:
152
+ masks = masks[:, 0:1, :, :]
153
+ iou_pred = iou_pred[:, 0:1]
154
+
155
+ if multimask_output and self.use_multimask_token_for_obj_ptr:
156
+ sam_tokens_out = mask_tokens_out[:, 1:] # [b, 3, c] shape
157
+ else:
158
+ # Take the mask output token. Here we *always* use the token for single mask output.
159
+ # At test time, even if we track after 1-click (and using multimask_output=True),
160
+ # we still take the single mask token here. The rationale is that we always track
161
+ # after multiple clicks during training, so the past tokens seen during training
162
+ # are always the single mask token (and we'll let it be the object-memory token).
163
+ sam_tokens_out = mask_tokens_out[:, 0:1] # [b, 1, c] shape
164
+
165
+ # Prepare output
166
+ return masks, iou_pred, sam_tokens_out, object_score_logits
167
+
168
+ def predict_masks(
169
+ self,
170
+ image_embeddings: torch.Tensor,
171
+ image_pe: torch.Tensor,
172
+ sparse_prompt_embeddings: torch.Tensor,
173
+ dense_prompt_embeddings: torch.Tensor,
174
+ repeat_image: bool,
175
+ high_res_features: Optional[List[torch.Tensor]] = None,
176
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
177
+ """Predicts masks. See 'forward' for more details."""
178
+ # Concatenate output tokens
179
+ s = 0
180
+ if self.pred_obj_scores:
181
+ output_tokens = torch.cat(
182
+ [
183
+ self.obj_score_token.weight,
184
+ self.iou_token.weight,
185
+ self.mask_tokens.weight,
186
+ ],
187
+ dim=0,
188
+ )
189
+ s = 1
190
+ else:
191
+ output_tokens = torch.cat(
192
+ [self.iou_token.weight, self.mask_tokens.weight], dim=0
193
+ )
194
+ output_tokens = output_tokens.unsqueeze(0).expand(
195
+ sparse_prompt_embeddings.size(0), -1, -1
196
+ )
197
+ tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
198
+
199
+ # Expand per-image data in batch direction to be per-mask
200
+ if repeat_image:
201
+ src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
202
+ else:
203
+ assert image_embeddings.shape[0] == tokens.shape[0]
204
+ src = image_embeddings
205
+ src = src + dense_prompt_embeddings
206
+ assert (
207
+ image_pe.size(0) == 1
208
+ ), "image_pe should have size 1 in batch dim (from `get_dense_pe()`)"
209
+ pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
210
+ b, c, h, w = src.shape
211
+
212
+ # Run the transformer
213
+ hs, src = self.transformer(src, pos_src, tokens)
214
+ iou_token_out = hs[:, s, :]
215
+ mask_tokens_out = hs[:, s + 1 : (s + 1 + self.num_mask_tokens), :]
216
+
217
+ # Upscale mask embeddings and predict masks using the mask tokens
218
+ src = src.transpose(1, 2).view(b, c, h, w)
219
+ if not self.use_high_res_features:
220
+ upscaled_embedding = self.output_upscaling(src)
221
+ else:
222
+ dc1, ln1, act1, dc2, act2 = self.output_upscaling
223
+ feat_s0, feat_s1 = high_res_features
224
+ upscaled_embedding = act1(ln1(dc1(src) + feat_s1))
225
+ upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0)
226
+
227
+ hyper_in_list: List[torch.Tensor] = []
228
+ for i in range(self.num_mask_tokens):
229
+ hyper_in_list.append(
230
+ self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])
231
+ )
232
+ hyper_in = torch.stack(hyper_in_list, dim=1)
233
+ b, c, h, w = upscaled_embedding.shape
234
+ masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
235
+
236
+ # Generate mask quality predictions
237
+ iou_pred = self.iou_prediction_head(iou_token_out)
238
+ if self.pred_obj_scores:
239
+ assert s == 1
240
+ object_score_logits = self.pred_obj_score_head(hs[:, 0, :])
241
+ else:
242
+ # Obj scores logits - default to 10.0, i.e. assuming the object is present, sigmoid(10)=1
243
+ object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1)
244
+
245
+ return masks, iou_pred, mask_tokens_out, object_score_logits
246
+
247
+ def _get_stability_scores(self, mask_logits):
248
+ """
249
+ Compute stability scores of the mask logits based on the IoU between upper and
250
+ lower thresholds.
251
+ """
252
+ mask_logits = mask_logits.flatten(-2)
253
+ stability_delta = self.dynamic_multimask_stability_delta
254
+ area_i = torch.sum(mask_logits > stability_delta, dim=-1).float()
255
+ area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float()
256
+ stability_scores = torch.where(area_u > 0, area_i / area_u, 1.0)
257
+ return stability_scores
258
+
259
+ def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores):
260
+ """
261
+ When outputting a single mask, if the stability score from the current single-mask
262
+ output (based on output token 0) falls below a threshold, we instead select from
263
+ multi-mask outputs (based on output token 1~3) the mask with the highest predicted
264
+ IoU score. This is intended to ensure a valid mask for both clicking and tracking.
265
+ """
266
+ # The best mask from multimask output tokens (1~3)
267
+ multimask_logits = all_mask_logits[:, 1:, :, :]
268
+ multimask_iou_scores = all_iou_scores[:, 1:]
269
+ best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1)
270
+ batch_inds = torch.arange(
271
+ multimask_iou_scores.size(0), device=all_iou_scores.device
272
+ )
273
+ best_multimask_logits = multimask_logits[batch_inds, best_scores_inds]
274
+ best_multimask_logits = best_multimask_logits.unsqueeze(1)
275
+ best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds]
276
+ best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1)
277
+
278
+ # The mask from singlemask output token 0 and its stability score
279
+ singlemask_logits = all_mask_logits[:, 0:1, :, :]
280
+ singlemask_iou_scores = all_iou_scores[:, 0:1]
281
+ stability_scores = self._get_stability_scores(singlemask_logits)
282
+ is_stable = stability_scores >= self.dynamic_multimask_stability_thresh
283
+
284
+ # Dynamically fall back to best multimask output upon low stability scores.
285
+ mask_logits_out = torch.where(
286
+ is_stable[..., None, None].expand_as(singlemask_logits),
287
+ singlemask_logits,
288
+ best_multimask_logits,
289
+ )
290
+ iou_scores_out = torch.where(
291
+ is_stable.expand_as(singlemask_iou_scores),
292
+ singlemask_iou_scores,
293
+ best_multimask_iou_scores,
294
+ )
295
+ return mask_logits_out, iou_scores_out
sam2/modeling/sam/prompt_encoder.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from typing import Optional, Tuple, Type
8
+
9
+ import torch
10
+ from torch import nn
11
+
12
+ from sam2.modeling.position_encoding import PositionEmbeddingRandom
13
+
14
+ from sam2.modeling.sam2_utils import LayerNorm2d
15
+
16
+
17
+ class PromptEncoder(nn.Module):
18
+ def __init__(
19
+ self,
20
+ embed_dim: int,
21
+ image_embedding_size: Tuple[int, int],
22
+ input_image_size: Tuple[int, int],
23
+ mask_in_chans: int,
24
+ activation: Type[nn.Module] = nn.GELU,
25
+ ) -> None:
26
+ """
27
+ Encodes prompts for input to SAM's mask decoder.
28
+
29
+ Arguments:
30
+ embed_dim (int): The prompts' embedding dimension
31
+ image_embedding_size (tuple(int, int)): The spatial size of the
32
+ image embedding, as (H, W).
33
+ input_image_size (int): The padded size of the image as input
34
+ to the image encoder, as (H, W).
35
+ mask_in_chans (int): The number of hidden channels used for
36
+ encoding input masks.
37
+ activation (nn.Module): The activation to use when encoding
38
+ input masks.
39
+ """
40
+ super().__init__()
41
+ self.embed_dim = embed_dim
42
+ self.input_image_size = input_image_size
43
+ self.image_embedding_size = image_embedding_size
44
+ self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
45
+
46
+ self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
47
+ point_embeddings = [
48
+ nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)
49
+ ]
50
+ self.point_embeddings = nn.ModuleList(point_embeddings)
51
+ self.not_a_point_embed = nn.Embedding(1, embed_dim)
52
+
53
+ self.mask_input_size = (
54
+ 4 * image_embedding_size[0],
55
+ 4 * image_embedding_size[1],
56
+ )
57
+ self.mask_downscaling = nn.Sequential(
58
+ nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
59
+ LayerNorm2d(mask_in_chans // 4),
60
+ activation(),
61
+ nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
62
+ LayerNorm2d(mask_in_chans),
63
+ activation(),
64
+ nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
65
+ )
66
+ self.no_mask_embed = nn.Embedding(1, embed_dim)
67
+
68
+ def get_dense_pe(self) -> torch.Tensor:
69
+ """
70
+ Returns the positional encoding used to encode point prompts,
71
+ applied to a dense set of points the shape of the image encoding.
72
+
73
+ Returns:
74
+ torch.Tensor: Positional encoding with shape
75
+ 1x(embed_dim)x(embedding_h)x(embedding_w)
76
+ """
77
+ return self.pe_layer(self.image_embedding_size).unsqueeze(0)
78
+
79
+ def _embed_points(
80
+ self,
81
+ points: torch.Tensor,
82
+ labels: torch.Tensor,
83
+ pad: bool,
84
+ ) -> torch.Tensor:
85
+ """Embeds point prompts."""
86
+ points = points + 0.5 # Shift to center of pixel
87
+ if pad:
88
+ padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
89
+ padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
90
+ points = torch.cat([points, padding_point], dim=1)
91
+ labels = torch.cat([labels, padding_label], dim=1)
92
+ point_embedding = self.pe_layer.forward_with_coords(
93
+ points, self.input_image_size
94
+ )
95
+
96
+ point_embedding = torch.where(
97
+ (labels == -1).unsqueeze(-1),
98
+ torch.zeros_like(point_embedding) + self.not_a_point_embed.weight,
99
+ point_embedding,
100
+ )
101
+ point_embedding = torch.where(
102
+ (labels == 0).unsqueeze(-1),
103
+ point_embedding + self.point_embeddings[0].weight,
104
+ point_embedding,
105
+ )
106
+ point_embedding = torch.where(
107
+ (labels == 1).unsqueeze(-1),
108
+ point_embedding + self.point_embeddings[1].weight,
109
+ point_embedding,
110
+ )
111
+ point_embedding = torch.where(
112
+ (labels == 2).unsqueeze(-1),
113
+ point_embedding + self.point_embeddings[2].weight,
114
+ point_embedding,
115
+ )
116
+ point_embedding = torch.where(
117
+ (labels == 3).unsqueeze(-1),
118
+ point_embedding + self.point_embeddings[3].weight,
119
+ point_embedding,
120
+ )
121
+ return point_embedding
122
+
123
+ def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
124
+ """Embeds box prompts."""
125
+ boxes = boxes + 0.5 # Shift to center of pixel
126
+ coords = boxes.reshape(-1, 2, 2)
127
+ corner_embedding = self.pe_layer.forward_with_coords(
128
+ coords, self.input_image_size
129
+ )
130
+ corner_embedding[:, 0, :] += self.point_embeddings[2].weight
131
+ corner_embedding[:, 1, :] += self.point_embeddings[3].weight
132
+ return corner_embedding
133
+
134
+ def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
135
+ """Embeds mask inputs."""
136
+ mask_embedding = self.mask_downscaling(masks)
137
+ return mask_embedding
138
+
139
+ def _get_batch_size(
140
+ self,
141
+ points: Optional[Tuple[torch.Tensor, torch.Tensor]],
142
+ boxes: Optional[torch.Tensor],
143
+ masks: Optional[torch.Tensor],
144
+ ) -> int:
145
+ """
146
+ Gets the batch size of the output given the batch size of the input prompts.
147
+ """
148
+ if points is not None:
149
+ return points[0].shape[0]
150
+ elif boxes is not None:
151
+ return boxes.shape[0]
152
+ elif masks is not None:
153
+ return masks.shape[0]
154
+ else:
155
+ return 1
156
+
157
+ def _get_device(self) -> torch.device:
158
+ return self.point_embeddings[0].weight.device
159
+
160
+ def forward(
161
+ self,
162
+ points: Optional[Tuple[torch.Tensor, torch.Tensor]],
163
+ boxes: Optional[torch.Tensor],
164
+ masks: Optional[torch.Tensor],
165
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
166
+ """
167
+ Embeds different types of prompts, returning both sparse and dense
168
+ embeddings.
169
+
170
+ Arguments:
171
+ points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
172
+ and labels to embed.
173
+ boxes (torch.Tensor or none): boxes to embed
174
+ masks (torch.Tensor or none): masks to embed
175
+
176
+ Returns:
177
+ torch.Tensor: sparse embeddings for the points and boxes, with shape
178
+ BxNx(embed_dim), where N is determined by the number of input points
179
+ and boxes.
180
+ torch.Tensor: dense embeddings for the masks, in the shape
181
+ Bx(embed_dim)x(embed_H)x(embed_W)
182
+ """
183
+ bs = self._get_batch_size(points, boxes, masks)
184
+ sparse_embeddings = torch.empty(
185
+ (bs, 0, self.embed_dim), device=self._get_device()
186
+ )
187
+ if points is not None:
188
+ coords, labels = points
189
+ point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
190
+ sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
191
+ if boxes is not None:
192
+ box_embeddings = self._embed_boxes(boxes)
193
+ sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
194
+
195
+ if masks is not None:
196
+ dense_embeddings = self._embed_masks(masks)
197
+ else:
198
+ dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
199
+ bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
200
+ )
201
+
202
+ return sparse_embeddings, dense_embeddings
sam2/modeling/sam/transformer.py ADDED
@@ -0,0 +1,311 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import math
8
+ from functools import partial
9
+ from typing import Tuple, Type
10
+
11
+ import torch
12
+ import torch.nn.functional as F
13
+ from torch import nn, Tensor
14
+
15
+ from sam2.modeling.position_encoding import apply_rotary_enc, compute_axial_cis
16
+ from sam2.modeling.sam2_utils import MLP
17
+
18
+
19
+ class TwoWayTransformer(nn.Module):
20
+ def __init__(
21
+ self,
22
+ depth: int,
23
+ embedding_dim: int,
24
+ num_heads: int,
25
+ mlp_dim: int,
26
+ activation: Type[nn.Module] = nn.ReLU,
27
+ attention_downsample_rate: int = 2,
28
+ ) -> None:
29
+ """
30
+ A transformer decoder that attends to an input image using
31
+ queries whose positional embedding is supplied.
32
+
33
+ Args:
34
+ depth (int): number of layers in the transformer
35
+ embedding_dim (int): the channel dimension for the input embeddings
36
+ num_heads (int): the number of heads for multihead attention. Must
37
+ divide embedding_dim
38
+ mlp_dim (int): the channel dimension internal to the MLP block
39
+ activation (nn.Module): the activation to use in the MLP block
40
+ """
41
+ super().__init__()
42
+ self.depth = depth
43
+ self.embedding_dim = embedding_dim
44
+ self.num_heads = num_heads
45
+ self.mlp_dim = mlp_dim
46
+ self.layers = nn.ModuleList()
47
+
48
+ for i in range(depth):
49
+ self.layers.append(
50
+ TwoWayAttentionBlock(
51
+ embedding_dim=embedding_dim,
52
+ num_heads=num_heads,
53
+ mlp_dim=mlp_dim,
54
+ activation=activation,
55
+ attention_downsample_rate=attention_downsample_rate,
56
+ skip_first_layer_pe=(i == 0),
57
+ )
58
+ )
59
+
60
+ self.final_attn_token_to_image = Attention(
61
+ embedding_dim, num_heads, downsample_rate=attention_downsample_rate
62
+ )
63
+ self.norm_final_attn = nn.LayerNorm(embedding_dim)
64
+
65
+ def forward(
66
+ self,
67
+ image_embedding: Tensor,
68
+ image_pe: Tensor,
69
+ point_embedding: Tensor,
70
+ ) -> Tuple[Tensor, Tensor]:
71
+ """
72
+ Args:
73
+ image_embedding (torch.Tensor): image to attend to. Should be shape
74
+ B x embedding_dim x h x w for any h and w.
75
+ image_pe (torch.Tensor): the positional encoding to add to the image. Must
76
+ have the same shape as image_embedding.
77
+ point_embedding (torch.Tensor): the embedding to add to the query points.
78
+ Must have shape B x N_points x embedding_dim for any N_points.
79
+
80
+ Returns:
81
+ torch.Tensor: the processed point_embedding
82
+ torch.Tensor: the processed image_embedding
83
+ """
84
+ # BxCxHxW -> BxHWxC == B x N_image_tokens x C
85
+ bs, c, h, w = image_embedding.shape
86
+ image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
87
+ image_pe = image_pe.flatten(2).permute(0, 2, 1)
88
+
89
+ # Prepare queries
90
+ queries = point_embedding
91
+ keys = image_embedding
92
+
93
+ # Apply transformer blocks and final layernorm
94
+ for layer in self.layers:
95
+ queries, keys = layer(
96
+ queries=queries,
97
+ keys=keys,
98
+ query_pe=point_embedding,
99
+ key_pe=image_pe,
100
+ )
101
+
102
+ # Apply the final attention layer from the points to the image
103
+ q = queries + point_embedding
104
+ k = keys + image_pe
105
+ attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
106
+ queries = queries + attn_out
107
+ queries = self.norm_final_attn(queries)
108
+
109
+ return queries, keys
110
+
111
+
112
+ class TwoWayAttentionBlock(nn.Module):
113
+ def __init__(
114
+ self,
115
+ embedding_dim: int,
116
+ num_heads: int,
117
+ mlp_dim: int = 2048,
118
+ activation: Type[nn.Module] = nn.ReLU,
119
+ attention_downsample_rate: int = 2,
120
+ skip_first_layer_pe: bool = False,
121
+ ) -> None:
122
+ """
123
+ A transformer block with four layers: (1) self-attention of sparse
124
+ inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
125
+ block on sparse inputs, and (4) cross attention of dense inputs to sparse
126
+ inputs.
127
+
128
+ Arguments:
129
+ embedding_dim (int): the channel dimension of the embeddings
130
+ num_heads (int): the number of heads in the attention layers
131
+ mlp_dim (int): the hidden dimension of the mlp block
132
+ activation (nn.Module): the activation of the mlp block
133
+ skip_first_layer_pe (bool): skip the PE on the first layer
134
+ """
135
+ super().__init__()
136
+ self.self_attn = Attention(embedding_dim, num_heads)
137
+ self.norm1 = nn.LayerNorm(embedding_dim)
138
+
139
+ self.cross_attn_token_to_image = Attention(
140
+ embedding_dim, num_heads, downsample_rate=attention_downsample_rate
141
+ )
142
+ self.norm2 = nn.LayerNorm(embedding_dim)
143
+
144
+ self.mlp = MLP(
145
+ embedding_dim, mlp_dim, embedding_dim, num_layers=2, activation=activation
146
+ )
147
+ self.norm3 = nn.LayerNorm(embedding_dim)
148
+
149
+ self.norm4 = nn.LayerNorm(embedding_dim)
150
+ self.cross_attn_image_to_token = Attention(
151
+ embedding_dim, num_heads, downsample_rate=attention_downsample_rate
152
+ )
153
+
154
+ self.skip_first_layer_pe = skip_first_layer_pe
155
+
156
+ def forward(
157
+ self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
158
+ ) -> Tuple[Tensor, Tensor]:
159
+ # Self attention block
160
+ if self.skip_first_layer_pe:
161
+ queries = self.self_attn(q=queries, k=queries, v=queries)
162
+ else:
163
+ q = queries + query_pe
164
+ attn_out = self.self_attn(q=q, k=q, v=queries)
165
+ queries = queries + attn_out
166
+ queries = self.norm1(queries)
167
+
168
+ # Cross attention block, tokens attending to image embedding
169
+ q = queries + query_pe
170
+ k = keys + key_pe
171
+ attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
172
+ queries = queries + attn_out
173
+ queries = self.norm2(queries)
174
+
175
+ # MLP block
176
+ mlp_out = self.mlp(queries)
177
+ queries = queries + mlp_out
178
+ queries = self.norm3(queries)
179
+
180
+ # Cross attention block, image embedding attending to tokens
181
+ q = queries + query_pe
182
+ k = keys + key_pe
183
+ attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
184
+ keys = keys + attn_out
185
+ keys = self.norm4(keys)
186
+
187
+ return queries, keys
188
+
189
+
190
+ class Attention(nn.Module):
191
+ """
192
+ An attention layer that allows for downscaling the size of the embedding
193
+ after projection to queries, keys, and values.
194
+ """
195
+
196
+ def __init__(
197
+ self,
198
+ embedding_dim: int,
199
+ num_heads: int,
200
+ downsample_rate: int = 1,
201
+ dropout: float = 0.0,
202
+ kv_in_dim: int = None,
203
+ ) -> None:
204
+ super().__init__()
205
+ self.embedding_dim = embedding_dim
206
+ self.kv_in_dim = kv_in_dim if kv_in_dim is not None else embedding_dim
207
+ self.internal_dim = embedding_dim // downsample_rate
208
+ self.num_heads = num_heads
209
+ assert (
210
+ self.internal_dim % num_heads == 0
211
+ ), "num_heads must divide embedding_dim."
212
+
213
+ self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
214
+ self.k_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
215
+ self.v_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
216
+ self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
217
+
218
+ self.dropout_p = dropout
219
+
220
+ def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
221
+ b, n, c = x.shape
222
+ x = x.reshape(b, n, num_heads, c // num_heads)
223
+ return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
224
+
225
+ def _recombine_heads(self, x: Tensor) -> Tensor:
226
+ b, n_heads, n_tokens, c_per_head = x.shape
227
+ x = x.transpose(1, 2)
228
+ return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
229
+
230
+ def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
231
+ # Input projections
232
+ q = self.q_proj(q)
233
+ k = self.k_proj(k)
234
+ v = self.v_proj(v)
235
+
236
+ # Separate into heads
237
+ q = self._separate_heads(q, self.num_heads)
238
+ k = self._separate_heads(k, self.num_heads)
239
+ v = self._separate_heads(v, self.num_heads)
240
+
241
+ dropout_p = self.dropout_p if self.training else 0.0
242
+ # Attention
243
+ out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
244
+
245
+ out = self._recombine_heads(out)
246
+ out = self.out_proj(out)
247
+
248
+ return out
249
+
250
+
251
+ class RoPEAttention(Attention):
252
+ """Attention with rotary position encoding."""
253
+
254
+ def __init__(
255
+ self,
256
+ *args,
257
+ rope_theta=10000.0,
258
+ # whether to repeat q rope to match k length
259
+ # this is needed for cross-attention to memories
260
+ rope_k_repeat=False,
261
+ feat_sizes=(64, 64), # [w, h] for stride 16 feats at 1024 resolution
262
+ **kwargs,
263
+ ):
264
+ super().__init__(*args, **kwargs)
265
+
266
+ self.compute_cis = partial(
267
+ compute_axial_cis, dim=self.internal_dim // self.num_heads, theta=rope_theta
268
+ )
269
+ freqs_cis = self.compute_cis(end_x=feat_sizes[0], end_y=feat_sizes[1])
270
+ self.freqs_cis = (
271
+ freqs_cis.to("cuda") if torch.cuda.is_available() else freqs_cis
272
+ )
273
+ self.rope_k_repeat = rope_k_repeat
274
+
275
+ def forward(
276
+ self, q: Tensor, k: Tensor, v: Tensor, num_k_exclude_rope: int = 0
277
+ ) -> Tensor:
278
+ # Input projections
279
+ q = self.q_proj(q)
280
+ k = self.k_proj(k)
281
+ v = self.v_proj(v)
282
+
283
+ # Separate into heads
284
+ q = self._separate_heads(q, self.num_heads)
285
+ k = self._separate_heads(k, self.num_heads)
286
+ v = self._separate_heads(v, self.num_heads)
287
+
288
+ # Apply rotary position encoding
289
+ w = h = math.sqrt(q.shape[-2])
290
+ self.freqs_cis = self.freqs_cis.to(q.device)
291
+ if self.freqs_cis.shape[0] != q.shape[-2]:
292
+ self.freqs_cis = self.compute_cis(end_x=w, end_y=h).to(q.device)
293
+ if q.shape[-2] != k.shape[-2]:
294
+ assert self.rope_k_repeat
295
+
296
+ num_k_rope = k.size(-2) - num_k_exclude_rope
297
+ q, k[:, :, :num_k_rope] = apply_rotary_enc(
298
+ q,
299
+ k[:, :, :num_k_rope],
300
+ freqs_cis=self.freqs_cis,
301
+ repeat_freqs_k=self.rope_k_repeat,
302
+ )
303
+
304
+ dropout_p = self.dropout_p if self.training else 0.0
305
+ # Attention
306
+ out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
307
+
308
+ out = self._recombine_heads(out)
309
+ out = self.out_proj(out)
310
+
311
+ return out
sam2/modeling/sam2_base.py ADDED
@@ -0,0 +1,909 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import torch
8
+ import torch.distributed
9
+ import torch.nn.functional as F
10
+
11
+ from torch.nn.init import trunc_normal_
12
+
13
+ from sam2.modeling.sam.mask_decoder import MaskDecoder
14
+ from sam2.modeling.sam.prompt_encoder import PromptEncoder
15
+ from sam2.modeling.sam.transformer import TwoWayTransformer
16
+ from sam2.modeling.sam2_utils import get_1d_sine_pe, MLP, select_closest_cond_frames
17
+
18
+ # a large negative value as a placeholder score for missing objects
19
+ NO_OBJ_SCORE = -1024.0
20
+
21
+
22
+ class SAM2Base(torch.nn.Module):
23
+ def __init__(
24
+ self,
25
+ image_encoder,
26
+ memory_attention,
27
+ memory_encoder,
28
+ num_maskmem=7, # default 1 input frame + 6 previous frames
29
+ image_size=512,
30
+ backbone_stride=16, # stride of the image backbone output
31
+ sigmoid_scale_for_mem_enc=1.0, # scale factor for mask sigmoid prob
32
+ sigmoid_bias_for_mem_enc=0.0, # bias factor for mask sigmoid prob
33
+ # During evaluation, whether to binarize the sigmoid mask logits on interacted frames with clicks
34
+ binarize_mask_from_pts_for_mem_enc=False,
35
+ use_mask_input_as_output_without_sam=False, # on frames with mask input, whether to directly output the input mask without using a SAM prompt encoder + mask decoder
36
+ # The maximum number of conditioning frames to participate in the memory attention (-1 means no limit; if there are more conditioning frames than this limit,
37
+ # we only cross-attend to the temporally closest `max_cond_frames_in_attn` conditioning frames in the encoder when tracking each frame). This gives the model
38
+ # a temporal locality when handling a large number of annotated frames (since closer frames should be more important) and also avoids GPU OOM.
39
+ max_cond_frames_in_attn=-1,
40
+ # on the first frame, whether to directly add the no-memory embedding to the image feature
41
+ # (instead of using the transformer encoder)
42
+ directly_add_no_mem_embed=False,
43
+ # whether to use high-resolution feature maps in the SAM mask decoder
44
+ use_high_res_features_in_sam=False,
45
+ # whether to output multiple (3) masks for the first click on initial conditioning frames
46
+ multimask_output_in_sam=False,
47
+ # the minimum and maximum number of clicks to use multimask_output_in_sam (only relevant when `multimask_output_in_sam=True`;
48
+ # default is 1 for both, meaning that only the first click gives multimask output; also note that a box counts as two points)
49
+ multimask_min_pt_num=1,
50
+ multimask_max_pt_num=1,
51
+ # whether to also use multimask output for tracking (not just for the first click on initial conditioning frames; only relevant when `multimask_output_in_sam=True`)
52
+ multimask_output_for_tracking=False,
53
+ # Whether to use multimask tokens for obj ptr; Only relevant when both
54
+ # use_obj_ptrs_in_encoder=True and multimask_output_for_tracking=True
55
+ use_multimask_token_for_obj_ptr: bool = False,
56
+ # whether to use sigmoid to restrict ious prediction to [0-1]
57
+ iou_prediction_use_sigmoid=False,
58
+ # The memory bank's temporal stride during evaluation (i.e. the `r` parameter in XMem and Cutie; XMem and Cutie use r=5).
59
+ # For r>1, the (self.num_maskmem - 1) non-conditioning memory frames consist of
60
+ # (self.num_maskmem - 2) nearest frames from every r-th frames, plus the last frame.
61
+ memory_temporal_stride_for_eval=1,
62
+ # whether to apply non-overlapping constraints on the object masks in the memory encoder during evaluation (to avoid/alleviate superposing masks)
63
+ non_overlap_masks_for_mem_enc=False,
64
+ # whether to cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
65
+ use_obj_ptrs_in_encoder=False,
66
+ # the maximum number of object pointers from other frames in encoder cross attention (only relevant when `use_obj_ptrs_in_encoder=True`)
67
+ max_obj_ptrs_in_encoder=16,
68
+ # whether to add temporal positional encoding to the object pointers in the encoder (only relevant when `use_obj_ptrs_in_encoder=True`)
69
+ add_tpos_enc_to_obj_ptrs=True,
70
+ # whether to add an extra linear projection layer for the temporal positional encoding in the object pointers to avoid potential interference
71
+ # with spatial positional encoding (only relevant when both `use_obj_ptrs_in_encoder=True` and `add_tpos_enc_to_obj_ptrs=True`)
72
+ proj_tpos_enc_in_obj_ptrs=False,
73
+ # whether to use signed distance (instead of unsigned absolute distance) in the temporal positional encoding in the object pointers
74
+ # (only relevant when both `use_obj_ptrs_in_encoder=True` and `add_tpos_enc_to_obj_ptrs=True`)
75
+ use_signed_tpos_enc_to_obj_ptrs=False,
76
+ # whether to only attend to object pointers in the past (before the current frame) in the encoder during evaluation
77
+ # (only relevant when `use_obj_ptrs_in_encoder=True`; this might avoid pointer information too far in the future to distract the initial tracking)
78
+ only_obj_ptrs_in_the_past_for_eval=False,
79
+ # Whether to predict if there is an object in the frame
80
+ pred_obj_scores: bool = False,
81
+ # Whether to use an MLP to predict object scores
82
+ pred_obj_scores_mlp: bool = False,
83
+ # Only relevant if pred_obj_scores=True and use_obj_ptrs_in_encoder=True;
84
+ # Whether to have a fixed no obj pointer when there is no object present
85
+ # or to use it as an additive embedding with obj_ptr produced by decoder
86
+ fixed_no_obj_ptr: bool = False,
87
+ # Soft no object, i.e. mix in no_obj_ptr softly,
88
+ # hope to make recovery easier if there is a mistake and mitigate accumulation of errors
89
+ soft_no_obj_ptr: bool = False,
90
+ use_mlp_for_obj_ptr_proj: bool = False,
91
+ # add no obj embedding to spatial frames
92
+ no_obj_embed_spatial: bool = False,
93
+ # extra arguments used to construct the SAM mask decoder; if not None, it should be a dict of kwargs to be passed into `MaskDecoder` class.
94
+ sam_mask_decoder_extra_args=None,
95
+ compile_image_encoder: bool = False,
96
+ ):
97
+ super().__init__()
98
+
99
+ # Part 1: the image backbone
100
+ self.image_encoder = image_encoder
101
+ # Use level 0, 1, 2 for high-res setting, or just level 2 for the default setting
102
+ self.use_high_res_features_in_sam = use_high_res_features_in_sam
103
+ self.num_feature_levels = 3 if use_high_res_features_in_sam else 1
104
+ self.use_obj_ptrs_in_encoder = use_obj_ptrs_in_encoder
105
+ self.max_obj_ptrs_in_encoder = max_obj_ptrs_in_encoder
106
+ if use_obj_ptrs_in_encoder:
107
+ # A conv layer to downsample the mask prompt to stride 4 (the same stride as
108
+ # low-res SAM mask logits) and to change its scales from 0~1 to SAM logit scale,
109
+ # so that it can be fed into the SAM mask decoder to generate a pointer.
110
+ self.mask_downsample = torch.nn.Conv2d(1, 1, kernel_size=4, stride=4)
111
+ self.add_tpos_enc_to_obj_ptrs = add_tpos_enc_to_obj_ptrs
112
+ if proj_tpos_enc_in_obj_ptrs:
113
+ assert add_tpos_enc_to_obj_ptrs # these options need to be used together
114
+ self.proj_tpos_enc_in_obj_ptrs = proj_tpos_enc_in_obj_ptrs
115
+ self.use_signed_tpos_enc_to_obj_ptrs = use_signed_tpos_enc_to_obj_ptrs
116
+ self.only_obj_ptrs_in_the_past_for_eval = only_obj_ptrs_in_the_past_for_eval
117
+
118
+ # Part 2: memory attention to condition current frame's visual features
119
+ # with memories (and obj ptrs) from past frames
120
+ self.memory_attention = memory_attention
121
+ self.hidden_dim = image_encoder.neck.d_model
122
+
123
+ # Part 3: memory encoder for the previous frame's outputs
124
+ self.memory_encoder = memory_encoder
125
+ self.mem_dim = self.hidden_dim
126
+ if hasattr(self.memory_encoder, "out_proj") and hasattr(
127
+ self.memory_encoder.out_proj, "weight"
128
+ ):
129
+ # if there is compression of memories along channel dim
130
+ self.mem_dim = self.memory_encoder.out_proj.weight.shape[0]
131
+ self.num_maskmem = num_maskmem # Number of memories accessible
132
+ # Temporal encoding of the memories
133
+ self.maskmem_tpos_enc = torch.nn.Parameter(
134
+ torch.zeros(num_maskmem, 1, 1, self.mem_dim)
135
+ )
136
+ trunc_normal_(self.maskmem_tpos_enc, std=0.02)
137
+ # a single token to indicate no memory embedding from previous frames
138
+ self.no_mem_embed = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
139
+ self.no_mem_pos_enc = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
140
+ trunc_normal_(self.no_mem_embed, std=0.02)
141
+ trunc_normal_(self.no_mem_pos_enc, std=0.02)
142
+ self.directly_add_no_mem_embed = directly_add_no_mem_embed
143
+ # Apply sigmoid to the output raw mask logits (to turn them from
144
+ # range (-inf, +inf) to range (0, 1)) before feeding them into the memory encoder
145
+ self.sigmoid_scale_for_mem_enc = sigmoid_scale_for_mem_enc
146
+ self.sigmoid_bias_for_mem_enc = sigmoid_bias_for_mem_enc
147
+ self.binarize_mask_from_pts_for_mem_enc = binarize_mask_from_pts_for_mem_enc
148
+ self.non_overlap_masks_for_mem_enc = non_overlap_masks_for_mem_enc
149
+ self.memory_temporal_stride_for_eval = memory_temporal_stride_for_eval
150
+ # On frames with mask input, whether to directly output the input mask without
151
+ # using a SAM prompt encoder + mask decoder
152
+ self.use_mask_input_as_output_without_sam = use_mask_input_as_output_without_sam
153
+ self.multimask_output_in_sam = multimask_output_in_sam
154
+ self.multimask_min_pt_num = multimask_min_pt_num
155
+ self.multimask_max_pt_num = multimask_max_pt_num
156
+ self.multimask_output_for_tracking = multimask_output_for_tracking
157
+ self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
158
+ self.iou_prediction_use_sigmoid = iou_prediction_use_sigmoid
159
+
160
+ # Part 4: SAM-style prompt encoder (for both mask and point inputs)
161
+ # and SAM-style mask decoder for the final mask output
162
+ self.image_size = image_size
163
+ self.backbone_stride = backbone_stride
164
+ self.sam_mask_decoder_extra_args = sam_mask_decoder_extra_args
165
+ self.pred_obj_scores = pred_obj_scores
166
+ self.pred_obj_scores_mlp = pred_obj_scores_mlp
167
+ self.fixed_no_obj_ptr = fixed_no_obj_ptr
168
+ self.soft_no_obj_ptr = soft_no_obj_ptr
169
+ if self.fixed_no_obj_ptr:
170
+ assert self.pred_obj_scores
171
+ assert self.use_obj_ptrs_in_encoder
172
+ if self.pred_obj_scores and self.use_obj_ptrs_in_encoder:
173
+ self.no_obj_ptr = torch.nn.Parameter(torch.zeros(1, self.hidden_dim))
174
+ trunc_normal_(self.no_obj_ptr, std=0.02)
175
+ self.use_mlp_for_obj_ptr_proj = use_mlp_for_obj_ptr_proj
176
+ self.no_obj_embed_spatial = None
177
+ if no_obj_embed_spatial:
178
+ self.no_obj_embed_spatial = torch.nn.Parameter(torch.zeros(1, self.mem_dim))
179
+ trunc_normal_(self.no_obj_embed_spatial, std=0.02)
180
+
181
+ self._build_sam_heads()
182
+ self.max_cond_frames_in_attn = max_cond_frames_in_attn
183
+
184
+ # Model compilation
185
+ if compile_image_encoder:
186
+ # Compile the forward function (not the full module) to allow loading checkpoints.
187
+ print(
188
+ "Image encoder compilation is enabled. First forward pass will be slow."
189
+ )
190
+ self.image_encoder.forward = torch.compile(
191
+ self.image_encoder.forward,
192
+ mode="max-autotune",
193
+ fullgraph=True,
194
+ dynamic=False,
195
+ )
196
+
197
+ @property
198
+ def device(self):
199
+ return next(self.parameters()).device
200
+
201
+ def forward(self, *args, **kwargs):
202
+ raise NotImplementedError(
203
+ "Please use the corresponding methods in SAM2VideoPredictor for inference or SAM2Train for training/fine-tuning"
204
+ "See notebooks/video_predictor_example.ipynb for an inference example."
205
+ )
206
+
207
+ def _build_sam_heads(self):
208
+ """Build SAM-style prompt encoder and mask decoder."""
209
+ self.sam_prompt_embed_dim = self.hidden_dim
210
+ self.sam_image_embedding_size = self.image_size // self.backbone_stride
211
+
212
+ # build PromptEncoder and MaskDecoder from SAM
213
+ # (their hyperparameters like `mask_in_chans=16` are from SAM code)
214
+ self.sam_prompt_encoder = PromptEncoder(
215
+ embed_dim=self.sam_prompt_embed_dim,
216
+ image_embedding_size=(
217
+ self.sam_image_embedding_size,
218
+ self.sam_image_embedding_size,
219
+ ),
220
+ input_image_size=(self.image_size, self.image_size),
221
+ mask_in_chans=16,
222
+ )
223
+ self.sam_mask_decoder = MaskDecoder(
224
+ num_multimask_outputs=3,
225
+ transformer=TwoWayTransformer(
226
+ depth=2,
227
+ embedding_dim=self.sam_prompt_embed_dim,
228
+ mlp_dim=2048,
229
+ num_heads=8,
230
+ ),
231
+ transformer_dim=self.sam_prompt_embed_dim,
232
+ iou_head_depth=3,
233
+ iou_head_hidden_dim=256,
234
+ use_high_res_features=self.use_high_res_features_in_sam,
235
+ iou_prediction_use_sigmoid=self.iou_prediction_use_sigmoid,
236
+ pred_obj_scores=self.pred_obj_scores,
237
+ pred_obj_scores_mlp=self.pred_obj_scores_mlp,
238
+ use_multimask_token_for_obj_ptr=self.use_multimask_token_for_obj_ptr,
239
+ **(self.sam_mask_decoder_extra_args or {}),
240
+ )
241
+ if self.use_obj_ptrs_in_encoder:
242
+ # a linear projection on SAM output tokens to turn them into object pointers
243
+ self.obj_ptr_proj = torch.nn.Linear(self.hidden_dim, self.hidden_dim)
244
+ if self.use_mlp_for_obj_ptr_proj:
245
+ self.obj_ptr_proj = MLP(
246
+ self.hidden_dim, self.hidden_dim, self.hidden_dim, 3
247
+ )
248
+ else:
249
+ self.obj_ptr_proj = torch.nn.Identity()
250
+ if self.proj_tpos_enc_in_obj_ptrs:
251
+ # a linear projection on temporal positional encoding in object pointers to
252
+ # avoid potential interference with spatial positional encoding
253
+ self.obj_ptr_tpos_proj = torch.nn.Linear(self.hidden_dim, self.mem_dim)
254
+ else:
255
+ self.obj_ptr_tpos_proj = torch.nn.Identity()
256
+
257
+ def _forward_sam_heads(
258
+ self,
259
+ backbone_features,
260
+ point_inputs=None,
261
+ mask_inputs=None,
262
+ high_res_features=None,
263
+ multimask_output=False,
264
+ ):
265
+ """
266
+ Forward SAM prompt encoders and mask heads.
267
+
268
+ Inputs:
269
+ - backbone_features: image features of [B, C, H, W] shape
270
+ - point_inputs: a dictionary with "point_coords" and "point_labels", where
271
+ 1) "point_coords" has [B, P, 2] shape and float32 dtype and contains the
272
+ absolute pixel-unit coordinate in (x, y) format of the P input points
273
+ 2) "point_labels" has shape [B, P] and int32 dtype, where 1 means
274
+ positive clicks, 0 means negative clicks, and -1 means padding
275
+ - mask_inputs: a mask of [B, 1, H*16, W*16] shape, float or bool, with the
276
+ same spatial size as the image.
277
+ - high_res_features: either 1) None or 2) or a list of length 2 containing
278
+ two feature maps of [B, C, 4*H, 4*W] and [B, C, 2*H, 2*W] shapes respectively,
279
+ which will be used as high-resolution feature maps for SAM decoder.
280
+ - multimask_output: if it's True, we output 3 candidate masks and their 3
281
+ corresponding IoU estimates, and if it's False, we output only 1 mask and
282
+ its corresponding IoU estimate.
283
+
284
+ Outputs:
285
+ - low_res_multimasks: [B, M, H*4, W*4] shape (where M = 3 if
286
+ `multimask_output=True` and M = 1 if `multimask_output=False`), the SAM
287
+ output mask logits (before sigmoid) for the low-resolution masks, with 4x
288
+ the resolution (1/4 stride) of the input backbone_features.
289
+ - high_res_multimasks: [B, M, H*16, W*16] shape (where M = 3
290
+ if `multimask_output=True` and M = 1 if `multimask_output=False`),
291
+ upsampled from the low-resolution masks, with shape size as the image
292
+ (stride is 1 pixel).
293
+ - ious, [B, M] shape, where (where M = 3 if `multimask_output=True` and M = 1
294
+ if `multimask_output=False`), the estimated IoU of each output mask.
295
+ - low_res_masks: [B, 1, H*4, W*4] shape, the best mask in `low_res_multimasks`.
296
+ If `multimask_output=True`, it's the mask with the highest IoU estimate.
297
+ If `multimask_output=False`, it's the same as `low_res_multimasks`.
298
+ - high_res_masks: [B, 1, H*16, W*16] shape, the best mask in `high_res_multimasks`.
299
+ If `multimask_output=True`, it's the mask with the highest IoU estimate.
300
+ If `multimask_output=False`, it's the same as `high_res_multimasks`.
301
+ - obj_ptr: [B, C] shape, the object pointer vector for the output mask, extracted
302
+ based on the output token from the SAM mask decoder.
303
+ """
304
+ B = backbone_features.size(0)
305
+ device = backbone_features.device
306
+ assert backbone_features.size(1) == self.sam_prompt_embed_dim
307
+ assert backbone_features.size(2) == self.sam_image_embedding_size
308
+ assert backbone_features.size(3) == self.sam_image_embedding_size
309
+
310
+ # a) Handle point prompts
311
+ if point_inputs is not None:
312
+ sam_point_coords = point_inputs["point_coords"]
313
+ sam_point_labels = point_inputs["point_labels"]
314
+ assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B
315
+ else:
316
+ # If no points are provide, pad with an empty point (with label -1)
317
+ sam_point_coords = torch.zeros(B, 1, 2, device=device)
318
+ sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device)
319
+
320
+ # b) Handle mask prompts
321
+ if mask_inputs is not None:
322
+ # If mask_inputs is provided, downsize it into low-res mask input if needed
323
+ # and feed it as a dense mask prompt into the SAM mask encoder
324
+ assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1)
325
+ if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size:
326
+ sam_mask_prompt = F.interpolate(
327
+ mask_inputs.float(),
328
+ size=self.sam_prompt_encoder.mask_input_size,
329
+ align_corners=False,
330
+ mode="bilinear",
331
+ antialias=True, # use antialias for downsampling
332
+ )
333
+ else:
334
+ sam_mask_prompt = mask_inputs
335
+ else:
336
+ # Otherwise, simply feed None (and SAM's prompt encoder will add
337
+ # a learned `no_mask_embed` to indicate no mask input in this case).
338
+ sam_mask_prompt = None
339
+
340
+ sparse_embeddings, dense_embeddings = self.sam_prompt_encoder(
341
+ points=(sam_point_coords, sam_point_labels),
342
+ boxes=None,
343
+ masks=sam_mask_prompt,
344
+ )
345
+ (
346
+ low_res_multimasks,
347
+ ious,
348
+ sam_output_tokens,
349
+ object_score_logits,
350
+ ) = self.sam_mask_decoder(
351
+ image_embeddings=backbone_features,
352
+ image_pe=self.sam_prompt_encoder.get_dense_pe(),
353
+ sparse_prompt_embeddings=sparse_embeddings,
354
+ dense_prompt_embeddings=dense_embeddings,
355
+ multimask_output=multimask_output,
356
+ repeat_image=False, # the image is already batched
357
+ high_res_features=high_res_features,
358
+ )
359
+ if self.pred_obj_scores:
360
+ is_obj_appearing = object_score_logits > 0
361
+
362
+ # Mask used for spatial memories is always a *hard* choice between obj and no obj,
363
+ # consistent with the actual mask prediction
364
+ low_res_multimasks = torch.where(
365
+ is_obj_appearing[:, None, None],
366
+ low_res_multimasks,
367
+ NO_OBJ_SCORE,
368
+ )
369
+
370
+ # convert masks from possibly bfloat16 (or float16) to float32
371
+ # (older PyTorch versions before 2.1 don't support `interpolate` on bf16)
372
+ low_res_multimasks = low_res_multimasks.float()
373
+ high_res_multimasks = F.interpolate(
374
+ low_res_multimasks,
375
+ size=(self.image_size, self.image_size),
376
+ mode="bilinear",
377
+ align_corners=False,
378
+ )
379
+
380
+ sam_output_token = sam_output_tokens[:, 0]
381
+ if multimask_output:
382
+ # take the best mask prediction (with the highest IoU estimation)
383
+ best_iou_inds = torch.argmax(ious, dim=-1)
384
+ batch_inds = torch.arange(B, device=device)
385
+ low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
386
+ high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
387
+ if sam_output_tokens.size(1) > 1:
388
+ sam_output_token = sam_output_tokens[batch_inds, best_iou_inds]
389
+ else:
390
+ low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks
391
+
392
+ # Extract object pointer from the SAM output token (with occlusion handling)
393
+ obj_ptr = self.obj_ptr_proj(sam_output_token)
394
+ if self.pred_obj_scores:
395
+ # Allow *soft* no obj ptr, unlike for masks
396
+ if self.soft_no_obj_ptr:
397
+ lambda_is_obj_appearing = object_score_logits.sigmoid()
398
+ else:
399
+ lambda_is_obj_appearing = is_obj_appearing.float()
400
+
401
+ if self.fixed_no_obj_ptr:
402
+ obj_ptr = lambda_is_obj_appearing * obj_ptr
403
+ obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
404
+
405
+ return (
406
+ low_res_multimasks,
407
+ high_res_multimasks,
408
+ ious,
409
+ low_res_masks,
410
+ high_res_masks,
411
+ obj_ptr,
412
+ object_score_logits,
413
+ )
414
+
415
+ def _use_mask_as_output(self, backbone_features, high_res_features, mask_inputs):
416
+ """
417
+ Directly turn binary `mask_inputs` into a output mask logits without using SAM.
418
+ (same input and output shapes as in _forward_sam_heads above).
419
+ """
420
+ # Use -10/+10 as logits for neg/pos pixels (very close to 0/1 in prob after sigmoid).
421
+ out_scale, out_bias = 20.0, -10.0 # sigmoid(-10.0)=4.5398e-05
422
+ mask_inputs_float = mask_inputs.float()
423
+ high_res_masks = mask_inputs_float * out_scale + out_bias
424
+ low_res_masks = F.interpolate(
425
+ high_res_masks,
426
+ size=(high_res_masks.size(-2) // 4, high_res_masks.size(-1) // 4),
427
+ align_corners=False,
428
+ mode="bilinear",
429
+ antialias=True, # use antialias for downsampling
430
+ )
431
+ # a dummy IoU prediction of all 1's under mask input
432
+ ious = mask_inputs.new_ones(mask_inputs.size(0), 1).float()
433
+ if not self.use_obj_ptrs_in_encoder:
434
+ # all zeros as a dummy object pointer (of shape [B, C])
435
+ obj_ptr = torch.zeros(
436
+ mask_inputs.size(0), self.hidden_dim, device=mask_inputs.device
437
+ )
438
+ else:
439
+ # produce an object pointer using the SAM decoder from the mask input
440
+ _, _, _, _, _, obj_ptr, _ = self._forward_sam_heads(
441
+ backbone_features=backbone_features,
442
+ mask_inputs=self.mask_downsample(mask_inputs_float),
443
+ high_res_features=high_res_features,
444
+ )
445
+ # In this method, we are treating mask_input as output, e.g. using it directly to create spatial mem;
446
+ # Below, we follow the same design axiom to use mask_input to decide if obj appears or not instead of relying
447
+ # on the object_scores from the SAM decoder.
448
+ is_obj_appearing = torch.any(mask_inputs.flatten(1).float() > 0.0, dim=1)
449
+ is_obj_appearing = is_obj_appearing[..., None]
450
+ lambda_is_obj_appearing = is_obj_appearing.float()
451
+ object_score_logits = out_scale * lambda_is_obj_appearing + out_bias
452
+ if self.pred_obj_scores:
453
+ if self.fixed_no_obj_ptr:
454
+ obj_ptr = lambda_is_obj_appearing * obj_ptr
455
+ obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
456
+
457
+ return (
458
+ low_res_masks,
459
+ high_res_masks,
460
+ ious,
461
+ low_res_masks,
462
+ high_res_masks,
463
+ obj_ptr,
464
+ object_score_logits,
465
+ )
466
+
467
+ def forward_image(self, img_batch: torch.Tensor):
468
+ """Get the image feature on the input batch."""
469
+ backbone_out = self.image_encoder(img_batch)
470
+ if self.use_high_res_features_in_sam:
471
+ # precompute projected level 0 and level 1 features in SAM decoder
472
+ # to avoid running it again on every SAM click
473
+ backbone_out["backbone_fpn"][0] = self.sam_mask_decoder.conv_s0(
474
+ backbone_out["backbone_fpn"][0]
475
+ )
476
+ backbone_out["backbone_fpn"][1] = self.sam_mask_decoder.conv_s1(
477
+ backbone_out["backbone_fpn"][1]
478
+ )
479
+ return backbone_out
480
+
481
+ def _prepare_backbone_features(self, backbone_out):
482
+ """Prepare and flatten visual features."""
483
+ backbone_out = backbone_out.copy()
484
+ assert len(backbone_out["backbone_fpn"]) == len(backbone_out["vision_pos_enc"])
485
+ assert len(backbone_out["backbone_fpn"]) >= self.num_feature_levels
486
+
487
+ feature_maps = backbone_out["backbone_fpn"][-self.num_feature_levels :]
488
+ vision_pos_embeds = backbone_out["vision_pos_enc"][-self.num_feature_levels :]
489
+
490
+ feat_sizes = [(x.shape[-2], x.shape[-1]) for x in vision_pos_embeds]
491
+ # flatten NxCxHxW to HWxNxC
492
+ vision_feats = [x.flatten(2).permute(2, 0, 1) for x in feature_maps]
493
+ vision_pos_embeds = [x.flatten(2).permute(2, 0, 1) for x in vision_pos_embeds]
494
+
495
+ return backbone_out, vision_feats, vision_pos_embeds, feat_sizes
496
+
497
+ def _prepare_memory_conditioned_features(
498
+ self,
499
+ frame_idx,
500
+ is_init_cond_frame,
501
+ current_vision_feats,
502
+ current_vision_pos_embeds,
503
+ feat_sizes,
504
+ output_dict,
505
+ num_frames,
506
+ track_in_reverse=False, # tracking in reverse time order (for demo usage)
507
+ ):
508
+ """Fuse the current frame's visual feature map with previous memory."""
509
+ B = current_vision_feats[-1].size(1) # batch size on this frame
510
+ C = self.hidden_dim
511
+ H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size
512
+ device = current_vision_feats[-1].device
513
+ # The case of `self.num_maskmem == 0` below is primarily used for reproducing SAM on images.
514
+ # In this case, we skip the fusion with any memory.
515
+ if self.num_maskmem == 0: # Disable memory and skip fusion
516
+ pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
517
+ return pix_feat
518
+
519
+ num_obj_ptr_tokens = 0
520
+ tpos_sign_mul = -1 if track_in_reverse else 1
521
+ # Step 1: condition the visual features of the current frame on previous memories
522
+ if not is_init_cond_frame:
523
+ # Retrieve the memories encoded with the maskmem backbone
524
+ to_cat_memory, to_cat_memory_pos_embed = [], []
525
+ # Add conditioning frames's output first (all cond frames have t_pos=0 for
526
+ # when getting temporal positional embedding below)
527
+ assert len(output_dict["cond_frame_outputs"]) > 0
528
+ # Select a maximum number of temporally closest cond frames for cross attention
529
+ cond_outputs = output_dict["cond_frame_outputs"]
530
+ selected_cond_outputs, unselected_cond_outputs = select_closest_cond_frames(
531
+ frame_idx, cond_outputs, self.max_cond_frames_in_attn
532
+ )
533
+ t_pos_and_prevs = [(0, out) for out in selected_cond_outputs.values()]
534
+ # Add last (self.num_maskmem - 1) frames before current frame for non-conditioning memory
535
+ # the earliest one has t_pos=1 and the latest one has t_pos=self.num_maskmem-1
536
+ # We also allow taking the memory frame non-consecutively (with stride>1), in which case
537
+ # we take (self.num_maskmem - 2) frames among every stride-th frames plus the last frame.
538
+ stride = 1 if self.training else self.memory_temporal_stride_for_eval
539
+ for t_pos in range(1, self.num_maskmem):
540
+ t_rel = self.num_maskmem - t_pos # how many frames before current frame
541
+ if t_rel == 1:
542
+ # for t_rel == 1, we take the last frame (regardless of r)
543
+ if not track_in_reverse:
544
+ # the frame immediately before this frame (i.e. frame_idx - 1)
545
+ prev_frame_idx = frame_idx - t_rel
546
+ else:
547
+ # the frame immediately after this frame (i.e. frame_idx + 1)
548
+ prev_frame_idx = frame_idx + t_rel
549
+ else:
550
+ # for t_rel >= 2, we take the memory frame from every r-th frames
551
+ if not track_in_reverse:
552
+ # first find the nearest frame among every r-th frames before this frame
553
+ # for r=1, this would be (frame_idx - 2)
554
+ prev_frame_idx = ((frame_idx - 2) // stride) * stride
555
+ # then seek further among every r-th frames
556
+ prev_frame_idx = prev_frame_idx - (t_rel - 2) * stride
557
+ else:
558
+ # first find the nearest frame among every r-th frames after this frame
559
+ # for r=1, this would be (frame_idx + 2)
560
+ prev_frame_idx = -(-(frame_idx + 2) // stride) * stride
561
+ # then seek further among every r-th frames
562
+ prev_frame_idx = prev_frame_idx + (t_rel - 2) * stride
563
+ out = output_dict["non_cond_frame_outputs"].get(prev_frame_idx, None)
564
+ if out is None:
565
+ # If an unselected conditioning frame is among the last (self.num_maskmem - 1)
566
+ # frames, we still attend to it as if it's a non-conditioning frame.
567
+ out = unselected_cond_outputs.get(prev_frame_idx, None)
568
+ t_pos_and_prevs.append((t_pos, out))
569
+
570
+ for t_pos, prev in t_pos_and_prevs:
571
+ if prev is None:
572
+ continue # skip padding frames
573
+ # "maskmem_features" might have been offloaded to CPU in demo use cases,
574
+ # so we load it back to GPU (it's a no-op if it's already on GPU).
575
+ feats = prev["maskmem_features"].to(device, non_blocking=True)
576
+ to_cat_memory.append(feats.flatten(2).permute(2, 0, 1))
577
+ # Spatial positional encoding (it might have been offloaded to CPU in eval)
578
+ maskmem_enc = prev["maskmem_pos_enc"][-1].to(device)
579
+ maskmem_enc = maskmem_enc.flatten(2).permute(2, 0, 1)
580
+ # Temporal positional encoding
581
+ maskmem_enc = (
582
+ maskmem_enc + self.maskmem_tpos_enc[self.num_maskmem - t_pos - 1]
583
+ )
584
+ to_cat_memory_pos_embed.append(maskmem_enc)
585
+
586
+ # Construct the list of past object pointers
587
+ if self.use_obj_ptrs_in_encoder:
588
+ max_obj_ptrs_in_encoder = min(num_frames, self.max_obj_ptrs_in_encoder)
589
+ # First add those object pointers from selected conditioning frames
590
+ # (optionally, only include object pointers in the past during evaluation)
591
+ if not self.training and self.only_obj_ptrs_in_the_past_for_eval:
592
+ ptr_cond_outputs = {
593
+ t: out
594
+ for t, out in selected_cond_outputs.items()
595
+ if (t >= frame_idx if track_in_reverse else t <= frame_idx)
596
+ }
597
+ else:
598
+ ptr_cond_outputs = selected_cond_outputs
599
+ pos_and_ptrs = [
600
+ # Temporal pos encoding contains how far away each pointer is from current frame
601
+ (
602
+ (
603
+ (frame_idx - t) * tpos_sign_mul
604
+ if self.use_signed_tpos_enc_to_obj_ptrs
605
+ else abs(frame_idx - t)
606
+ ),
607
+ out["obj_ptr"],
608
+ )
609
+ for t, out in ptr_cond_outputs.items()
610
+ ]
611
+ # Add up to (max_obj_ptrs_in_encoder - 1) non-conditioning frames before current frame
612
+ for t_diff in range(1, max_obj_ptrs_in_encoder):
613
+ t = frame_idx + t_diff if track_in_reverse else frame_idx - t_diff
614
+ if t < 0 or (num_frames is not None and t >= num_frames):
615
+ break
616
+ out = output_dict["non_cond_frame_outputs"].get(
617
+ t, unselected_cond_outputs.get(t, None)
618
+ )
619
+ if out is not None:
620
+ pos_and_ptrs.append((t_diff, out["obj_ptr"]))
621
+ # If we have at least one object pointer, add them to the across attention
622
+ if len(pos_and_ptrs) > 0:
623
+ pos_list, ptrs_list = zip(*pos_and_ptrs)
624
+ # stack object pointers along dim=0 into [ptr_seq_len, B, C] shape
625
+ obj_ptrs = torch.stack(ptrs_list, dim=0)
626
+ # a temporal positional embedding based on how far each object pointer is from
627
+ # the current frame (sine embedding normalized by the max pointer num).
628
+ if self.add_tpos_enc_to_obj_ptrs:
629
+ t_diff_max = max_obj_ptrs_in_encoder - 1
630
+ tpos_dim = C if self.proj_tpos_enc_in_obj_ptrs else self.mem_dim
631
+ obj_pos = torch.tensor(pos_list).to(
632
+ device=device, non_blocking=True
633
+ )
634
+ obj_pos = get_1d_sine_pe(obj_pos / t_diff_max, dim=tpos_dim)
635
+ obj_pos = self.obj_ptr_tpos_proj(obj_pos)
636
+ obj_pos = obj_pos.unsqueeze(1).expand(-1, B, self.mem_dim)
637
+ else:
638
+ obj_pos = obj_ptrs.new_zeros(len(pos_list), B, self.mem_dim)
639
+ if self.mem_dim < C:
640
+ # split a pointer into (C // self.mem_dim) tokens for self.mem_dim < C
641
+ obj_ptrs = obj_ptrs.reshape(
642
+ -1, B, C // self.mem_dim, self.mem_dim
643
+ )
644
+ obj_ptrs = obj_ptrs.permute(0, 2, 1, 3).flatten(0, 1)
645
+ obj_pos = obj_pos.repeat_interleave(C // self.mem_dim, dim=0)
646
+ to_cat_memory.append(obj_ptrs)
647
+ to_cat_memory_pos_embed.append(obj_pos)
648
+ num_obj_ptr_tokens = obj_ptrs.shape[0]
649
+ else:
650
+ num_obj_ptr_tokens = 0
651
+ else:
652
+ # for initial conditioning frames, encode them without using any previous memory
653
+ if self.directly_add_no_mem_embed:
654
+ # directly add no-mem embedding (instead of using the transformer encoder)
655
+ pix_feat_with_mem = current_vision_feats[-1] + self.no_mem_embed
656
+ pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
657
+ return pix_feat_with_mem
658
+
659
+ # Use a dummy token on the first frame (to avoid empty memory input to tranformer encoder)
660
+ to_cat_memory = [self.no_mem_embed.expand(1, B, self.mem_dim)]
661
+ to_cat_memory_pos_embed = [self.no_mem_pos_enc.expand(1, B, self.mem_dim)]
662
+
663
+ # Step 2: Concatenate the memories and forward through the transformer encoder
664
+ memory = torch.cat(to_cat_memory, dim=0)
665
+ memory_pos_embed = torch.cat(to_cat_memory_pos_embed, dim=0)
666
+
667
+ pix_feat_with_mem = self.memory_attention(
668
+ curr=current_vision_feats,
669
+ curr_pos=current_vision_pos_embeds,
670
+ memory=memory,
671
+ memory_pos=memory_pos_embed,
672
+ num_obj_ptr_tokens=num_obj_ptr_tokens,
673
+ )
674
+ # reshape the output (HW)BC => BCHW
675
+ pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
676
+ return pix_feat_with_mem
677
+
678
+ def _encode_new_memory(
679
+ self,
680
+ current_vision_feats,
681
+ feat_sizes,
682
+ pred_masks_high_res,
683
+ object_score_logits,
684
+ is_mask_from_pts,
685
+ ):
686
+ """Encode the current image and its prediction into a memory feature."""
687
+ B = current_vision_feats[-1].size(1) # batch size on this frame
688
+ C = self.hidden_dim
689
+ H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size
690
+ # top-level feature, (HW)BC => BCHW
691
+ pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
692
+ if self.non_overlap_masks_for_mem_enc and not self.training:
693
+ # optionally, apply non-overlapping constraints to the masks (it's applied
694
+ # in the batch dimension and should only be used during eval, where all
695
+ # the objects come from the same video under batch size 1).
696
+ pred_masks_high_res = self._apply_non_overlapping_constraints(
697
+ pred_masks_high_res
698
+ )
699
+ # scale the raw mask logits with a temperature before applying sigmoid
700
+ binarize = self.binarize_mask_from_pts_for_mem_enc and is_mask_from_pts
701
+ if binarize and not self.training:
702
+ mask_for_mem = (pred_masks_high_res > 0).float()
703
+ else:
704
+ # apply sigmoid on the raw mask logits to turn them into range (0, 1)
705
+ mask_for_mem = torch.sigmoid(pred_masks_high_res)
706
+ # apply scale and bias terms to the sigmoid probabilities
707
+ if self.sigmoid_scale_for_mem_enc != 1.0:
708
+ mask_for_mem = mask_for_mem * self.sigmoid_scale_for_mem_enc
709
+ if self.sigmoid_bias_for_mem_enc != 0.0:
710
+ mask_for_mem = mask_for_mem + self.sigmoid_bias_for_mem_enc
711
+ maskmem_out = self.memory_encoder(
712
+ pix_feat, mask_for_mem, skip_mask_sigmoid=True # sigmoid already applied
713
+ )
714
+ maskmem_features = maskmem_out["vision_features"]
715
+ maskmem_pos_enc = maskmem_out["vision_pos_enc"]
716
+ # add a no-object embedding to the spatial memory to indicate that the frame
717
+ # is predicted to be occluded (i.e. no object is appearing in the frame)
718
+ if self.no_obj_embed_spatial is not None:
719
+ is_obj_appearing = (object_score_logits > 0).float()
720
+ maskmem_features += (
721
+ 1 - is_obj_appearing[..., None, None]
722
+ ) * self.no_obj_embed_spatial[..., None, None].expand(
723
+ *maskmem_features.shape
724
+ )
725
+
726
+ return maskmem_features, maskmem_pos_enc
727
+
728
+ def _track_step(
729
+ self,
730
+ frame_idx,
731
+ is_init_cond_frame,
732
+ current_vision_feats,
733
+ current_vision_pos_embeds,
734
+ feat_sizes,
735
+ point_inputs,
736
+ mask_inputs,
737
+ output_dict,
738
+ num_frames,
739
+ track_in_reverse,
740
+ prev_sam_mask_logits,
741
+ ):
742
+ current_out = {"point_inputs": point_inputs, "mask_inputs": mask_inputs}
743
+ # High-resolution feature maps for the SAM head, reshape (HW)BC => BCHW
744
+ if len(current_vision_feats) > 1:
745
+ high_res_features = [
746
+ x.permute(1, 2, 0).view(x.size(1), x.size(2), *s)
747
+ for x, s in zip(current_vision_feats[:-1], feat_sizes[:-1])
748
+ ]
749
+ else:
750
+ high_res_features = None
751
+ if mask_inputs is not None and self.use_mask_input_as_output_without_sam:
752
+ # When use_mask_input_as_output_without_sam=True, we directly output the mask input
753
+ # (see it as a GT mask) without using a SAM prompt encoder + mask decoder.
754
+ pix_feat = current_vision_feats[-1].permute(1, 2, 0)
755
+ pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1])
756
+ sam_outputs = self._use_mask_as_output(
757
+ pix_feat, high_res_features, mask_inputs
758
+ )
759
+ else:
760
+ # fused the visual feature with previous memory features in the memory bank
761
+ pix_feat = self._prepare_memory_conditioned_features(
762
+ frame_idx=frame_idx,
763
+ is_init_cond_frame=is_init_cond_frame,
764
+ current_vision_feats=current_vision_feats[-1:],
765
+ current_vision_pos_embeds=current_vision_pos_embeds[-1:],
766
+ feat_sizes=feat_sizes[-1:],
767
+ output_dict=output_dict,
768
+ num_frames=num_frames,
769
+ track_in_reverse=track_in_reverse,
770
+ )
771
+ # apply SAM-style segmentation head
772
+ # here we might feed previously predicted low-res SAM mask logits into the SAM mask decoder,
773
+ # e.g. in demo where such logits come from earlier interaction instead of correction sampling
774
+ # (in this case, any `mask_inputs` shouldn't reach here as they are sent to _use_mask_as_output instead)
775
+ if prev_sam_mask_logits is not None:
776
+ assert point_inputs is not None and mask_inputs is None
777
+ mask_inputs = prev_sam_mask_logits
778
+ multimask_output = self._use_multimask(is_init_cond_frame, point_inputs)
779
+ sam_outputs = self._forward_sam_heads(
780
+ backbone_features=pix_feat,
781
+ point_inputs=point_inputs,
782
+ mask_inputs=mask_inputs,
783
+ high_res_features=high_res_features,
784
+ multimask_output=multimask_output,
785
+ )
786
+
787
+ return current_out, sam_outputs, high_res_features, pix_feat
788
+
789
+ def _encode_memory_in_output(
790
+ self,
791
+ current_vision_feats,
792
+ feat_sizes,
793
+ point_inputs,
794
+ run_mem_encoder,
795
+ high_res_masks,
796
+ object_score_logits,
797
+ current_out,
798
+ ):
799
+ if run_mem_encoder and self.num_maskmem > 0:
800
+ high_res_masks_for_mem_enc = high_res_masks
801
+ maskmem_features, maskmem_pos_enc = self._encode_new_memory(
802
+ current_vision_feats=current_vision_feats,
803
+ feat_sizes=feat_sizes,
804
+ pred_masks_high_res=high_res_masks_for_mem_enc,
805
+ object_score_logits=object_score_logits,
806
+ is_mask_from_pts=(point_inputs is not None),
807
+ )
808
+ current_out["maskmem_features"] = maskmem_features
809
+ current_out["maskmem_pos_enc"] = maskmem_pos_enc
810
+ else:
811
+ current_out["maskmem_features"] = None
812
+ current_out["maskmem_pos_enc"] = None
813
+
814
+ def track_step(
815
+ self,
816
+ frame_idx,
817
+ is_init_cond_frame,
818
+ current_vision_feats,
819
+ current_vision_pos_embeds,
820
+ feat_sizes,
821
+ point_inputs,
822
+ mask_inputs,
823
+ output_dict,
824
+ num_frames,
825
+ track_in_reverse=False, # tracking in reverse time order (for demo usage)
826
+ # Whether to run the memory encoder on the predicted masks. Sometimes we might want
827
+ # to skip the memory encoder with `run_mem_encoder=False`. For example,
828
+ # in demo we might call `track_step` multiple times for each user click,
829
+ # and only encode the memory when the user finalizes their clicks. And in ablation
830
+ # settings like SAM training on static images, we don't need the memory encoder.
831
+ run_mem_encoder=True,
832
+ # The previously predicted SAM mask logits (which can be fed together with new clicks in demo).
833
+ prev_sam_mask_logits=None,
834
+ ):
835
+ current_out, sam_outputs, _, _ = self._track_step(
836
+ frame_idx,
837
+ is_init_cond_frame,
838
+ current_vision_feats,
839
+ current_vision_pos_embeds,
840
+ feat_sizes,
841
+ point_inputs,
842
+ mask_inputs,
843
+ output_dict,
844
+ num_frames,
845
+ track_in_reverse,
846
+ prev_sam_mask_logits,
847
+ )
848
+
849
+ (
850
+ _,
851
+ _,
852
+ _,
853
+ low_res_masks,
854
+ high_res_masks,
855
+ obj_ptr,
856
+ object_score_logits,
857
+ ) = sam_outputs
858
+
859
+ current_out["pred_masks"] = low_res_masks
860
+ current_out["pred_masks_high_res"] = high_res_masks
861
+ current_out["obj_ptr"] = obj_ptr
862
+ if not self.training:
863
+ # Only add this in inference (to avoid unused param in activation checkpointing;
864
+ # it's mainly used in the demo to encode spatial memories w/ consolidated masks)
865
+ current_out["object_score_logits"] = object_score_logits
866
+
867
+ # Finally run the memory encoder on the predicted mask to encode
868
+ # it into a new memory feature (that can be used in future frames)
869
+ self._encode_memory_in_output(
870
+ current_vision_feats,
871
+ feat_sizes,
872
+ point_inputs,
873
+ run_mem_encoder,
874
+ high_res_masks,
875
+ object_score_logits,
876
+ current_out,
877
+ )
878
+
879
+ return current_out
880
+
881
+ def _use_multimask(self, is_init_cond_frame, point_inputs):
882
+ """Whether to use multimask output in the SAM head."""
883
+ num_pts = 0 if point_inputs is None else point_inputs["point_labels"].size(1)
884
+ multimask_output = (
885
+ self.multimask_output_in_sam
886
+ and (is_init_cond_frame or self.multimask_output_for_tracking)
887
+ and (self.multimask_min_pt_num <= num_pts <= self.multimask_max_pt_num)
888
+ )
889
+ return multimask_output
890
+
891
+ def _apply_non_overlapping_constraints(self, pred_masks):
892
+ """
893
+ Apply non-overlapping constraints to the object scores in pred_masks. Here we
894
+ keep only the highest scoring object at each spatial location in pred_masks.
895
+ """
896
+ batch_size = pred_masks.size(0)
897
+ if batch_size == 1:
898
+ return pred_masks
899
+
900
+ device = pred_masks.device
901
+ # "max_obj_inds": object index of the object with the highest score at each location
902
+ max_obj_inds = torch.argmax(pred_masks, dim=0, keepdim=True)
903
+ # "batch_obj_inds": object index of each object slice (along dim 0) in `pred_masks`
904
+ batch_obj_inds = torch.arange(batch_size, device=device)[:, None, None, None]
905
+ keep = max_obj_inds == batch_obj_inds
906
+ # suppress overlapping regions' scores below -10.0 so that the foreground regions
907
+ # don't overlap (here sigmoid(-10.0)=4.5398e-05)
908
+ pred_masks = torch.where(keep, pred_masks, torch.clamp(pred_masks, max=-10.0))
909
+ return pred_masks
sam2/modeling/sam2_utils.py ADDED
@@ -0,0 +1,323 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+
8
+ import copy
9
+ from typing import Tuple
10
+
11
+ import numpy as np
12
+ import torch
13
+ import torch.nn as nn
14
+ import torch.nn.functional as F
15
+
16
+ from sam2.utils.misc import mask_to_box
17
+
18
+
19
+ def select_closest_cond_frames(frame_idx, cond_frame_outputs, max_cond_frame_num):
20
+ """
21
+ Select up to `max_cond_frame_num` conditioning frames from `cond_frame_outputs`
22
+ that are temporally closest to the current frame at `frame_idx`. Here, we take
23
+ - a) the closest conditioning frame before `frame_idx` (if any);
24
+ - b) the closest conditioning frame after `frame_idx` (if any);
25
+ - c) any other temporally closest conditioning frames until reaching a total
26
+ of `max_cond_frame_num` conditioning frames.
27
+
28
+ Outputs:
29
+ - selected_outputs: selected items (keys & values) from `cond_frame_outputs`.
30
+ - unselected_outputs: items (keys & values) not selected in `cond_frame_outputs`.
31
+ """
32
+ if max_cond_frame_num == -1 or len(cond_frame_outputs) <= max_cond_frame_num:
33
+ selected_outputs = cond_frame_outputs
34
+ unselected_outputs = {}
35
+ else:
36
+ assert max_cond_frame_num >= 2, "we should allow using 2+ conditioning frames"
37
+ selected_outputs = {}
38
+
39
+ # the closest conditioning frame before `frame_idx` (if any)
40
+ idx_before = max((t for t in cond_frame_outputs if t < frame_idx), default=None)
41
+ if idx_before is not None:
42
+ selected_outputs[idx_before] = cond_frame_outputs[idx_before]
43
+
44
+ # the closest conditioning frame after `frame_idx` (if any)
45
+ idx_after = min((t for t in cond_frame_outputs if t >= frame_idx), default=None)
46
+ if idx_after is not None:
47
+ selected_outputs[idx_after] = cond_frame_outputs[idx_after]
48
+
49
+ # add other temporally closest conditioning frames until reaching a total
50
+ # of `max_cond_frame_num` conditioning frames.
51
+ num_remain = max_cond_frame_num - len(selected_outputs)
52
+ inds_remain = sorted(
53
+ (t for t in cond_frame_outputs if t not in selected_outputs),
54
+ key=lambda x: abs(x - frame_idx),
55
+ )[:num_remain]
56
+ selected_outputs.update((t, cond_frame_outputs[t]) for t in inds_remain)
57
+ unselected_outputs = {
58
+ t: v for t, v in cond_frame_outputs.items() if t not in selected_outputs
59
+ }
60
+
61
+ return selected_outputs, unselected_outputs
62
+
63
+
64
+ def get_1d_sine_pe(pos_inds, dim, temperature=10000):
65
+ """
66
+ Get 1D sine positional embedding as in the original Transformer paper.
67
+ """
68
+ pe_dim = dim // 2
69
+ dim_t = torch.arange(pe_dim, dtype=torch.float32, device=pos_inds.device)
70
+ dim_t = temperature ** (2 * (dim_t // 2) / pe_dim)
71
+
72
+ pos_embed = pos_inds.unsqueeze(-1) / dim_t
73
+ pos_embed = torch.cat([pos_embed.sin(), pos_embed.cos()], dim=-1)
74
+ return pos_embed
75
+
76
+
77
+ def get_activation_fn(activation):
78
+ """Return an activation function given a string"""
79
+ if activation == "relu":
80
+ return F.relu
81
+ if activation == "gelu":
82
+ return F.gelu
83
+ if activation == "glu":
84
+ return F.glu
85
+ raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
86
+
87
+
88
+ def get_clones(module, N):
89
+ return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
90
+
91
+
92
+ class DropPath(nn.Module):
93
+ # adapted from https://github.com/huggingface/pytorch-image-models/blob/main/timm/layers/drop.py
94
+ def __init__(self, drop_prob=0.0, scale_by_keep=True):
95
+ super(DropPath, self).__init__()
96
+ self.drop_prob = drop_prob
97
+ self.scale_by_keep = scale_by_keep
98
+
99
+ def forward(self, x):
100
+ if self.drop_prob == 0.0 or not self.training:
101
+ return x
102
+ keep_prob = 1 - self.drop_prob
103
+ shape = (x.shape[0],) + (1,) * (x.ndim - 1)
104
+ random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
105
+ if keep_prob > 0.0 and self.scale_by_keep:
106
+ random_tensor.div_(keep_prob)
107
+ return x * random_tensor
108
+
109
+
110
+ # Lightly adapted from
111
+ # https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
112
+ class MLP(nn.Module):
113
+ def __init__(
114
+ self,
115
+ input_dim: int,
116
+ hidden_dim: int,
117
+ output_dim: int,
118
+ num_layers: int,
119
+ activation: nn.Module = nn.ReLU,
120
+ sigmoid_output: bool = False,
121
+ ) -> None:
122
+ super().__init__()
123
+ self.num_layers = num_layers
124
+ h = [hidden_dim] * (num_layers - 1)
125
+ self.layers = nn.ModuleList(
126
+ nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
127
+ )
128
+ self.sigmoid_output = sigmoid_output
129
+ self.act = activation()
130
+
131
+ def forward(self, x):
132
+ for i, layer in enumerate(self.layers):
133
+ x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x)
134
+ if self.sigmoid_output:
135
+ x = F.sigmoid(x)
136
+ return x
137
+
138
+
139
+ # From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
140
+ # Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
141
+ class LayerNorm2d(nn.Module):
142
+ def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
143
+ super().__init__()
144
+ self.weight = nn.Parameter(torch.ones(num_channels))
145
+ self.bias = nn.Parameter(torch.zeros(num_channels))
146
+ self.eps = eps
147
+
148
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
149
+ u = x.mean(1, keepdim=True)
150
+ s = (x - u).pow(2).mean(1, keepdim=True)
151
+ x = (x - u) / torch.sqrt(s + self.eps)
152
+ x = self.weight[:, None, None] * x + self.bias[:, None, None]
153
+ return x
154
+
155
+
156
+ def sample_box_points(
157
+ masks: torch.Tensor,
158
+ noise: float = 0.1, # SAM default
159
+ noise_bound: int = 20, # SAM default
160
+ top_left_label: int = 2,
161
+ bottom_right_label: int = 3,
162
+ ) -> Tuple[np.array, np.array]:
163
+ """
164
+ Sample a noised version of the top left and bottom right corners of a given `bbox`
165
+
166
+ Inputs:
167
+ - masks: [B, 1, H,W] boxes, dtype=torch.Tensor
168
+ - noise: noise as a fraction of box width and height, dtype=float
169
+ - noise_bound: maximum amount of noise (in pure pixesl), dtype=int
170
+
171
+ Returns:
172
+ - box_coords: [B, num_pt, 2], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.float
173
+ - box_labels: [B, num_pt], label 2 is reserverd for top left and 3 for bottom right corners, dtype=torch.int32
174
+ """
175
+ device = masks.device
176
+ box_coords = mask_to_box(masks)
177
+ B, _, H, W = masks.shape
178
+ box_labels = torch.tensor(
179
+ [top_left_label, bottom_right_label], dtype=torch.int, device=device
180
+ ).repeat(B)
181
+ if noise > 0.0:
182
+ if not isinstance(noise_bound, torch.Tensor):
183
+ noise_bound = torch.tensor(noise_bound, device=device)
184
+ bbox_w = box_coords[..., 2] - box_coords[..., 0]
185
+ bbox_h = box_coords[..., 3] - box_coords[..., 1]
186
+ max_dx = torch.min(bbox_w * noise, noise_bound)
187
+ max_dy = torch.min(bbox_h * noise, noise_bound)
188
+ box_noise = 2 * torch.rand(B, 1, 4, device=device) - 1
189
+ box_noise = box_noise * torch.stack((max_dx, max_dy, max_dx, max_dy), dim=-1)
190
+
191
+ box_coords = box_coords + box_noise
192
+ img_bounds = (
193
+ torch.tensor([W, H, W, H], device=device) - 1
194
+ ) # uncentered pixel coords
195
+ box_coords.clamp_(torch.zeros_like(img_bounds), img_bounds) # In place clamping
196
+
197
+ box_coords = box_coords.reshape(-1, 2, 2) # always 2 points
198
+ box_labels = box_labels.reshape(-1, 2)
199
+ return box_coords, box_labels
200
+
201
+
202
+ def sample_random_points_from_errors(gt_masks, pred_masks, num_pt=1):
203
+ """
204
+ Sample `num_pt` random points (along with their labels) independently from the error regions.
205
+
206
+ Inputs:
207
+ - gt_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool
208
+ - pred_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool or None
209
+ - num_pt: int, number of points to sample independently for each of the B error maps
210
+
211
+ Outputs:
212
+ - points: [B, num_pt, 2], dtype=torch.float, contains (x, y) coordinates of each sampled point
213
+ - labels: [B, num_pt], dtype=torch.int32, where 1 means positive clicks and 0 means
214
+ negative clicks
215
+ """
216
+ if pred_masks is None: # if pred_masks is not provided, treat it as empty
217
+ pred_masks = torch.zeros_like(gt_masks)
218
+ assert gt_masks.dtype == torch.bool and gt_masks.size(1) == 1
219
+ assert pred_masks.dtype == torch.bool and pred_masks.shape == gt_masks.shape
220
+ assert num_pt >= 0
221
+
222
+ B, _, H_im, W_im = gt_masks.shape
223
+ device = gt_masks.device
224
+
225
+ # false positive region, a new point sampled in this region should have
226
+ # negative label to correct the FP error
227
+ fp_masks = ~gt_masks & pred_masks
228
+ # false negative region, a new point sampled in this region should have
229
+ # positive label to correct the FN error
230
+ fn_masks = gt_masks & ~pred_masks
231
+ # whether the prediction completely match the ground-truth on each mask
232
+ all_correct = torch.all((gt_masks == pred_masks).flatten(2), dim=2)
233
+ all_correct = all_correct[..., None, None]
234
+
235
+ # channel 0 is FP map, while channel 1 is FN map
236
+ pts_noise = torch.rand(B, num_pt, H_im, W_im, 2, device=device)
237
+ # sample a negative new click from FP region or a positive new click
238
+ # from FN region, depend on where the maximum falls,
239
+ # and in case the predictions are all correct (no FP or FN), we just
240
+ # sample a negative click from the background region
241
+ pts_noise[..., 0] *= fp_masks | (all_correct & ~gt_masks)
242
+ pts_noise[..., 1] *= fn_masks
243
+ pts_idx = pts_noise.flatten(2).argmax(dim=2)
244
+ labels = (pts_idx % 2).to(torch.int32)
245
+ pts_idx = pts_idx // 2
246
+ pts_x = pts_idx % W_im
247
+ pts_y = pts_idx // W_im
248
+ points = torch.stack([pts_x, pts_y], dim=2).to(torch.float)
249
+ return points, labels
250
+
251
+
252
+ def sample_one_point_from_error_center(gt_masks, pred_masks, padding=True):
253
+ """
254
+ Sample 1 random point (along with its label) from the center of each error region,
255
+ that is, the point with the largest distance to the boundary of each error region.
256
+ This is the RITM sampling method from https://github.com/saic-vul/ritm_interactive_segmentation/blob/master/isegm/inference/clicker.py
257
+
258
+ Inputs:
259
+ - gt_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool
260
+ - pred_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool or None
261
+ - padding: if True, pad with boundary of 1 px for distance transform
262
+
263
+ Outputs:
264
+ - points: [B, 1, 2], dtype=torch.float, contains (x, y) coordinates of each sampled point
265
+ - labels: [B, 1], dtype=torch.int32, where 1 means positive clicks and 0 means negative clicks
266
+ """
267
+ import cv2
268
+
269
+ if pred_masks is None:
270
+ pred_masks = torch.zeros_like(gt_masks)
271
+ assert gt_masks.dtype == torch.bool and gt_masks.size(1) == 1
272
+ assert pred_masks.dtype == torch.bool and pred_masks.shape == gt_masks.shape
273
+
274
+ B, _, _, W_im = gt_masks.shape
275
+ device = gt_masks.device
276
+
277
+ # false positive region, a new point sampled in this region should have
278
+ # negative label to correct the FP error
279
+ fp_masks = ~gt_masks & pred_masks
280
+ # false negative region, a new point sampled in this region should have
281
+ # positive label to correct the FN error
282
+ fn_masks = gt_masks & ~pred_masks
283
+
284
+ fp_masks = fp_masks.cpu().numpy()
285
+ fn_masks = fn_masks.cpu().numpy()
286
+ points = torch.zeros(B, 1, 2, dtype=torch.float)
287
+ labels = torch.ones(B, 1, dtype=torch.int32)
288
+ for b in range(B):
289
+ fn_mask = fn_masks[b, 0]
290
+ fp_mask = fp_masks[b, 0]
291
+ if padding:
292
+ fn_mask = np.pad(fn_mask, ((1, 1), (1, 1)), "constant")
293
+ fp_mask = np.pad(fp_mask, ((1, 1), (1, 1)), "constant")
294
+ # compute the distance of each point in FN/FP region to its boundary
295
+ fn_mask_dt = cv2.distanceTransform(fn_mask.astype(np.uint8), cv2.DIST_L2, 0)
296
+ fp_mask_dt = cv2.distanceTransform(fp_mask.astype(np.uint8), cv2.DIST_L2, 0)
297
+ if padding:
298
+ fn_mask_dt = fn_mask_dt[1:-1, 1:-1]
299
+ fp_mask_dt = fp_mask_dt[1:-1, 1:-1]
300
+
301
+ # take the point in FN/FP region with the largest distance to its boundary
302
+ fn_mask_dt_flat = fn_mask_dt.reshape(-1)
303
+ fp_mask_dt_flat = fp_mask_dt.reshape(-1)
304
+ fn_argmax = np.argmax(fn_mask_dt_flat)
305
+ fp_argmax = np.argmax(fp_mask_dt_flat)
306
+ is_positive = fn_mask_dt_flat[fn_argmax] > fp_mask_dt_flat[fp_argmax]
307
+ pt_idx = fn_argmax if is_positive else fp_argmax
308
+ points[b, 0, 0] = pt_idx % W_im # x
309
+ points[b, 0, 1] = pt_idx // W_im # y
310
+ labels[b, 0] = int(is_positive)
311
+
312
+ points = points.to(device)
313
+ labels = labels.to(device)
314
+ return points, labels
315
+
316
+
317
+ def get_next_point(gt_masks, pred_masks, method):
318
+ if method == "uniform":
319
+ return sample_random_points_from_errors(gt_masks, pred_masks)
320
+ elif method == "center":
321
+ return sample_one_point_from_error_center(gt_masks, pred_masks)
322
+ else:
323
+ raise ValueError(f"unknown sampling method {method}")
sam2/sam2.1_hiera_l.yaml ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+
3
+ # Model
4
+ model:
5
+ _target_: sam2.modeling.sam2_base.SAM2Base
6
+ image_encoder:
7
+ _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
8
+ scalp: 1
9
+ trunk:
10
+ _target_: sam2.modeling.backbones.hieradet.Hiera
11
+ embed_dim: 144
12
+ num_heads: 2
13
+ stages: [2, 6, 36, 4]
14
+ global_att_blocks: [23, 33, 43]
15
+ window_pos_embed_bkg_spatial_size: [7, 7]
16
+ window_spec: [8, 4, 16, 8]
17
+ neck:
18
+ _target_: sam2.modeling.backbones.image_encoder.FpnNeck
19
+ position_encoding:
20
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
21
+ num_pos_feats: 256
22
+ normalize: true
23
+ scale: null
24
+ temperature: 10000
25
+ d_model: 256
26
+ backbone_channel_list: [1152, 576, 288, 144]
27
+ fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
28
+ fpn_interp_model: nearest
29
+
30
+ memory_attention:
31
+ _target_: sam2.modeling.memory_attention.MemoryAttention
32
+ d_model: 256
33
+ pos_enc_at_input: true
34
+ layer:
35
+ _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
36
+ activation: relu
37
+ dim_feedforward: 2048
38
+ dropout: 0.1
39
+ pos_enc_at_attn: false
40
+ self_attention:
41
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
42
+ rope_theta: 10000.0
43
+ feat_sizes: [64, 64]
44
+ embedding_dim: 256
45
+ num_heads: 1
46
+ downsample_rate: 1
47
+ dropout: 0.1
48
+ d_model: 256
49
+ pos_enc_at_cross_attn_keys: true
50
+ pos_enc_at_cross_attn_queries: false
51
+ cross_attention:
52
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
53
+ rope_theta: 10000.0
54
+ feat_sizes: [64, 64]
55
+ rope_k_repeat: True
56
+ embedding_dim: 256
57
+ num_heads: 1
58
+ downsample_rate: 1
59
+ dropout: 0.1
60
+ kv_in_dim: 64
61
+ num_layers: 4
62
+
63
+ memory_encoder:
64
+ _target_: sam2.modeling.memory_encoder.MemoryEncoder
65
+ out_dim: 64
66
+ position_encoding:
67
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
68
+ num_pos_feats: 64
69
+ normalize: true
70
+ scale: null
71
+ temperature: 10000
72
+ mask_downsampler:
73
+ _target_: sam2.modeling.memory_encoder.MaskDownSampler
74
+ kernel_size: 3
75
+ stride: 2
76
+ padding: 1
77
+ fuser:
78
+ _target_: sam2.modeling.memory_encoder.Fuser
79
+ layer:
80
+ _target_: sam2.modeling.memory_encoder.CXBlock
81
+ dim: 256
82
+ kernel_size: 7
83
+ padding: 3
84
+ layer_scale_init_value: 1e-6
85
+ use_dwconv: True # depth-wise convs
86
+ num_layers: 2
87
+
88
+ num_maskmem: 7
89
+ image_size: 1024
90
+ # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
91
+ sigmoid_scale_for_mem_enc: 20.0
92
+ sigmoid_bias_for_mem_enc: -10.0
93
+ use_mask_input_as_output_without_sam: true
94
+ # Memory
95
+ directly_add_no_mem_embed: true
96
+ no_obj_embed_spatial: true
97
+ # use high-resolution feature map in the SAM mask decoder
98
+ use_high_res_features_in_sam: true
99
+ # output 3 masks on the first click on initial conditioning frames
100
+ multimask_output_in_sam: true
101
+ # SAM heads
102
+ iou_prediction_use_sigmoid: True
103
+ # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
104
+ use_obj_ptrs_in_encoder: true
105
+ add_tpos_enc_to_obj_ptrs: true
106
+ proj_tpos_enc_in_obj_ptrs: true
107
+ use_signed_tpos_enc_to_obj_ptrs: true
108
+ only_obj_ptrs_in_the_past_for_eval: true
109
+ # object occlusion prediction
110
+ pred_obj_scores: true
111
+ pred_obj_scores_mlp: true
112
+ fixed_no_obj_ptr: true
113
+ # multimask tracking settings
114
+ multimask_output_for_tracking: true
115
+ use_multimask_token_for_obj_ptr: true
116
+ multimask_min_pt_num: 0
117
+ multimask_max_pt_num: 1
118
+ use_mlp_for_obj_ptr_proj: true
119
+ # Compilation flag
120
+ compile_image_encoder: False
sam2/sam2_image_predictor.py ADDED
@@ -0,0 +1,466 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import logging
8
+
9
+ from typing import List, Optional, Tuple, Union
10
+
11
+ import numpy as np
12
+ import torch
13
+ from PIL.Image import Image
14
+
15
+ from sam2.modeling.sam2_base import SAM2Base
16
+
17
+ from sam2.utils.transforms import SAM2Transforms
18
+
19
+
20
+ class SAM2ImagePredictor:
21
+ def __init__(
22
+ self,
23
+ sam_model: SAM2Base,
24
+ mask_threshold=0.0,
25
+ max_hole_area=0.0,
26
+ max_sprinkle_area=0.0,
27
+ **kwargs,
28
+ ) -> None:
29
+ """
30
+ Uses SAM-2 to calculate the image embedding for an image, and then
31
+ allow repeated, efficient mask prediction given prompts.
32
+
33
+ Arguments:
34
+ sam_model (Sam-2): The model to use for mask prediction.
35
+ mask_threshold (float): The threshold to use when converting mask logits
36
+ to binary masks. Masks are thresholded at 0 by default.
37
+ max_hole_area (int): If max_hole_area > 0, we fill small holes in up to
38
+ the maximum area of max_hole_area in low_res_masks.
39
+ max_sprinkle_area (int): If max_sprinkle_area > 0, we remove small sprinkles up to
40
+ the maximum area of max_sprinkle_area in low_res_masks.
41
+ """
42
+ super().__init__()
43
+ self.model = sam_model
44
+ self._transforms = SAM2Transforms(
45
+ resolution=self.model.image_size,
46
+ mask_threshold=mask_threshold,
47
+ max_hole_area=max_hole_area,
48
+ max_sprinkle_area=max_sprinkle_area,
49
+ )
50
+
51
+ # Predictor state
52
+ self._is_image_set = False
53
+ self._features = None
54
+ self._orig_hw = None
55
+ # Whether the predictor is set for single image or a batch of images
56
+ self._is_batch = False
57
+
58
+ # Predictor config
59
+ self.mask_threshold = mask_threshold
60
+
61
+ # Spatial dim for backbone feature maps
62
+ self._bb_feat_sizes = [
63
+ (256, 256),
64
+ (128, 128),
65
+ (64, 64),
66
+ ]
67
+
68
+ @classmethod
69
+ def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2ImagePredictor":
70
+ """
71
+ Load a pretrained model from the Hugging Face hub.
72
+
73
+ Arguments:
74
+ model_id (str): The Hugging Face repository ID.
75
+ **kwargs: Additional arguments to pass to the model constructor.
76
+
77
+ Returns:
78
+ (SAM2ImagePredictor): The loaded model.
79
+ """
80
+ from sam2.build_sam import build_sam2_hf
81
+
82
+ sam_model = build_sam2_hf(model_id, **kwargs)
83
+ return cls(sam_model, **kwargs)
84
+
85
+ @torch.no_grad()
86
+ def set_image(
87
+ self,
88
+ image: Union[np.ndarray, Image],
89
+ ) -> None:
90
+ """
91
+ Calculates the image embeddings for the provided image, allowing
92
+ masks to be predicted with the 'predict' method.
93
+
94
+ Arguments:
95
+ image (np.ndarray or PIL Image): The input image to embed in RGB format. The image should be in HWC format if np.ndarray, or WHC format if PIL Image
96
+ with pixel values in [0, 255].
97
+ image_format (str): The color format of the image, in ['RGB', 'BGR'].
98
+ """
99
+ self.reset_predictor()
100
+ # Transform the image to the form expected by the model
101
+ if isinstance(image, np.ndarray):
102
+ logging.info("For numpy array image, we assume (HxWxC) format")
103
+ self._orig_hw = [image.shape[:2]]
104
+ elif isinstance(image, Image):
105
+ w, h = image.size
106
+ self._orig_hw = [(h, w)]
107
+ else:
108
+ raise NotImplementedError("Image format not supported")
109
+
110
+ input_image = self._transforms(image)
111
+ input_image = input_image[None, ...].to(self.device)
112
+
113
+ assert (
114
+ len(input_image.shape) == 4 and input_image.shape[1] == 3
115
+ ), f"input_image must be of size 1x3xHxW, got {input_image.shape}"
116
+ logging.info("Computing image embeddings for the provided image...")
117
+ backbone_out = self.model.forward_image(input_image)
118
+ _, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out)
119
+ # Add no_mem_embed, which is added to the lowest rest feat. map during training on videos
120
+ if self.model.directly_add_no_mem_embed:
121
+ vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed
122
+
123
+ feats = [
124
+ feat.permute(1, 2, 0).view(1, -1, *feat_size)
125
+ for feat, feat_size in zip(vision_feats[::-1], self._bb_feat_sizes[::-1])
126
+ ][::-1]
127
+ self._features = {"image_embed": feats[-1], "high_res_feats": feats[:-1]}
128
+ self._is_image_set = True
129
+ logging.info("Image embeddings computed.")
130
+
131
+ @torch.no_grad()
132
+ def set_image_batch(
133
+ self,
134
+ image_list: List[Union[np.ndarray]],
135
+ ) -> None:
136
+ """
137
+ Calculates the image embeddings for the provided image batch, allowing
138
+ masks to be predicted with the 'predict_batch' method.
139
+
140
+ Arguments:
141
+ image_list (List[np.ndarray]): The input images to embed in RGB format. The image should be in HWC format if np.ndarray
142
+ with pixel values in [0, 255].
143
+ """
144
+ self.reset_predictor()
145
+ assert isinstance(image_list, list)
146
+ self._orig_hw = []
147
+ for image in image_list:
148
+ assert isinstance(
149
+ image, np.ndarray
150
+ ), "Images are expected to be an np.ndarray in RGB format, and of shape HWC"
151
+ self._orig_hw.append(image.shape[:2])
152
+ # Transform the image to the form expected by the model
153
+ img_batch = self._transforms.forward_batch(image_list)
154
+ img_batch = img_batch.to(self.device)
155
+ batch_size = img_batch.shape[0]
156
+ assert (
157
+ len(img_batch.shape) == 4 and img_batch.shape[1] == 3
158
+ ), f"img_batch must be of size Bx3xHxW, got {img_batch.shape}"
159
+ logging.info("Computing image embeddings for the provided images...")
160
+ backbone_out = self.model.forward_image(img_batch)
161
+ _, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out)
162
+ # Add no_mem_embed, which is added to the lowest rest feat. map during training on videos
163
+ if self.model.directly_add_no_mem_embed:
164
+ vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed
165
+
166
+ feats = [
167
+ feat.permute(1, 2, 0).view(batch_size, -1, *feat_size)
168
+ for feat, feat_size in zip(vision_feats[::-1], self._bb_feat_sizes[::-1])
169
+ ][::-1]
170
+ self._features = {"image_embed": feats[-1], "high_res_feats": feats[:-1]}
171
+ self._is_image_set = True
172
+ self._is_batch = True
173
+ logging.info("Image embeddings computed.")
174
+
175
+ def predict_batch(
176
+ self,
177
+ point_coords_batch: List[np.ndarray] = None,
178
+ point_labels_batch: List[np.ndarray] = None,
179
+ box_batch: List[np.ndarray] = None,
180
+ mask_input_batch: List[np.ndarray] = None,
181
+ multimask_output: bool = True,
182
+ return_logits: bool = False,
183
+ normalize_coords=True,
184
+ ) -> Tuple[List[np.ndarray], List[np.ndarray], List[np.ndarray]]:
185
+ """This function is very similar to predict(...), however it is used for batched mode, when the model is expected to generate predictions on multiple images.
186
+ It returns a tuple of lists of masks, ious, and low_res_masks_logits.
187
+ """
188
+ assert self._is_batch, "This function should only be used when in batched mode"
189
+ if not self._is_image_set:
190
+ raise RuntimeError(
191
+ "An image must be set with .set_image_batch(...) before mask prediction."
192
+ )
193
+ num_images = len(self._features["image_embed"])
194
+ all_masks = []
195
+ all_ious = []
196
+ all_low_res_masks = []
197
+ for img_idx in range(num_images):
198
+ # Transform input prompts
199
+ point_coords = (
200
+ point_coords_batch[img_idx] if point_coords_batch is not None else None
201
+ )
202
+ point_labels = (
203
+ point_labels_batch[img_idx] if point_labels_batch is not None else None
204
+ )
205
+ box = box_batch[img_idx] if box_batch is not None else None
206
+ mask_input = (
207
+ mask_input_batch[img_idx] if mask_input_batch is not None else None
208
+ )
209
+ mask_input, unnorm_coords, labels, unnorm_box = self._prep_prompts(
210
+ point_coords,
211
+ point_labels,
212
+ box,
213
+ mask_input,
214
+ normalize_coords,
215
+ img_idx=img_idx,
216
+ )
217
+ masks, iou_predictions, low_res_masks = self._predict(
218
+ unnorm_coords,
219
+ labels,
220
+ unnorm_box,
221
+ mask_input,
222
+ multimask_output,
223
+ return_logits=return_logits,
224
+ img_idx=img_idx,
225
+ )
226
+ masks_np = masks.squeeze(0).float().detach().cpu().numpy()
227
+ iou_predictions_np = (
228
+ iou_predictions.squeeze(0).float().detach().cpu().numpy()
229
+ )
230
+ low_res_masks_np = low_res_masks.squeeze(0).float().detach().cpu().numpy()
231
+ all_masks.append(masks_np)
232
+ all_ious.append(iou_predictions_np)
233
+ all_low_res_masks.append(low_res_masks_np)
234
+
235
+ return all_masks, all_ious, all_low_res_masks
236
+
237
+ def predict(
238
+ self,
239
+ point_coords: Optional[np.ndarray] = None,
240
+ point_labels: Optional[np.ndarray] = None,
241
+ box: Optional[np.ndarray] = None,
242
+ mask_input: Optional[np.ndarray] = None,
243
+ multimask_output: bool = True,
244
+ return_logits: bool = False,
245
+ normalize_coords=True,
246
+ ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
247
+ """
248
+ Predict masks for the given input prompts, using the currently set image.
249
+
250
+ Arguments:
251
+ point_coords (np.ndarray or None): A Nx2 array of point prompts to the
252
+ model. Each point is in (X,Y) in pixels.
253
+ point_labels (np.ndarray or None): A length N array of labels for the
254
+ point prompts. 1 indicates a foreground point and 0 indicates a
255
+ background point.
256
+ box (np.ndarray or None): A length 4 array given a box prompt to the
257
+ model, in XYXY format.
258
+ mask_input (np.ndarray): A low resolution mask input to the model, typically
259
+ coming from a previous prediction iteration. Has form 1xHxW, where
260
+ for SAM, H=W=256.
261
+ multimask_output (bool): If true, the model will return three masks.
262
+ For ambiguous input prompts (such as a single click), this will often
263
+ produce better masks than a single prediction. If only a single
264
+ mask is needed, the model's predicted quality score can be used
265
+ to select the best mask. For non-ambiguous prompts, such as multiple
266
+ input prompts, multimask_output=False can give better results.
267
+ return_logits (bool): If true, returns un-thresholded masks logits
268
+ instead of a binary mask.
269
+ normalize_coords (bool): If true, the point coordinates will be normalized to the range [0,1] and point_coords is expected to be wrt. image dimensions.
270
+
271
+ Returns:
272
+ (np.ndarray): The output masks in CxHxW format, where C is the
273
+ number of masks, and (H, W) is the original image size.
274
+ (np.ndarray): An array of length C containing the model's
275
+ predictions for the quality of each mask.
276
+ (np.ndarray): An array of shape CxHxW, where C is the number
277
+ of masks and H=W=256. These low resolution logits can be passed to
278
+ a subsequent iteration as mask input.
279
+ """
280
+ if not self._is_image_set:
281
+ raise RuntimeError(
282
+ "An image must be set with .set_image(...) before mask prediction."
283
+ )
284
+
285
+ # Transform input prompts
286
+
287
+ mask_input, unnorm_coords, labels, unnorm_box = self._prep_prompts(
288
+ point_coords, point_labels, box, mask_input, normalize_coords
289
+ )
290
+
291
+ masks, iou_predictions, low_res_masks = self._predict(
292
+ unnorm_coords,
293
+ labels,
294
+ unnorm_box,
295
+ mask_input,
296
+ multimask_output,
297
+ return_logits=return_logits,
298
+ )
299
+
300
+ masks_np = masks.squeeze(0).float().detach().cpu().numpy()
301
+ iou_predictions_np = iou_predictions.squeeze(0).float().detach().cpu().numpy()
302
+ low_res_masks_np = low_res_masks.squeeze(0).float().detach().cpu().numpy()
303
+ return masks_np, iou_predictions_np, low_res_masks_np
304
+
305
+ def _prep_prompts(
306
+ self, point_coords, point_labels, box, mask_logits, normalize_coords, img_idx=-1
307
+ ):
308
+
309
+ unnorm_coords, labels, unnorm_box, mask_input = None, None, None, None
310
+ if point_coords is not None:
311
+ assert (
312
+ point_labels is not None
313
+ ), "point_labels must be supplied if point_coords is supplied."
314
+ point_coords = torch.as_tensor(
315
+ point_coords, dtype=torch.float, device=self.device
316
+ )
317
+ unnorm_coords = self._transforms.transform_coords(
318
+ point_coords, normalize=normalize_coords, orig_hw=self._orig_hw[img_idx]
319
+ )
320
+ labels = torch.as_tensor(point_labels, dtype=torch.int, device=self.device)
321
+ if len(unnorm_coords.shape) == 2:
322
+ unnorm_coords, labels = unnorm_coords[None, ...], labels[None, ...]
323
+ if box is not None:
324
+ box = torch.as_tensor(box, dtype=torch.float, device=self.device)
325
+ unnorm_box = self._transforms.transform_boxes(
326
+ box, normalize=normalize_coords, orig_hw=self._orig_hw[img_idx]
327
+ ) # Bx2x2
328
+ if mask_logits is not None:
329
+ mask_input = torch.as_tensor(
330
+ mask_logits, dtype=torch.float, device=self.device
331
+ )
332
+ if len(mask_input.shape) == 3:
333
+ mask_input = mask_input[None, :, :, :]
334
+ return mask_input, unnorm_coords, labels, unnorm_box
335
+
336
+ @torch.no_grad()
337
+ def _predict(
338
+ self,
339
+ point_coords: Optional[torch.Tensor],
340
+ point_labels: Optional[torch.Tensor],
341
+ boxes: Optional[torch.Tensor] = None,
342
+ mask_input: Optional[torch.Tensor] = None,
343
+ multimask_output: bool = True,
344
+ return_logits: bool = False,
345
+ img_idx: int = -1,
346
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
347
+ """
348
+ Predict masks for the given input prompts, using the currently set image.
349
+ Input prompts are batched torch tensors and are expected to already be
350
+ transformed to the input frame using SAM2Transforms.
351
+
352
+ Arguments:
353
+ point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the
354
+ model. Each point is in (X,Y) in pixels.
355
+ point_labels (torch.Tensor or None): A BxN array of labels for the
356
+ point prompts. 1 indicates a foreground point and 0 indicates a
357
+ background point.
358
+ boxes (np.ndarray or None): A Bx4 array given a box prompt to the
359
+ model, in XYXY format.
360
+ mask_input (np.ndarray): A low resolution mask input to the model, typically
361
+ coming from a previous prediction iteration. Has form Bx1xHxW, where
362
+ for SAM, H=W=256. Masks returned by a previous iteration of the
363
+ predict method do not need further transformation.
364
+ multimask_output (bool): If true, the model will return three masks.
365
+ For ambiguous input prompts (such as a single click), this will often
366
+ produce better masks than a single prediction. If only a single
367
+ mask is needed, the model's predicted quality score can be used
368
+ to select the best mask. For non-ambiguous prompts, such as multiple
369
+ input prompts, multimask_output=False can give better results.
370
+ return_logits (bool): If true, returns un-thresholded masks logits
371
+ instead of a binary mask.
372
+
373
+ Returns:
374
+ (torch.Tensor): The output masks in BxCxHxW format, where C is the
375
+ number of masks, and (H, W) is the original image size.
376
+ (torch.Tensor): An array of shape BxC containing the model's
377
+ predictions for the quality of each mask.
378
+ (torch.Tensor): An array of shape BxCxHxW, where C is the number
379
+ of masks and H=W=256. These low res logits can be passed to
380
+ a subsequent iteration as mask input.
381
+ """
382
+ if not self._is_image_set:
383
+ raise RuntimeError(
384
+ "An image must be set with .set_image(...) before mask prediction."
385
+ )
386
+
387
+ if point_coords is not None:
388
+ concat_points = (point_coords, point_labels)
389
+ else:
390
+ concat_points = None
391
+
392
+ # Embed prompts
393
+ if boxes is not None:
394
+ box_coords = boxes.reshape(-1, 2, 2)
395
+ box_labels = torch.tensor([[2, 3]], dtype=torch.int, device=boxes.device)
396
+ box_labels = box_labels.repeat(boxes.size(0), 1)
397
+ # we merge "boxes" and "points" into a single "concat_points" input (where
398
+ # boxes are added at the beginning) to sam_prompt_encoder
399
+ if concat_points is not None:
400
+ concat_coords = torch.cat([box_coords, concat_points[0]], dim=1)
401
+ concat_labels = torch.cat([box_labels, concat_points[1]], dim=1)
402
+ concat_points = (concat_coords, concat_labels)
403
+ else:
404
+ concat_points = (box_coords, box_labels)
405
+
406
+ sparse_embeddings, dense_embeddings = self.model.sam_prompt_encoder(
407
+ points=concat_points,
408
+ boxes=None,
409
+ masks=mask_input,
410
+ )
411
+
412
+ # Predict masks
413
+ batched_mode = (
414
+ concat_points is not None and concat_points[0].shape[0] > 1
415
+ ) # multi object prediction
416
+ high_res_features = [
417
+ feat_level[img_idx].unsqueeze(0)
418
+ for feat_level in self._features["high_res_feats"]
419
+ ]
420
+ low_res_masks, iou_predictions, _, _ = self.model.sam_mask_decoder(
421
+ image_embeddings=self._features["image_embed"][img_idx].unsqueeze(0),
422
+ image_pe=self.model.sam_prompt_encoder.get_dense_pe(),
423
+ sparse_prompt_embeddings=sparse_embeddings,
424
+ dense_prompt_embeddings=dense_embeddings,
425
+ multimask_output=multimask_output,
426
+ repeat_image=batched_mode,
427
+ high_res_features=high_res_features,
428
+ )
429
+
430
+ # Upscale the masks to the original image resolution
431
+ masks = self._transforms.postprocess_masks(
432
+ low_res_masks, self._orig_hw[img_idx]
433
+ )
434
+ low_res_masks = torch.clamp(low_res_masks, -32.0, 32.0)
435
+ if not return_logits:
436
+ masks = masks > self.mask_threshold
437
+
438
+ return masks, iou_predictions, low_res_masks
439
+
440
+ def get_image_embedding(self) -> torch.Tensor:
441
+ """
442
+ Returns the image embeddings for the currently set image, with
443
+ shape 1xCxHxW, where C is the embedding dimension and (H,W) are
444
+ the embedding spatial dimension of SAM (typically C=256, H=W=64).
445
+ """
446
+ if not self._is_image_set:
447
+ raise RuntimeError(
448
+ "An image must be set with .set_image(...) to generate an embedding."
449
+ )
450
+ assert (
451
+ self._features is not None
452
+ ), "Features must exist if an image has been set."
453
+ return self._features["image_embed"]
454
+
455
+ @property
456
+ def device(self) -> torch.device:
457
+ return self.model.device
458
+
459
+ def reset_predictor(self) -> None:
460
+ """
461
+ Resets the image embeddings and other state variables.
462
+ """
463
+ self._is_image_set = False
464
+ self._features = None
465
+ self._orig_hw = None
466
+ self._is_batch = False
sam2/sam2_video_predictor.py ADDED
@@ -0,0 +1,1223 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import warnings
8
+ from collections import OrderedDict
9
+
10
+ import torch
11
+ import torch.nn.functional as F
12
+
13
+ from tqdm import tqdm
14
+
15
+ from sam2.modeling.sam2_base import NO_OBJ_SCORE, SAM2Base
16
+ from sam2.utils.misc import concat_points, fill_holes_in_mask_scores, load_video_frames
17
+
18
+
19
+ class SAM2VideoPredictor(SAM2Base):
20
+ """The predictor class to handle user interactions and manage inference states."""
21
+
22
+ def __init__(
23
+ self,
24
+ fill_hole_area=0,
25
+ # whether to apply non-overlapping constraints on the output object masks
26
+ non_overlap_masks=False,
27
+ # whether to clear non-conditioning memory of the surrounding frames (which may contain outdated information) after adding correction clicks;
28
+ # note that this would only apply to *single-object tracking* unless `clear_non_cond_mem_for_multi_obj` is also set to True)
29
+ clear_non_cond_mem_around_input=False,
30
+ # if `add_all_frames_to_correct_as_cond` is True, we also append to the conditioning frame list any frame that receives a later correction click
31
+ # if `add_all_frames_to_correct_as_cond` is False, we conditioning frame list to only use those initial conditioning frames
32
+ add_all_frames_to_correct_as_cond=False,
33
+ **kwargs,
34
+ ):
35
+ super().__init__(**kwargs)
36
+ self.fill_hole_area = fill_hole_area
37
+ self.non_overlap_masks = non_overlap_masks
38
+ self.clear_non_cond_mem_around_input = clear_non_cond_mem_around_input
39
+ self.add_all_frames_to_correct_as_cond = add_all_frames_to_correct_as_cond
40
+
41
+ @torch.inference_mode()
42
+ def init_state(
43
+ self,
44
+ video_path,
45
+ offload_video_to_cpu=False,
46
+ offload_state_to_cpu=False,
47
+ async_loading_frames=False,
48
+ ):
49
+ """Initialize an inference state."""
50
+ compute_device = self.device # device of the model
51
+ images, video_height, video_width = load_video_frames(
52
+ video_path=video_path,
53
+ image_size=self.image_size,
54
+ offload_video_to_cpu=offload_video_to_cpu,
55
+ async_loading_frames=async_loading_frames,
56
+ compute_device=compute_device,
57
+ )
58
+ inference_state = {}
59
+ inference_state["images"] = images
60
+ inference_state["num_frames"] = len(images)
61
+ # whether to offload the video frames to CPU memory
62
+ # turning on this option saves the GPU memory with only a very small overhead
63
+ inference_state["offload_video_to_cpu"] = offload_video_to_cpu
64
+ # whether to offload the inference state to CPU memory
65
+ # turning on this option saves the GPU memory at the cost of a lower tracking fps
66
+ # (e.g. in a test case of 768x768 model, fps dropped from 27 to 24 when tracking one object
67
+ # and from 24 to 21 when tracking two objects)
68
+ inference_state["offload_state_to_cpu"] = offload_state_to_cpu
69
+ # the original video height and width, used for resizing final output scores
70
+ inference_state["video_height"] = video_height
71
+ inference_state["video_width"] = video_width
72
+ inference_state["device"] = compute_device
73
+ if offload_state_to_cpu:
74
+ inference_state["storage_device"] = torch.device("cpu")
75
+ else:
76
+ inference_state["storage_device"] = compute_device
77
+ # inputs on each frame
78
+ inference_state["point_inputs_per_obj"] = {}
79
+ inference_state["mask_inputs_per_obj"] = {}
80
+ # visual features on a small number of recently visited frames for quick interactions
81
+ inference_state["cached_features"] = {}
82
+ # values that don't change across frames (so we only need to hold one copy of them)
83
+ inference_state["constants"] = {}
84
+ # mapping between client-side object id and model-side object index
85
+ inference_state["obj_id_to_idx"] = OrderedDict()
86
+ inference_state["obj_idx_to_id"] = OrderedDict()
87
+ inference_state["obj_ids"] = []
88
+ # Slice (view) of each object tracking results, sharing the same memory with "output_dict"
89
+ inference_state["output_dict_per_obj"] = {}
90
+ # A temporary storage to hold new outputs when user interact with a frame
91
+ # to add clicks or mask (it's merged into "output_dict" before propagation starts)
92
+ inference_state["temp_output_dict_per_obj"] = {}
93
+ # Frames that already holds consolidated outputs from click or mask inputs
94
+ # (we directly use their consolidated outputs during tracking)
95
+ # metadata for each tracking frame (e.g. which direction it's tracked)
96
+ inference_state["frames_tracked_per_obj"] = {}
97
+ # Warm up the visual backbone and cache the image feature on frame 0
98
+ self._get_image_feature(inference_state, frame_idx=0, batch_size=1)
99
+ return inference_state
100
+
101
+ @classmethod
102
+ def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2VideoPredictor":
103
+ """
104
+ Load a pretrained model from the Hugging Face hub.
105
+
106
+ Arguments:
107
+ model_id (str): The Hugging Face repository ID.
108
+ **kwargs: Additional arguments to pass to the model constructor.
109
+
110
+ Returns:
111
+ (SAM2VideoPredictor): The loaded model.
112
+ """
113
+ from sam2.build_sam import build_sam2_video_predictor_hf
114
+
115
+ sam_model = build_sam2_video_predictor_hf(model_id, **kwargs)
116
+ return sam_model
117
+
118
+ def _obj_id_to_idx(self, inference_state, obj_id):
119
+ """Map client-side object id to model-side object index."""
120
+ obj_idx = inference_state["obj_id_to_idx"].get(obj_id, None)
121
+ if obj_idx is not None:
122
+ return obj_idx
123
+
124
+ # We always allow adding new objects (including after tracking starts).
125
+ allow_new_object = True
126
+ if allow_new_object:
127
+ # get the next object slot
128
+ obj_idx = len(inference_state["obj_id_to_idx"])
129
+ inference_state["obj_id_to_idx"][obj_id] = obj_idx
130
+ inference_state["obj_idx_to_id"][obj_idx] = obj_id
131
+ inference_state["obj_ids"] = list(inference_state["obj_id_to_idx"])
132
+ # set up input and output structures for this object
133
+ inference_state["point_inputs_per_obj"][obj_idx] = {}
134
+ inference_state["mask_inputs_per_obj"][obj_idx] = {}
135
+ inference_state["output_dict_per_obj"][obj_idx] = {
136
+ "cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
137
+ "non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
138
+ }
139
+ inference_state["temp_output_dict_per_obj"][obj_idx] = {
140
+ "cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
141
+ "non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
142
+ }
143
+ inference_state["frames_tracked_per_obj"][obj_idx] = {}
144
+ return obj_idx
145
+ else:
146
+ raise RuntimeError(
147
+ f"Cannot add new object id {obj_id} after tracking starts. "
148
+ f"All existing object ids: {inference_state['obj_ids']}. "
149
+ f"Please call 'reset_state' to restart from scratch."
150
+ )
151
+
152
+ def _obj_idx_to_id(self, inference_state, obj_idx):
153
+ """Map model-side object index to client-side object id."""
154
+ return inference_state["obj_idx_to_id"][obj_idx]
155
+
156
+ def _get_obj_num(self, inference_state):
157
+ """Get the total number of unique object ids received so far in this session."""
158
+ return len(inference_state["obj_idx_to_id"])
159
+
160
+ @torch.inference_mode()
161
+ def add_new_points_or_box(
162
+ self,
163
+ inference_state,
164
+ frame_idx,
165
+ obj_id,
166
+ points=None,
167
+ labels=None,
168
+ clear_old_points=True,
169
+ normalize_coords=True,
170
+ box=None,
171
+ ):
172
+ """Add new points to a frame."""
173
+ obj_idx = self._obj_id_to_idx(inference_state, obj_id)
174
+ point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx]
175
+ mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx]
176
+
177
+ if (points is not None) != (labels is not None):
178
+ raise ValueError("points and labels must be provided together")
179
+ if points is None and box is None:
180
+ raise ValueError("at least one of points or box must be provided as input")
181
+
182
+ if points is None:
183
+ points = torch.zeros(0, 2, dtype=torch.float32)
184
+ elif not isinstance(points, torch.Tensor):
185
+ points = torch.tensor(points, dtype=torch.float32)
186
+ if labels is None:
187
+ labels = torch.zeros(0, dtype=torch.int32)
188
+ elif not isinstance(labels, torch.Tensor):
189
+ labels = torch.tensor(labels, dtype=torch.int32)
190
+ if points.dim() == 2:
191
+ points = points.unsqueeze(0) # add batch dimension
192
+ if labels.dim() == 1:
193
+ labels = labels.unsqueeze(0) # add batch dimension
194
+
195
+ # If `box` is provided, we add it as the first two points with labels 2 and 3
196
+ # along with the user-provided points (consistent with how SAM 2 is trained).
197
+ if box is not None:
198
+ if not clear_old_points:
199
+ raise ValueError(
200
+ "cannot add box without clearing old points, since "
201
+ "box prompt must be provided before any point prompt "
202
+ "(please use clear_old_points=True instead)"
203
+ )
204
+ if not isinstance(box, torch.Tensor):
205
+ box = torch.tensor(box, dtype=torch.float32, device=points.device)
206
+ box_coords = box.reshape(1, 2, 2)
207
+ box_labels = torch.tensor([2, 3], dtype=torch.int32, device=labels.device)
208
+ box_labels = box_labels.reshape(1, 2)
209
+ points = torch.cat([box_coords, points], dim=1)
210
+ labels = torch.cat([box_labels, labels], dim=1)
211
+
212
+ if normalize_coords:
213
+ video_H = inference_state["video_height"]
214
+ video_W = inference_state["video_width"]
215
+ points = points / torch.tensor([video_W, video_H]).to(points.device)
216
+ # scale the (normalized) coordinates by the model's internal image size
217
+ points = points * self.image_size
218
+ points = points.to(inference_state["device"])
219
+ labels = labels.to(inference_state["device"])
220
+
221
+ if not clear_old_points:
222
+ point_inputs = point_inputs_per_frame.get(frame_idx, None)
223
+ else:
224
+ point_inputs = None
225
+ point_inputs = concat_points(point_inputs, points, labels)
226
+
227
+ point_inputs_per_frame[frame_idx] = point_inputs
228
+ mask_inputs_per_frame.pop(frame_idx, None)
229
+ # If this frame hasn't been tracked before, we treat it as an initial conditioning
230
+ # frame, meaning that the inputs points are to generate segments on this frame without
231
+ # using any memory from other frames, like in SAM. Otherwise (if it has been tracked),
232
+ # the input points will be used to correct the already tracked masks.
233
+ obj_frames_tracked = inference_state["frames_tracked_per_obj"][obj_idx]
234
+ is_init_cond_frame = frame_idx not in obj_frames_tracked
235
+ # whether to track in reverse time order
236
+ if is_init_cond_frame:
237
+ reverse = False
238
+ else:
239
+ reverse = obj_frames_tracked[frame_idx]["reverse"]
240
+ obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
241
+ obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
242
+ # Add a frame to conditioning output if it's an initial conditioning frame or
243
+ # if the model sees all frames receiving clicks/mask as conditioning frames.
244
+ is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond
245
+ storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
246
+
247
+ # Get any previously predicted mask logits on this object and feed it along with
248
+ # the new clicks into the SAM mask decoder.
249
+ prev_sam_mask_logits = None
250
+ # lookup temporary output dict first, which contains the most recent output
251
+ # (if not found, then lookup conditioning and non-conditioning frame output)
252
+ prev_out = obj_temp_output_dict[storage_key].get(frame_idx)
253
+ if prev_out is None:
254
+ prev_out = obj_output_dict["cond_frame_outputs"].get(frame_idx)
255
+ if prev_out is None:
256
+ prev_out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx)
257
+
258
+ if prev_out is not None and prev_out["pred_masks"] is not None:
259
+ device = inference_state["device"]
260
+ prev_sam_mask_logits = prev_out["pred_masks"].to(device, non_blocking=True)
261
+ # Clamp the scale of prev_sam_mask_logits to avoid rare numerical issues.
262
+ prev_sam_mask_logits = torch.clamp(prev_sam_mask_logits, -32.0, 32.0)
263
+ current_out, _ = self._run_single_frame_inference(
264
+ inference_state=inference_state,
265
+ output_dict=obj_output_dict, # run on the slice of a single object
266
+ frame_idx=frame_idx,
267
+ batch_size=1, # run on the slice of a single object
268
+ is_init_cond_frame=is_init_cond_frame,
269
+ point_inputs=point_inputs,
270
+ mask_inputs=None,
271
+ reverse=reverse,
272
+ # Skip the memory encoder when adding clicks or mask. We execute the memory encoder
273
+ # at the beginning of `propagate_in_video` (after user finalize their clicks). This
274
+ # allows us to enforce non-overlapping constraints on all objects before encoding
275
+ # them into memory.
276
+ run_mem_encoder=False,
277
+ prev_sam_mask_logits=prev_sam_mask_logits,
278
+ )
279
+ # Add the output to the output dict (to be used as future memory)
280
+ obj_temp_output_dict[storage_key][frame_idx] = current_out
281
+
282
+ # Resize the output mask to the original video resolution
283
+ obj_ids = inference_state["obj_ids"]
284
+ consolidated_out = self._consolidate_temp_output_across_obj(
285
+ inference_state,
286
+ frame_idx,
287
+ is_cond=is_cond,
288
+ consolidate_at_video_res=True,
289
+ )
290
+ _, video_res_masks = self._get_orig_video_res_output(
291
+ inference_state, consolidated_out["pred_masks_video_res"]
292
+ )
293
+ return frame_idx, obj_ids, video_res_masks
294
+
295
+ def add_new_points(self, *args, **kwargs):
296
+ """Deprecated method. Please use `add_new_points_or_box` instead."""
297
+ return self.add_new_points_or_box(*args, **kwargs)
298
+
299
+ @torch.inference_mode()
300
+ def add_new_mask(
301
+ self,
302
+ inference_state,
303
+ frame_idx,
304
+ obj_id,
305
+ mask,
306
+ ):
307
+ """Add new mask to a frame."""
308
+ obj_idx = self._obj_id_to_idx(inference_state, obj_id)
309
+ point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx]
310
+ mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx]
311
+
312
+ if not isinstance(mask, torch.Tensor):
313
+ mask = torch.tensor(mask, dtype=torch.bool)
314
+ assert mask.dim() == 2
315
+ mask_H, mask_W = mask.shape
316
+ mask_inputs_orig = mask[None, None] # add batch and channel dimension
317
+ mask_inputs_orig = mask_inputs_orig.float().to(inference_state["device"])
318
+
319
+ # resize the mask if it doesn't match the model's image size
320
+ if mask_H != self.image_size or mask_W != self.image_size:
321
+ mask_inputs = torch.nn.functional.interpolate(
322
+ mask_inputs_orig,
323
+ size=(self.image_size, self.image_size),
324
+ align_corners=False,
325
+ mode="bilinear",
326
+ antialias=True, # use antialias for downsampling
327
+ )
328
+ mask_inputs = (mask_inputs >= 0.5).float()
329
+ else:
330
+ mask_inputs = mask_inputs_orig
331
+
332
+ mask_inputs_per_frame[frame_idx] = mask_inputs
333
+ point_inputs_per_frame.pop(frame_idx, None)
334
+ # If this frame hasn't been tracked before, we treat it as an initial conditioning
335
+ # frame, meaning that the inputs points are to generate segments on this frame without
336
+ # using any memory from other frames, like in SAM. Otherwise (if it has been tracked),
337
+ # the input points will be used to correct the already tracked masks.
338
+ obj_frames_tracked = inference_state["frames_tracked_per_obj"][obj_idx]
339
+ is_init_cond_frame = frame_idx not in obj_frames_tracked
340
+ # whether to track in reverse time order
341
+ if is_init_cond_frame:
342
+ reverse = False
343
+ else:
344
+ reverse = obj_frames_tracked[frame_idx]["reverse"]
345
+ obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
346
+ obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
347
+ # Add a frame to conditioning output if it's an initial conditioning frame or
348
+ # if the model sees all frames receiving clicks/mask as conditioning frames.
349
+ is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond
350
+ storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
351
+
352
+ current_out, _ = self._run_single_frame_inference(
353
+ inference_state=inference_state,
354
+ output_dict=obj_output_dict, # run on the slice of a single object
355
+ frame_idx=frame_idx,
356
+ batch_size=1, # run on the slice of a single object
357
+ is_init_cond_frame=is_init_cond_frame,
358
+ point_inputs=None,
359
+ mask_inputs=mask_inputs,
360
+ reverse=reverse,
361
+ # Skip the memory encoder when adding clicks or mask. We execute the memory encoder
362
+ # at the beginning of `propagate_in_video` (after user finalize their clicks). This
363
+ # allows us to enforce non-overlapping constraints on all objects before encoding
364
+ # them into memory.
365
+ run_mem_encoder=False,
366
+ )
367
+ # Add the output to the output dict (to be used as future memory)
368
+ obj_temp_output_dict[storage_key][frame_idx] = current_out
369
+
370
+ # Resize the output mask to the original video resolution
371
+ obj_ids = inference_state["obj_ids"]
372
+ consolidated_out = self._consolidate_temp_output_across_obj(
373
+ inference_state,
374
+ frame_idx,
375
+ is_cond=is_cond,
376
+ consolidate_at_video_res=True,
377
+ )
378
+ _, video_res_masks = self._get_orig_video_res_output(
379
+ inference_state, consolidated_out["pred_masks_video_res"]
380
+ )
381
+ return frame_idx, obj_ids, video_res_masks
382
+
383
+ def _get_orig_video_res_output(self, inference_state, any_res_masks):
384
+ """
385
+ Resize the object scores to the original video resolution (video_res_masks)
386
+ and apply non-overlapping constraints for final output.
387
+ """
388
+ device = inference_state["device"]
389
+ video_H = inference_state["video_height"]
390
+ video_W = inference_state["video_width"]
391
+ any_res_masks = any_res_masks.to(device, non_blocking=True)
392
+ if any_res_masks.shape[-2:] == (video_H, video_W):
393
+ video_res_masks = any_res_masks
394
+ else:
395
+ video_res_masks = torch.nn.functional.interpolate(
396
+ any_res_masks,
397
+ size=(video_H, video_W),
398
+ mode="bilinear",
399
+ align_corners=False,
400
+ )
401
+ if self.non_overlap_masks:
402
+ video_res_masks = self._apply_non_overlapping_constraints(video_res_masks)
403
+ return any_res_masks, video_res_masks
404
+
405
+ def _consolidate_temp_output_across_obj(
406
+ self,
407
+ inference_state,
408
+ frame_idx,
409
+ is_cond,
410
+ consolidate_at_video_res=False,
411
+ ):
412
+ """
413
+ Consolidate the per-object temporary outputs in `temp_output_dict_per_obj` on
414
+ a frame into a single output for all objects, including
415
+ 1) fill any missing objects either from `output_dict_per_obj` (if they exist in
416
+ `output_dict_per_obj` for this frame) or leave them as placeholder values
417
+ (if they don't exist in `output_dict_per_obj` for this frame);
418
+ 2) if specified, rerun memory encoder after apply non-overlapping constraints
419
+ on the object scores.
420
+ """
421
+ batch_size = self._get_obj_num(inference_state)
422
+ storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
423
+ # Optionally, we allow consolidating the temporary outputs at the original
424
+ # video resolution (to provide a better editing experience for mask prompts).
425
+ if consolidate_at_video_res:
426
+ consolidated_H = inference_state["video_height"]
427
+ consolidated_W = inference_state["video_width"]
428
+ consolidated_mask_key = "pred_masks_video_res"
429
+ else:
430
+ consolidated_H = consolidated_W = self.image_size // 4
431
+ consolidated_mask_key = "pred_masks"
432
+
433
+ # Initialize `consolidated_out`. Its "maskmem_features" and "maskmem_pos_enc"
434
+ # will be added when rerunning the memory encoder after applying non-overlapping
435
+ # constraints to object scores. Its "pred_masks" are prefilled with a large
436
+ # negative value (NO_OBJ_SCORE) to represent missing objects.
437
+ consolidated_out = {
438
+ consolidated_mask_key: torch.full(
439
+ size=(batch_size, 1, consolidated_H, consolidated_W),
440
+ fill_value=NO_OBJ_SCORE,
441
+ dtype=torch.float32,
442
+ device=inference_state["storage_device"],
443
+ ),
444
+ }
445
+ for obj_idx in range(batch_size):
446
+ obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
447
+ obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
448
+ out = obj_temp_output_dict[storage_key].get(frame_idx, None)
449
+ # If the object doesn't appear in "temp_output_dict_per_obj" on this frame,
450
+ # we fall back and look up its previous output in "output_dict_per_obj".
451
+ # We look up both "cond_frame_outputs" and "non_cond_frame_outputs" in
452
+ # "output_dict_per_obj" to find a previous output for this object.
453
+ if out is None:
454
+ out = obj_output_dict["cond_frame_outputs"].get(frame_idx, None)
455
+ if out is None:
456
+ out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx, None)
457
+ # If the object doesn't appear in "output_dict_per_obj" either, we skip it
458
+ # and leave its mask scores to the default scores (i.e. the NO_OBJ_SCORE
459
+ # placeholder above) and set its object pointer to be a dummy pointer.
460
+ if out is None:
461
+ continue
462
+ # Add the temporary object output mask to consolidated output mask
463
+ obj_mask = out["pred_masks"]
464
+ consolidated_pred_masks = consolidated_out[consolidated_mask_key]
465
+ if obj_mask.shape[-2:] == consolidated_pred_masks.shape[-2:]:
466
+ consolidated_pred_masks[obj_idx : obj_idx + 1] = obj_mask
467
+ else:
468
+ # Resize first if temporary object mask has a different resolution
469
+ resized_obj_mask = torch.nn.functional.interpolate(
470
+ obj_mask,
471
+ size=consolidated_pred_masks.shape[-2:],
472
+ mode="bilinear",
473
+ align_corners=False,
474
+ )
475
+ consolidated_pred_masks[obj_idx : obj_idx + 1] = resized_obj_mask
476
+
477
+ return consolidated_out
478
+
479
+ @torch.inference_mode()
480
+ def propagate_in_video_preflight(self, inference_state):
481
+ """Prepare inference_state and consolidate temporary outputs before tracking."""
482
+ # Check and make sure that every object has received input points or masks.
483
+ batch_size = self._get_obj_num(inference_state)
484
+ if batch_size == 0:
485
+ raise RuntimeError(
486
+ "No input points or masks are provided for any object; please add inputs first."
487
+ )
488
+
489
+ # Consolidate per-object temporary outputs in "temp_output_dict_per_obj" and
490
+ # add them into "output_dict".
491
+ for obj_idx in range(batch_size):
492
+ obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
493
+ obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
494
+ for is_cond in [False, True]:
495
+ # Separately consolidate conditioning and non-conditioning temp outputs
496
+ storage_key = (
497
+ "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
498
+ )
499
+ # Find all the frames that contain temporary outputs for any objects
500
+ # (these should be the frames that have just received clicks for mask inputs
501
+ # via `add_new_points_or_box` or `add_new_mask`)
502
+ for frame_idx, out in obj_temp_output_dict[storage_key].items():
503
+ # Run memory encoder on the temporary outputs (if the memory feature is missing)
504
+ if out["maskmem_features"] is None:
505
+ high_res_masks = torch.nn.functional.interpolate(
506
+ out["pred_masks"].to(inference_state["device"]),
507
+ size=(self.image_size, self.image_size),
508
+ mode="bilinear",
509
+ align_corners=False,
510
+ )
511
+ maskmem_features, maskmem_pos_enc = self._run_memory_encoder(
512
+ inference_state=inference_state,
513
+ frame_idx=frame_idx,
514
+ batch_size=1, # run on the slice of a single object
515
+ high_res_masks=high_res_masks,
516
+ object_score_logits=out["object_score_logits"],
517
+ # these frames are what the user interacted with
518
+ is_mask_from_pts=True,
519
+ )
520
+ out["maskmem_features"] = maskmem_features
521
+ out["maskmem_pos_enc"] = maskmem_pos_enc
522
+
523
+ obj_output_dict[storage_key][frame_idx] = out
524
+ if self.clear_non_cond_mem_around_input:
525
+ # clear non-conditioning memory of the surrounding frames
526
+ self._clear_obj_non_cond_mem_around_input(
527
+ inference_state, frame_idx, obj_idx
528
+ )
529
+
530
+ # clear temporary outputs in `temp_output_dict_per_obj`
531
+ obj_temp_output_dict[storage_key].clear()
532
+
533
+ # check and make sure that every object has received input points or masks
534
+ obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
535
+ if len(obj_output_dict["cond_frame_outputs"]) == 0:
536
+ obj_id = self._obj_idx_to_id(inference_state, obj_idx)
537
+ raise RuntimeError(
538
+ f"No input points or masks are provided for object id {obj_id}; please add inputs first."
539
+ )
540
+ # edge case: if an output is added to "cond_frame_outputs", we remove any prior
541
+ # output on the same frame in "non_cond_frame_outputs"
542
+ for frame_idx in obj_output_dict["cond_frame_outputs"]:
543
+ obj_output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
544
+
545
+ @torch.inference_mode()
546
+ def propagate_in_video(
547
+ self,
548
+ inference_state,
549
+ start_frame_idx=None,
550
+ max_frame_num_to_track=None,
551
+ reverse=False,
552
+ ):
553
+ """Propagate the input points across frames to track in the entire video."""
554
+ self.propagate_in_video_preflight(inference_state)
555
+
556
+ obj_ids = inference_state["obj_ids"]
557
+ num_frames = inference_state["num_frames"]
558
+ batch_size = self._get_obj_num(inference_state)
559
+
560
+ # set start index, end index, and processing order
561
+ if start_frame_idx is None:
562
+ # default: start from the earliest frame with input points
563
+ start_frame_idx = min(
564
+ t
565
+ for obj_output_dict in inference_state["output_dict_per_obj"].values()
566
+ for t in obj_output_dict["cond_frame_outputs"]
567
+ )
568
+ if max_frame_num_to_track is None:
569
+ # default: track all the frames in the video
570
+ max_frame_num_to_track = num_frames
571
+ if reverse:
572
+ end_frame_idx = max(start_frame_idx - max_frame_num_to_track, 0)
573
+ if start_frame_idx > 0:
574
+ processing_order = range(start_frame_idx, end_frame_idx - 1, -1)
575
+ else:
576
+ processing_order = [] # skip reverse tracking if starting from frame 0
577
+ else:
578
+ end_frame_idx = min(
579
+ start_frame_idx + max_frame_num_to_track, num_frames - 1
580
+ )
581
+ processing_order = range(start_frame_idx, end_frame_idx + 1)
582
+
583
+ for frame_idx in tqdm(processing_order, desc="propagate in video"):
584
+ pred_masks_per_obj = [None] * batch_size
585
+ for obj_idx in range(batch_size):
586
+ obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
587
+ # We skip those frames already in consolidated outputs (these are frames
588
+ # that received input clicks or mask). Note that we cannot directly run
589
+ # batched forward on them via `_run_single_frame_inference` because the
590
+ # number of clicks on each object might be different.
591
+ if frame_idx in obj_output_dict["cond_frame_outputs"]:
592
+ storage_key = "cond_frame_outputs"
593
+ current_out = obj_output_dict[storage_key][frame_idx]
594
+ device = inference_state["device"]
595
+ pred_masks = current_out["pred_masks"].to(device, non_blocking=True)
596
+ if self.clear_non_cond_mem_around_input:
597
+ # clear non-conditioning memory of the surrounding frames
598
+ self._clear_obj_non_cond_mem_around_input(
599
+ inference_state, frame_idx, obj_idx
600
+ )
601
+ else:
602
+ storage_key = "non_cond_frame_outputs"
603
+ current_out, pred_masks = self._run_single_frame_inference(
604
+ inference_state=inference_state,
605
+ output_dict=obj_output_dict,
606
+ frame_idx=frame_idx,
607
+ batch_size=1, # run on the slice of a single object
608
+ is_init_cond_frame=False,
609
+ point_inputs=None,
610
+ mask_inputs=None,
611
+ reverse=reverse,
612
+ run_mem_encoder=True,
613
+ )
614
+ obj_output_dict[storage_key][frame_idx] = current_out
615
+
616
+ inference_state["frames_tracked_per_obj"][obj_idx][frame_idx] = {
617
+ "reverse": reverse
618
+ }
619
+ pred_masks_per_obj[obj_idx] = pred_masks
620
+
621
+ # Resize the output mask to the original video resolution (we directly use
622
+ # the mask scores on GPU for output to avoid any CPU conversion in between)
623
+ if len(pred_masks_per_obj) > 1:
624
+ all_pred_masks = torch.cat(pred_masks_per_obj, dim=0)
625
+ else:
626
+ all_pred_masks = pred_masks_per_obj[0]
627
+ _, video_res_masks = self._get_orig_video_res_output(
628
+ inference_state, all_pred_masks
629
+ )
630
+ yield frame_idx, obj_ids, video_res_masks
631
+
632
+ @torch.inference_mode()
633
+ def clear_all_prompts_in_frame(
634
+ self, inference_state, frame_idx, obj_id, need_output=True
635
+ ):
636
+ """Remove all input points or mask in a specific frame for a given object."""
637
+ obj_idx = self._obj_id_to_idx(inference_state, obj_id)
638
+
639
+ # Clear the conditioning information on the given frame
640
+ inference_state["point_inputs_per_obj"][obj_idx].pop(frame_idx, None)
641
+ inference_state["mask_inputs_per_obj"][obj_idx].pop(frame_idx, None)
642
+
643
+ temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
644
+ temp_output_dict_per_obj[obj_idx]["cond_frame_outputs"].pop(frame_idx, None)
645
+ temp_output_dict_per_obj[obj_idx]["non_cond_frame_outputs"].pop(frame_idx, None)
646
+
647
+ # Remove the frame's conditioning output (possibly downgrading it to non-conditioning)
648
+ obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
649
+ out = obj_output_dict["cond_frame_outputs"].pop(frame_idx, None)
650
+ if out is not None:
651
+ # The frame is not a conditioning frame anymore since it's not receiving inputs,
652
+ # so we "downgrade" its output (if exists) to a non-conditioning frame output.
653
+ obj_output_dict["non_cond_frame_outputs"][frame_idx] = out
654
+ inference_state["frames_tracked_per_obj"][obj_idx].pop(frame_idx, None)
655
+
656
+ if not need_output:
657
+ return
658
+ # Finally, output updated masks per object (after removing the inputs above)
659
+ obj_ids = inference_state["obj_ids"]
660
+ is_cond = any(
661
+ frame_idx in obj_temp_output_dict["cond_frame_outputs"]
662
+ for obj_temp_output_dict in temp_output_dict_per_obj.values()
663
+ )
664
+ consolidated_out = self._consolidate_temp_output_across_obj(
665
+ inference_state,
666
+ frame_idx,
667
+ is_cond=is_cond,
668
+ consolidate_at_video_res=True,
669
+ )
670
+ _, video_res_masks = self._get_orig_video_res_output(
671
+ inference_state, consolidated_out["pred_masks_video_res"]
672
+ )
673
+ return frame_idx, obj_ids, video_res_masks
674
+
675
+ @torch.inference_mode()
676
+ def reset_state(self, inference_state):
677
+ """Remove all input points or mask in all frames throughout the video."""
678
+ self._reset_tracking_results(inference_state)
679
+ # Remove all object ids
680
+ inference_state["obj_id_to_idx"].clear()
681
+ inference_state["obj_idx_to_id"].clear()
682
+ inference_state["obj_ids"].clear()
683
+ inference_state["point_inputs_per_obj"].clear()
684
+ inference_state["mask_inputs_per_obj"].clear()
685
+ inference_state["output_dict_per_obj"].clear()
686
+ inference_state["temp_output_dict_per_obj"].clear()
687
+ inference_state["frames_tracked_per_obj"].clear()
688
+
689
+ def _reset_tracking_results(self, inference_state):
690
+ """Reset all tracking inputs and results across the videos."""
691
+ for v in inference_state["point_inputs_per_obj"].values():
692
+ v.clear()
693
+ for v in inference_state["mask_inputs_per_obj"].values():
694
+ v.clear()
695
+ for v in inference_state["output_dict_per_obj"].values():
696
+ v["cond_frame_outputs"].clear()
697
+ v["non_cond_frame_outputs"].clear()
698
+ for v in inference_state["temp_output_dict_per_obj"].values():
699
+ v["cond_frame_outputs"].clear()
700
+ v["non_cond_frame_outputs"].clear()
701
+ for v in inference_state["frames_tracked_per_obj"].values():
702
+ v.clear()
703
+
704
+ def _get_image_feature(self, inference_state, frame_idx, batch_size):
705
+ """Compute the image features on a given frame."""
706
+ # Look up in the cache first
707
+ image, backbone_out = inference_state["cached_features"].get(
708
+ frame_idx, (None, None)
709
+ )
710
+ if backbone_out is None:
711
+ # Cache miss -- we will run inference on a single image
712
+ device = inference_state["device"]
713
+ image = inference_state["images"][frame_idx].to(device).float().unsqueeze(0)
714
+ backbone_out = self.forward_image(image)
715
+ # Cache the most recent frame's feature (for repeated interactions with
716
+ # a frame; we can use an LRU cache for more frames in the future).
717
+ inference_state["cached_features"] = {frame_idx: (image, backbone_out)}
718
+
719
+ # expand the features to have the same dimension as the number of objects
720
+ expanded_image = image.expand(batch_size, -1, -1, -1)
721
+ expanded_backbone_out = {
722
+ "backbone_fpn": backbone_out["backbone_fpn"].copy(),
723
+ "vision_pos_enc": backbone_out["vision_pos_enc"].copy(),
724
+ }
725
+ for i, feat in enumerate(expanded_backbone_out["backbone_fpn"]):
726
+ expanded_backbone_out["backbone_fpn"][i] = feat.expand(
727
+ batch_size, -1, -1, -1
728
+ )
729
+ for i, pos in enumerate(expanded_backbone_out["vision_pos_enc"]):
730
+ pos = pos.expand(batch_size, -1, -1, -1)
731
+ expanded_backbone_out["vision_pos_enc"][i] = pos
732
+
733
+ features = self._prepare_backbone_features(expanded_backbone_out)
734
+ features = (expanded_image,) + features
735
+ return features
736
+
737
+ def _run_single_frame_inference(
738
+ self,
739
+ inference_state,
740
+ output_dict,
741
+ frame_idx,
742
+ batch_size,
743
+ is_init_cond_frame,
744
+ point_inputs,
745
+ mask_inputs,
746
+ reverse,
747
+ run_mem_encoder,
748
+ prev_sam_mask_logits=None,
749
+ ):
750
+ """Run tracking on a single frame based on current inputs and previous memory."""
751
+ # Retrieve correct image features
752
+ (
753
+ _,
754
+ _,
755
+ current_vision_feats,
756
+ current_vision_pos_embeds,
757
+ feat_sizes,
758
+ ) = self._get_image_feature(inference_state, frame_idx, batch_size)
759
+
760
+ # point and mask should not appear as input simultaneously on the same frame
761
+ assert point_inputs is None or mask_inputs is None
762
+ current_out = self.track_step(
763
+ frame_idx=frame_idx,
764
+ is_init_cond_frame=is_init_cond_frame,
765
+ current_vision_feats=current_vision_feats,
766
+ current_vision_pos_embeds=current_vision_pos_embeds,
767
+ feat_sizes=feat_sizes,
768
+ point_inputs=point_inputs,
769
+ mask_inputs=mask_inputs,
770
+ output_dict=output_dict,
771
+ num_frames=inference_state["num_frames"],
772
+ track_in_reverse=reverse,
773
+ run_mem_encoder=run_mem_encoder,
774
+ prev_sam_mask_logits=prev_sam_mask_logits,
775
+ )
776
+
777
+ # optionally offload the output to CPU memory to save GPU space
778
+ storage_device = inference_state["storage_device"]
779
+ maskmem_features = current_out["maskmem_features"]
780
+ if maskmem_features is not None:
781
+ maskmem_features = maskmem_features.to(torch.bfloat16)
782
+ maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
783
+ pred_masks_gpu = current_out["pred_masks"]
784
+ # potentially fill holes in the predicted masks
785
+ if self.fill_hole_area > 0:
786
+ pred_masks_gpu = fill_holes_in_mask_scores(
787
+ pred_masks_gpu, self.fill_hole_area
788
+ )
789
+ pred_masks = pred_masks_gpu.to(storage_device, non_blocking=True)
790
+ # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
791
+ maskmem_pos_enc = self._get_maskmem_pos_enc(inference_state, current_out)
792
+ # object pointer is a small tensor, so we always keep it on GPU memory for fast access
793
+ obj_ptr = current_out["obj_ptr"]
794
+ object_score_logits = current_out["object_score_logits"]
795
+ # make a compact version of this frame's output to reduce the state size
796
+ compact_current_out = {
797
+ "maskmem_features": maskmem_features,
798
+ "maskmem_pos_enc": maskmem_pos_enc,
799
+ "pred_masks": pred_masks,
800
+ "obj_ptr": obj_ptr,
801
+ "object_score_logits": object_score_logits,
802
+ }
803
+ return compact_current_out, pred_masks_gpu
804
+
805
+ def _run_memory_encoder(
806
+ self,
807
+ inference_state,
808
+ frame_idx,
809
+ batch_size,
810
+ high_res_masks,
811
+ object_score_logits,
812
+ is_mask_from_pts,
813
+ ):
814
+ """
815
+ Run the memory encoder on `high_res_masks`. This is usually after applying
816
+ non-overlapping constraints to object scores. Since their scores changed, their
817
+ memory also need to be computed again with the memory encoder.
818
+ """
819
+ # Retrieve correct image features
820
+ _, _, current_vision_feats, _, feat_sizes = self._get_image_feature(
821
+ inference_state, frame_idx, batch_size
822
+ )
823
+ maskmem_features, maskmem_pos_enc = self._encode_new_memory(
824
+ current_vision_feats=current_vision_feats,
825
+ feat_sizes=feat_sizes,
826
+ pred_masks_high_res=high_res_masks,
827
+ object_score_logits=object_score_logits,
828
+ is_mask_from_pts=is_mask_from_pts,
829
+ )
830
+
831
+ # optionally offload the output to CPU memory to save GPU space
832
+ storage_device = inference_state["storage_device"]
833
+ maskmem_features = maskmem_features.to(torch.bfloat16)
834
+ maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
835
+ # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
836
+ maskmem_pos_enc = self._get_maskmem_pos_enc(
837
+ inference_state, {"maskmem_pos_enc": maskmem_pos_enc}
838
+ )
839
+ return maskmem_features, maskmem_pos_enc
840
+
841
+ def _get_maskmem_pos_enc(self, inference_state, current_out):
842
+ """
843
+ `maskmem_pos_enc` is the same across frames and objects, so we cache it as
844
+ a constant in the inference session to reduce session storage size.
845
+ """
846
+ model_constants = inference_state["constants"]
847
+ # "out_maskmem_pos_enc" should be either a list of tensors or None
848
+ out_maskmem_pos_enc = current_out["maskmem_pos_enc"]
849
+ if out_maskmem_pos_enc is not None:
850
+ if "maskmem_pos_enc" not in model_constants:
851
+ assert isinstance(out_maskmem_pos_enc, list)
852
+ # only take the slice for one object, since it's same across objects
853
+ maskmem_pos_enc = [x[0:1].clone() for x in out_maskmem_pos_enc]
854
+ model_constants["maskmem_pos_enc"] = maskmem_pos_enc
855
+ else:
856
+ maskmem_pos_enc = model_constants["maskmem_pos_enc"]
857
+ # expand the cached maskmem_pos_enc to the actual batch size
858
+ batch_size = out_maskmem_pos_enc[0].size(0)
859
+ expanded_maskmem_pos_enc = [
860
+ x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc
861
+ ]
862
+ else:
863
+ expanded_maskmem_pos_enc = None
864
+ return expanded_maskmem_pos_enc
865
+
866
+ @torch.inference_mode()
867
+ def remove_object(self, inference_state, obj_id, strict=False, need_output=True):
868
+ """
869
+ Remove an object id from the tracking state. If strict is True, we check whether
870
+ the object id actually exists and raise an error if it doesn't exist.
871
+ """
872
+ old_obj_idx_to_rm = inference_state["obj_id_to_idx"].get(obj_id, None)
873
+ updated_frames = []
874
+ # Check whether this object_id to remove actually exists and possibly raise an error.
875
+ if old_obj_idx_to_rm is None:
876
+ if not strict:
877
+ return inference_state["obj_ids"], updated_frames
878
+ raise RuntimeError(
879
+ f"Cannot remove object id {obj_id} as it doesn't exist. "
880
+ f"All existing object ids: {inference_state['obj_ids']}."
881
+ )
882
+
883
+ # If this is the only remaining object id, we simply reset the state.
884
+ if len(inference_state["obj_id_to_idx"]) == 1:
885
+ self.reset_state(inference_state)
886
+ return inference_state["obj_ids"], updated_frames
887
+
888
+ # There are still remaining objects after removing this object id. In this case,
889
+ # we need to delete the object storage from inference state tensors.
890
+ # Step 0: clear the input on those frames where this object id has point or mask input
891
+ # (note that this step is required as it might downgrade conditioning frames to
892
+ # non-conditioning ones)
893
+ obj_input_frames_inds = set()
894
+ obj_input_frames_inds.update(
895
+ inference_state["point_inputs_per_obj"][old_obj_idx_to_rm]
896
+ )
897
+ obj_input_frames_inds.update(
898
+ inference_state["mask_inputs_per_obj"][old_obj_idx_to_rm]
899
+ )
900
+ for frame_idx in obj_input_frames_inds:
901
+ self.clear_all_prompts_in_frame(
902
+ inference_state, frame_idx, obj_id, need_output=False
903
+ )
904
+
905
+ # Step 1: Update the object id mapping (note that it must be done after Step 0,
906
+ # since Step 0 still requires the old object id mappings in inference_state)
907
+ old_obj_ids = inference_state["obj_ids"]
908
+ old_obj_inds = list(range(len(old_obj_ids)))
909
+ remain_old_obj_inds = old_obj_inds.copy()
910
+ remain_old_obj_inds.remove(old_obj_idx_to_rm)
911
+ new_obj_ids = [old_obj_ids[old_idx] for old_idx in remain_old_obj_inds]
912
+ new_obj_inds = list(range(len(new_obj_ids)))
913
+ # build new mappings
914
+ old_idx_to_new_idx = dict(zip(remain_old_obj_inds, new_obj_inds))
915
+ inference_state["obj_id_to_idx"] = dict(zip(new_obj_ids, new_obj_inds))
916
+ inference_state["obj_idx_to_id"] = dict(zip(new_obj_inds, new_obj_ids))
917
+ inference_state["obj_ids"] = new_obj_ids
918
+
919
+ # Step 2: For per-object tensor storage, we shift their obj_idx in the dict keys.
920
+ def _map_keys(container):
921
+ new_kvs = []
922
+ for k in old_obj_inds:
923
+ v = container.pop(k)
924
+ if k in old_idx_to_new_idx:
925
+ new_kvs.append((old_idx_to_new_idx[k], v))
926
+ container.update(new_kvs)
927
+
928
+ _map_keys(inference_state["point_inputs_per_obj"])
929
+ _map_keys(inference_state["mask_inputs_per_obj"])
930
+ _map_keys(inference_state["output_dict_per_obj"])
931
+ _map_keys(inference_state["temp_output_dict_per_obj"])
932
+ _map_keys(inference_state["frames_tracked_per_obj"])
933
+
934
+ # Step 3: Further collect the outputs on those frames in `obj_input_frames_inds`, which
935
+ # could show an updated mask for objects previously occluded by the object being removed
936
+ if need_output:
937
+ temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
938
+ for frame_idx in obj_input_frames_inds:
939
+ is_cond = any(
940
+ frame_idx in obj_temp_output_dict["cond_frame_outputs"]
941
+ for obj_temp_output_dict in temp_output_dict_per_obj.values()
942
+ )
943
+ consolidated_out = self._consolidate_temp_output_across_obj(
944
+ inference_state,
945
+ frame_idx,
946
+ is_cond=is_cond,
947
+ consolidate_at_video_res=True,
948
+ )
949
+ _, video_res_masks = self._get_orig_video_res_output(
950
+ inference_state, consolidated_out["pred_masks_video_res"]
951
+ )
952
+ updated_frames.append((frame_idx, video_res_masks))
953
+
954
+ return inference_state["obj_ids"], updated_frames
955
+
956
+ def _clear_non_cond_mem_around_input(self, inference_state, frame_idx):
957
+ """
958
+ Remove the non-conditioning memory around the input frame. When users provide
959
+ correction clicks, the surrounding frames' non-conditioning memories can still
960
+ contain outdated object appearance information and could confuse the model.
961
+
962
+ This method clears those non-conditioning memories surrounding the interacted
963
+ frame to avoid giving the model both old and new information about the object.
964
+ """
965
+ r = self.memory_temporal_stride_for_eval
966
+ frame_idx_begin = frame_idx - r * self.num_maskmem
967
+ frame_idx_end = frame_idx + r * self.num_maskmem
968
+ batch_size = self._get_obj_num(inference_state)
969
+ for obj_idx in range(batch_size):
970
+ obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
971
+ non_cond_frame_outputs = obj_output_dict["non_cond_frame_outputs"]
972
+ for t in range(frame_idx_begin, frame_idx_end + 1):
973
+ non_cond_frame_outputs.pop(t, None)
974
+
975
+
976
+ class SAM2VideoPredictorVOS(SAM2VideoPredictor):
977
+ """Optimized for the VOS setting"""
978
+
979
+ def __init__(self, *args, **kwargs):
980
+ super().__init__(*args, **kwargs)
981
+ self._compile_all_components()
982
+
983
+ def _compile_all_components(self):
984
+ print("Compiling all components for VOS setting. First time may be very slow.")
985
+ self.memory_encoder.forward = torch.compile(
986
+ self.memory_encoder.forward,
987
+ mode="max-autotune",
988
+ fullgraph=True,
989
+ dynamic=False,
990
+ )
991
+
992
+ self.memory_attention.forward = torch.compile(
993
+ self.memory_attention.forward,
994
+ mode="max-autotune",
995
+ fullgraph=True,
996
+ dynamic=True, # Num. of memories varies
997
+ )
998
+
999
+ self.sam_prompt_encoder.forward = torch.compile(
1000
+ self.sam_prompt_encoder.forward,
1001
+ mode="max-autotune",
1002
+ fullgraph=True,
1003
+ dynamic=False, # Accuracy regression on True
1004
+ )
1005
+
1006
+ self.sam_mask_decoder.forward = torch.compile(
1007
+ self.sam_mask_decoder.forward,
1008
+ mode="max-autotune",
1009
+ fullgraph=True,
1010
+ dynamic=False, # Accuracy regression on True
1011
+ )
1012
+
1013
+ def forward_image(self, img_batch: torch.Tensor):
1014
+ """
1015
+ Identical to the corresponding method in the parent (SAM2VideoPredictor), but
1016
+ cloning the backbone features and pos encoding to enable compilation.
1017
+ """
1018
+ backbone_out = self.image_encoder(img_batch)
1019
+ if self.use_high_res_features_in_sam:
1020
+ # precompute projected level 0 and level 1 features in SAM decoder
1021
+ # to avoid running it again on every SAM click
1022
+ backbone_out["backbone_fpn"][0] = self.sam_mask_decoder.conv_s0(
1023
+ backbone_out["backbone_fpn"][0]
1024
+ )
1025
+ backbone_out["backbone_fpn"][1] = self.sam_mask_decoder.conv_s1(
1026
+ backbone_out["backbone_fpn"][1]
1027
+ )
1028
+ # Clone to help torch.compile
1029
+ for i in range(len(backbone_out["backbone_fpn"])):
1030
+ backbone_out["backbone_fpn"][i] = backbone_out["backbone_fpn"][i].clone()
1031
+ backbone_out["vision_pos_enc"][i] = backbone_out["vision_pos_enc"][
1032
+ i
1033
+ ].clone()
1034
+ return backbone_out
1035
+
1036
+ def _forward_sam_heads(
1037
+ self,
1038
+ backbone_features,
1039
+ point_inputs=None,
1040
+ mask_inputs=None,
1041
+ high_res_features=None,
1042
+ multimask_output=False,
1043
+ ):
1044
+ """
1045
+ Identical to the corresponding method in the parent (SAM2VideoPredictor), but
1046
+ cloning the outputs of prompt_encoder and mask_decoder to enable compilation.
1047
+ """
1048
+ B = backbone_features.size(0)
1049
+ device = backbone_features.device
1050
+ assert backbone_features.size(1) == self.sam_prompt_embed_dim
1051
+ assert backbone_features.size(2) == self.sam_image_embedding_size
1052
+ assert backbone_features.size(3) == self.sam_image_embedding_size
1053
+
1054
+ # a) Handle point prompts
1055
+ if point_inputs is not None:
1056
+ sam_point_coords = point_inputs["point_coords"]
1057
+ sam_point_labels = point_inputs["point_labels"]
1058
+ assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B
1059
+ else:
1060
+ # If no points are provide, pad with an empty point (with label -1)
1061
+ sam_point_coords = torch.zeros(B, 1, 2, device=device)
1062
+ sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device)
1063
+
1064
+ # b) Handle mask prompts
1065
+ if mask_inputs is not None:
1066
+ # If mask_inputs is provided, downsize it into low-res mask input if needed
1067
+ # and feed it as a dense mask prompt into the SAM mask encoder
1068
+ assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1)
1069
+ if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size:
1070
+ sam_mask_prompt = F.interpolate(
1071
+ mask_inputs.float(),
1072
+ size=self.sam_prompt_encoder.mask_input_size,
1073
+ align_corners=False,
1074
+ mode="bilinear",
1075
+ antialias=True, # use antialias for downsampling
1076
+ )
1077
+ else:
1078
+ sam_mask_prompt = mask_inputs
1079
+ else:
1080
+ # Otherwise, simply feed None (and SAM's prompt encoder will add
1081
+ # a learned `no_mask_embed` to indicate no mask input in this case).
1082
+ sam_mask_prompt = None
1083
+
1084
+ sparse_embeddings, dense_embeddings = self.sam_prompt_encoder(
1085
+ points=(sam_point_coords, sam_point_labels),
1086
+ boxes=None,
1087
+ masks=sam_mask_prompt,
1088
+ )
1089
+ # Clone image_pe and the outputs of sam_prompt_encoder
1090
+ # to enable compilation
1091
+ sparse_embeddings = sparse_embeddings.clone()
1092
+ dense_embeddings = dense_embeddings.clone()
1093
+ image_pe = self.sam_prompt_encoder.get_dense_pe().clone()
1094
+ (
1095
+ low_res_multimasks,
1096
+ ious,
1097
+ sam_output_tokens,
1098
+ object_score_logits,
1099
+ ) = self.sam_mask_decoder(
1100
+ image_embeddings=backbone_features,
1101
+ image_pe=image_pe,
1102
+ sparse_prompt_embeddings=sparse_embeddings,
1103
+ dense_prompt_embeddings=dense_embeddings,
1104
+ multimask_output=multimask_output,
1105
+ repeat_image=False, # the image is already batched
1106
+ high_res_features=high_res_features,
1107
+ )
1108
+ # Clone the output of sam_mask_decoder
1109
+ # to enable compilation
1110
+ low_res_multimasks = low_res_multimasks.clone()
1111
+ ious = ious.clone()
1112
+ sam_output_tokens = sam_output_tokens.clone()
1113
+ object_score_logits = object_score_logits.clone()
1114
+
1115
+ if self.pred_obj_scores:
1116
+ is_obj_appearing = object_score_logits > 0
1117
+
1118
+ # Mask used for spatial memories is always a *hard* choice between obj and no obj,
1119
+ # consistent with the actual mask prediction
1120
+ low_res_multimasks = torch.where(
1121
+ is_obj_appearing[:, None, None],
1122
+ low_res_multimasks,
1123
+ NO_OBJ_SCORE,
1124
+ )
1125
+
1126
+ # convert masks from possibly bfloat16 (or float16) to float32
1127
+ # (older PyTorch versions before 2.1 don't support `interpolate` on bf16)
1128
+ low_res_multimasks = low_res_multimasks.float()
1129
+ high_res_multimasks = F.interpolate(
1130
+ low_res_multimasks,
1131
+ size=(self.image_size, self.image_size),
1132
+ mode="bilinear",
1133
+ align_corners=False,
1134
+ )
1135
+
1136
+ sam_output_token = sam_output_tokens[:, 0]
1137
+ if multimask_output:
1138
+ # take the best mask prediction (with the highest IoU estimation)
1139
+ best_iou_inds = torch.argmax(ious, dim=-1)
1140
+ batch_inds = torch.arange(B, device=device)
1141
+ low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
1142
+ high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
1143
+ if sam_output_tokens.size(1) > 1:
1144
+ sam_output_token = sam_output_tokens[batch_inds, best_iou_inds]
1145
+ else:
1146
+ low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks
1147
+
1148
+ # Extract object pointer from the SAM output token (with occlusion handling)
1149
+ obj_ptr = self.obj_ptr_proj(sam_output_token)
1150
+ if self.pred_obj_scores:
1151
+ # Allow *soft* no obj ptr, unlike for masks
1152
+ if self.soft_no_obj_ptr:
1153
+ lambda_is_obj_appearing = object_score_logits.sigmoid()
1154
+ else:
1155
+ lambda_is_obj_appearing = is_obj_appearing.float()
1156
+
1157
+ if self.fixed_no_obj_ptr:
1158
+ obj_ptr = lambda_is_obj_appearing * obj_ptr
1159
+ obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
1160
+
1161
+ return (
1162
+ low_res_multimasks,
1163
+ high_res_multimasks,
1164
+ ious,
1165
+ low_res_masks,
1166
+ high_res_masks,
1167
+ obj_ptr,
1168
+ object_score_logits,
1169
+ )
1170
+
1171
+ def _encode_new_memory(
1172
+ self,
1173
+ current_vision_feats,
1174
+ feat_sizes,
1175
+ pred_masks_high_res,
1176
+ object_score_logits,
1177
+ is_mask_from_pts,
1178
+ ):
1179
+ """
1180
+ Identical to the corresponding method in the parent (SAM2VideoPredictor), but
1181
+ cloning the memories and their pos enc to enable compilation.
1182
+ """
1183
+ B = current_vision_feats[-1].size(1) # batch size on this frame
1184
+ C = self.hidden_dim
1185
+ H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size
1186
+ # top-level feature, (HW)BC => BCHW
1187
+ pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
1188
+ if self.non_overlap_masks_for_mem_enc and not self.training:
1189
+ # optionally, apply non-overlapping constraints to the masks (it's applied
1190
+ # in the batch dimension and should only be used during eval, where all
1191
+ # the objects come from the same video under batch size 1).
1192
+ pred_masks_high_res = self._apply_non_overlapping_constraints(
1193
+ pred_masks_high_res
1194
+ )
1195
+ # scale the raw mask logits with a temperature before applying sigmoid
1196
+ binarize = self.binarize_mask_from_pts_for_mem_enc and is_mask_from_pts
1197
+ if binarize and not self.training:
1198
+ mask_for_mem = (pred_masks_high_res > 0).float()
1199
+ else:
1200
+ # apply sigmoid on the raw mask logits to turn them into range (0, 1)
1201
+ mask_for_mem = torch.sigmoid(pred_masks_high_res)
1202
+ # apply scale and bias terms to the sigmoid probabilities
1203
+ if self.sigmoid_scale_for_mem_enc != 1.0:
1204
+ mask_for_mem = mask_for_mem * self.sigmoid_scale_for_mem_enc
1205
+ if self.sigmoid_bias_for_mem_enc != 0.0:
1206
+ mask_for_mem = mask_for_mem + self.sigmoid_bias_for_mem_enc
1207
+ maskmem_out = self.memory_encoder(
1208
+ pix_feat, mask_for_mem, skip_mask_sigmoid=True # sigmoid already applied
1209
+ )
1210
+ # Clone the feats and pos_enc to enable compilation
1211
+ maskmem_features = maskmem_out["vision_features"].clone()
1212
+ maskmem_pos_enc = [m.clone() for m in maskmem_out["vision_pos_enc"]]
1213
+ # add a no-object embedding to the spatial memory to indicate that the frame
1214
+ # is predicted to be occluded (i.e. no object is appearing in the frame)
1215
+ if self.no_obj_embed_spatial is not None:
1216
+ is_obj_appearing = (object_score_logits > 0).float()
1217
+ maskmem_features += (
1218
+ 1 - is_obj_appearing[..., None, None]
1219
+ ) * self.no_obj_embed_spatial[..., None, None].expand(
1220
+ *maskmem_features.shape
1221
+ )
1222
+
1223
+ return maskmem_features, maskmem_pos_enc
sam2/sam2_video_predictor_legacy.py ADDED
@@ -0,0 +1,1172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import warnings
8
+ from collections import OrderedDict
9
+
10
+ import torch
11
+
12
+ from tqdm import tqdm
13
+
14
+ from sam2.modeling.sam2_base import NO_OBJ_SCORE, SAM2Base
15
+ from sam2.utils.misc import concat_points, fill_holes_in_mask_scores, load_video_frames
16
+
17
+
18
+ class SAM2VideoPredictor(SAM2Base):
19
+ """The predictor class to handle user interactions and manage inference states."""
20
+
21
+ def __init__(
22
+ self,
23
+ fill_hole_area=0,
24
+ # whether to apply non-overlapping constraints on the output object masks
25
+ non_overlap_masks=False,
26
+ # whether to clear non-conditioning memory of the surrounding frames (which may contain outdated information) after adding correction clicks;
27
+ # note that this would only apply to *single-object tracking* unless `clear_non_cond_mem_for_multi_obj` is also set to True)
28
+ clear_non_cond_mem_around_input=False,
29
+ # whether to also clear non-conditioning memory of the surrounding frames (only effective when `clear_non_cond_mem_around_input` is True).
30
+ clear_non_cond_mem_for_multi_obj=False,
31
+ # if `add_all_frames_to_correct_as_cond` is True, we also append to the conditioning frame list any frame that receives a later correction click
32
+ # if `add_all_frames_to_correct_as_cond` is False, we conditioning frame list to only use those initial conditioning frames
33
+ add_all_frames_to_correct_as_cond=False,
34
+ **kwargs,
35
+ ):
36
+ super().__init__(**kwargs)
37
+ self.fill_hole_area = fill_hole_area
38
+ self.non_overlap_masks = non_overlap_masks
39
+ self.clear_non_cond_mem_around_input = clear_non_cond_mem_around_input
40
+ self.clear_non_cond_mem_for_multi_obj = clear_non_cond_mem_for_multi_obj
41
+ self.add_all_frames_to_correct_as_cond = add_all_frames_to_correct_as_cond
42
+
43
+ @torch.inference_mode()
44
+ def init_state(
45
+ self,
46
+ video_path,
47
+ offload_video_to_cpu=False,
48
+ offload_state_to_cpu=False,
49
+ async_loading_frames=False,
50
+ ):
51
+ """Initialize an inference state."""
52
+ compute_device = self.device # device of the model
53
+ images, video_height, video_width = load_video_frames(
54
+ video_path=video_path,
55
+ image_size=self.image_size,
56
+ offload_video_to_cpu=offload_video_to_cpu,
57
+ async_loading_frames=async_loading_frames,
58
+ compute_device=compute_device,
59
+ )
60
+ inference_state = {}
61
+ inference_state["images"] = images
62
+ inference_state["num_frames"] = len(images)
63
+ # whether to offload the video frames to CPU memory
64
+ # turning on this option saves the GPU memory with only a very small overhead
65
+ inference_state["offload_video_to_cpu"] = offload_video_to_cpu
66
+ # whether to offload the inference state to CPU memory
67
+ # turning on this option saves the GPU memory at the cost of a lower tracking fps
68
+ # (e.g. in a test case of 768x768 model, fps dropped from 27 to 24 when tracking one object
69
+ # and from 24 to 21 when tracking two objects)
70
+ inference_state["offload_state_to_cpu"] = offload_state_to_cpu
71
+ # the original video height and width, used for resizing final output scores
72
+ inference_state["video_height"] = video_height
73
+ inference_state["video_width"] = video_width
74
+ inference_state["device"] = compute_device
75
+ if offload_state_to_cpu:
76
+ inference_state["storage_device"] = torch.device("cpu")
77
+ else:
78
+ inference_state["storage_device"] = compute_device
79
+ # inputs on each frame
80
+ inference_state["point_inputs_per_obj"] = {}
81
+ inference_state["mask_inputs_per_obj"] = {}
82
+ # visual features on a small number of recently visited frames for quick interactions
83
+ inference_state["cached_features"] = {}
84
+ # values that don't change across frames (so we only need to hold one copy of them)
85
+ inference_state["constants"] = {}
86
+ # mapping between client-side object id and model-side object index
87
+ inference_state["obj_id_to_idx"] = OrderedDict()
88
+ inference_state["obj_idx_to_id"] = OrderedDict()
89
+ inference_state["obj_ids"] = []
90
+ # A storage to hold the model's tracking results and states on each frame
91
+ inference_state["output_dict"] = {
92
+ "cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
93
+ "non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
94
+ }
95
+ # Slice (view) of each object tracking results, sharing the same memory with "output_dict"
96
+ inference_state["output_dict_per_obj"] = {}
97
+ # A temporary storage to hold new outputs when user interact with a frame
98
+ # to add clicks or mask (it's merged into "output_dict" before propagation starts)
99
+ inference_state["temp_output_dict_per_obj"] = {}
100
+ # Frames that already holds consolidated outputs from click or mask inputs
101
+ # (we directly use their consolidated outputs during tracking)
102
+ inference_state["consolidated_frame_inds"] = {
103
+ "cond_frame_outputs": set(), # set containing frame indices
104
+ "non_cond_frame_outputs": set(), # set containing frame indices
105
+ }
106
+ # metadata for each tracking frame (e.g. which direction it's tracked)
107
+ inference_state["tracking_has_started"] = False
108
+ inference_state["frames_already_tracked"] = {}
109
+ # Warm up the visual backbone and cache the image feature on frame 0
110
+ self._get_image_feature(inference_state, frame_idx=0, batch_size=1)
111
+ return inference_state
112
+
113
+ @classmethod
114
+ def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2VideoPredictor":
115
+ """
116
+ Load a pretrained model from the Hugging Face hub.
117
+
118
+ Arguments:
119
+ model_id (str): The Hugging Face repository ID.
120
+ **kwargs: Additional arguments to pass to the model constructor.
121
+
122
+ Returns:
123
+ (SAM2VideoPredictor): The loaded model.
124
+ """
125
+ from sam2.build_sam import build_sam2_video_predictor_hf
126
+
127
+ sam_model = build_sam2_video_predictor_hf(model_id, **kwargs)
128
+ return sam_model
129
+
130
+ def _obj_id_to_idx(self, inference_state, obj_id):
131
+ """Map client-side object id to model-side object index."""
132
+ obj_idx = inference_state["obj_id_to_idx"].get(obj_id, None)
133
+ if obj_idx is not None:
134
+ return obj_idx
135
+
136
+ # This is a new object id not sent to the server before. We only allow adding
137
+ # new objects *before* the tracking starts.
138
+ allow_new_object = not inference_state["tracking_has_started"]
139
+ if allow_new_object:
140
+ # get the next object slot
141
+ obj_idx = len(inference_state["obj_id_to_idx"])
142
+ inference_state["obj_id_to_idx"][obj_id] = obj_idx
143
+ inference_state["obj_idx_to_id"][obj_idx] = obj_id
144
+ inference_state["obj_ids"] = list(inference_state["obj_id_to_idx"])
145
+ # set up input and output structures for this object
146
+ inference_state["point_inputs_per_obj"][obj_idx] = {}
147
+ inference_state["mask_inputs_per_obj"][obj_idx] = {}
148
+ inference_state["output_dict_per_obj"][obj_idx] = {
149
+ "cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
150
+ "non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
151
+ }
152
+ inference_state["temp_output_dict_per_obj"][obj_idx] = {
153
+ "cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
154
+ "non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
155
+ }
156
+ return obj_idx
157
+ else:
158
+ raise RuntimeError(
159
+ f"Cannot add new object id {obj_id} after tracking starts. "
160
+ f"All existing object ids: {inference_state['obj_ids']}. "
161
+ f"Please call 'reset_state' to restart from scratch."
162
+ )
163
+
164
+ def _obj_idx_to_id(self, inference_state, obj_idx):
165
+ """Map model-side object index to client-side object id."""
166
+ return inference_state["obj_idx_to_id"][obj_idx]
167
+
168
+ def _get_obj_num(self, inference_state):
169
+ """Get the total number of unique object ids received so far in this session."""
170
+ return len(inference_state["obj_idx_to_id"])
171
+
172
+ @torch.inference_mode()
173
+ def add_new_points_or_box(
174
+ self,
175
+ inference_state,
176
+ frame_idx,
177
+ obj_id,
178
+ points=None,
179
+ labels=None,
180
+ clear_old_points=True,
181
+ normalize_coords=True,
182
+ box=None,
183
+ ):
184
+ """Add new points to a frame."""
185
+ obj_idx = self._obj_id_to_idx(inference_state, obj_id)
186
+ point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx]
187
+ mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx]
188
+
189
+ if (points is not None) != (labels is not None):
190
+ raise ValueError("points and labels must be provided together")
191
+ if points is None and box is None:
192
+ raise ValueError("at least one of points or box must be provided as input")
193
+
194
+ if points is None:
195
+ points = torch.zeros(0, 2, dtype=torch.float32)
196
+ elif not isinstance(points, torch.Tensor):
197
+ points = torch.tensor(points, dtype=torch.float32)
198
+ if labels is None:
199
+ labels = torch.zeros(0, dtype=torch.int32)
200
+ elif not isinstance(labels, torch.Tensor):
201
+ labels = torch.tensor(labels, dtype=torch.int32)
202
+ if points.dim() == 2:
203
+ points = points.unsqueeze(0) # add batch dimension
204
+ if labels.dim() == 1:
205
+ labels = labels.unsqueeze(0) # add batch dimension
206
+
207
+ # If `box` is provided, we add it as the first two points with labels 2 and 3
208
+ # along with the user-provided points (consistent with how SAM 2 is trained).
209
+ if box is not None:
210
+ if not clear_old_points:
211
+ raise ValueError(
212
+ "cannot add box without clearing old points, since "
213
+ "box prompt must be provided before any point prompt "
214
+ "(please use clear_old_points=True instead)"
215
+ )
216
+ if inference_state["tracking_has_started"]:
217
+ warnings.warn(
218
+ "You are adding a box after tracking starts. SAM 2 may not always be "
219
+ "able to incorporate a box prompt for *refinement*. If you intend to "
220
+ "use box prompt as an *initial* input before tracking, please call "
221
+ "'reset_state' on the inference state to restart from scratch.",
222
+ category=UserWarning,
223
+ stacklevel=2,
224
+ )
225
+ if not isinstance(box, torch.Tensor):
226
+ box = torch.tensor(box, dtype=torch.float32, device=points.device)
227
+ box_coords = box.reshape(1, 2, 2)
228
+ box_labels = torch.tensor([2, 3], dtype=torch.int32, device=labels.device)
229
+ box_labels = box_labels.reshape(1, 2)
230
+ points = torch.cat([box_coords, points], dim=1)
231
+ labels = torch.cat([box_labels, labels], dim=1)
232
+
233
+ if normalize_coords:
234
+ video_H = inference_state["video_height"]
235
+ video_W = inference_state["video_width"]
236
+ points = points / torch.tensor([video_W, video_H]).to(points.device)
237
+ # scale the (normalized) coordinates by the model's internal image size
238
+ points = points * self.image_size
239
+ points = points.to(inference_state["device"])
240
+ labels = labels.to(inference_state["device"])
241
+
242
+ if not clear_old_points:
243
+ point_inputs = point_inputs_per_frame.get(frame_idx, None)
244
+ else:
245
+ point_inputs = None
246
+ point_inputs = concat_points(point_inputs, points, labels)
247
+
248
+ point_inputs_per_frame[frame_idx] = point_inputs
249
+ mask_inputs_per_frame.pop(frame_idx, None)
250
+ # If this frame hasn't been tracked before, we treat it as an initial conditioning
251
+ # frame, meaning that the inputs points are to generate segments on this frame without
252
+ # using any memory from other frames, like in SAM. Otherwise (if it has been tracked),
253
+ # the input points will be used to correct the already tracked masks.
254
+ is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"]
255
+ # whether to track in reverse time order
256
+ if is_init_cond_frame:
257
+ reverse = False
258
+ else:
259
+ reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"]
260
+ obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
261
+ obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
262
+ # Add a frame to conditioning output if it's an initial conditioning frame or
263
+ # if the model sees all frames receiving clicks/mask as conditioning frames.
264
+ is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond
265
+ storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
266
+
267
+ # Get any previously predicted mask logits on this object and feed it along with
268
+ # the new clicks into the SAM mask decoder.
269
+ prev_sam_mask_logits = None
270
+ # lookup temporary output dict first, which contains the most recent output
271
+ # (if not found, then lookup conditioning and non-conditioning frame output)
272
+ prev_out = obj_temp_output_dict[storage_key].get(frame_idx)
273
+ if prev_out is None:
274
+ prev_out = obj_output_dict["cond_frame_outputs"].get(frame_idx)
275
+ if prev_out is None:
276
+ prev_out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx)
277
+
278
+ if prev_out is not None and prev_out["pred_masks"] is not None:
279
+ device = inference_state["device"]
280
+ prev_sam_mask_logits = prev_out["pred_masks"].to(device, non_blocking=True)
281
+ # Clamp the scale of prev_sam_mask_logits to avoid rare numerical issues.
282
+ prev_sam_mask_logits = torch.clamp(prev_sam_mask_logits, -32.0, 32.0)
283
+ current_out, _ = self._run_single_frame_inference(
284
+ inference_state=inference_state,
285
+ output_dict=obj_output_dict, # run on the slice of a single object
286
+ frame_idx=frame_idx,
287
+ batch_size=1, # run on the slice of a single object
288
+ is_init_cond_frame=is_init_cond_frame,
289
+ point_inputs=point_inputs,
290
+ mask_inputs=None,
291
+ reverse=reverse,
292
+ # Skip the memory encoder when adding clicks or mask. We execute the memory encoder
293
+ # at the beginning of `propagate_in_video` (after user finalize their clicks). This
294
+ # allows us to enforce non-overlapping constraints on all objects before encoding
295
+ # them into memory.
296
+ run_mem_encoder=False,
297
+ prev_sam_mask_logits=prev_sam_mask_logits,
298
+ )
299
+ # Add the output to the output dict (to be used as future memory)
300
+ obj_temp_output_dict[storage_key][frame_idx] = current_out
301
+
302
+ # Resize the output mask to the original video resolution
303
+ obj_ids = inference_state["obj_ids"]
304
+ consolidated_out = self._consolidate_temp_output_across_obj(
305
+ inference_state,
306
+ frame_idx,
307
+ is_cond=is_cond,
308
+ run_mem_encoder=False,
309
+ consolidate_at_video_res=True,
310
+ )
311
+ _, video_res_masks = self._get_orig_video_res_output(
312
+ inference_state, consolidated_out["pred_masks_video_res"]
313
+ )
314
+ return frame_idx, obj_ids, video_res_masks
315
+
316
+ def add_new_points(self, *args, **kwargs):
317
+ """Deprecated method. Please use `add_new_points_or_box` instead."""
318
+ return self.add_new_points_or_box(*args, **kwargs)
319
+
320
+ @torch.inference_mode()
321
+ def add_new_mask(
322
+ self,
323
+ inference_state,
324
+ frame_idx,
325
+ obj_id,
326
+ mask,
327
+ ):
328
+ """Add new mask to a frame."""
329
+ obj_idx = self._obj_id_to_idx(inference_state, obj_id)
330
+ point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx]
331
+ mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx]
332
+
333
+ if not isinstance(mask, torch.Tensor):
334
+ mask = torch.tensor(mask, dtype=torch.bool)
335
+ assert mask.dim() == 2
336
+ mask_H, mask_W = mask.shape
337
+ mask_inputs_orig = mask[None, None] # add batch and channel dimension
338
+ mask_inputs_orig = mask_inputs_orig.float().to(inference_state["device"])
339
+
340
+ # resize the mask if it doesn't match the model's image size
341
+ if mask_H != self.image_size or mask_W != self.image_size:
342
+ mask_inputs = torch.nn.functional.interpolate(
343
+ mask_inputs_orig,
344
+ size=(self.image_size, self.image_size),
345
+ align_corners=False,
346
+ mode="bilinear",
347
+ antialias=True, # use antialias for downsampling
348
+ )
349
+ mask_inputs = (mask_inputs >= 0.5).float()
350
+ else:
351
+ mask_inputs = mask_inputs_orig
352
+
353
+ mask_inputs_per_frame[frame_idx] = mask_inputs
354
+ point_inputs_per_frame.pop(frame_idx, None)
355
+ # If this frame hasn't been tracked before, we treat it as an initial conditioning
356
+ # frame, meaning that the inputs points are to generate segments on this frame without
357
+ # using any memory from other frames, like in SAM. Otherwise (if it has been tracked),
358
+ # the input points will be used to correct the already tracked masks.
359
+ is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"]
360
+ # whether to track in reverse time order
361
+ if is_init_cond_frame:
362
+ reverse = False
363
+ else:
364
+ reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"]
365
+ obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
366
+ obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
367
+ # Add a frame to conditioning output if it's an initial conditioning frame or
368
+ # if the model sees all frames receiving clicks/mask as conditioning frames.
369
+ is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond
370
+ storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
371
+
372
+ current_out, _ = self._run_single_frame_inference(
373
+ inference_state=inference_state,
374
+ output_dict=obj_output_dict, # run on the slice of a single object
375
+ frame_idx=frame_idx,
376
+ batch_size=1, # run on the slice of a single object
377
+ is_init_cond_frame=is_init_cond_frame,
378
+ point_inputs=None,
379
+ mask_inputs=mask_inputs,
380
+ reverse=reverse,
381
+ # Skip the memory encoder when adding clicks or mask. We execute the memory encoder
382
+ # at the beginning of `propagate_in_video` (after user finalize their clicks). This
383
+ # allows us to enforce non-overlapping constraints on all objects before encoding
384
+ # them into memory.
385
+ run_mem_encoder=False,
386
+ )
387
+ # Add the output to the output dict (to be used as future memory)
388
+ obj_temp_output_dict[storage_key][frame_idx] = current_out
389
+
390
+ # Resize the output mask to the original video resolution
391
+ obj_ids = inference_state["obj_ids"]
392
+ consolidated_out = self._consolidate_temp_output_across_obj(
393
+ inference_state,
394
+ frame_idx,
395
+ is_cond=is_cond,
396
+ run_mem_encoder=False,
397
+ consolidate_at_video_res=True,
398
+ )
399
+ _, video_res_masks = self._get_orig_video_res_output(
400
+ inference_state, consolidated_out["pred_masks_video_res"]
401
+ )
402
+ return frame_idx, obj_ids, video_res_masks
403
+
404
+ def _get_orig_video_res_output(self, inference_state, any_res_masks):
405
+ """
406
+ Resize the object scores to the original video resolution (video_res_masks)
407
+ and apply non-overlapping constraints for final output.
408
+ """
409
+ device = inference_state["device"]
410
+ video_H = inference_state["video_height"]
411
+ video_W = inference_state["video_width"]
412
+ any_res_masks = any_res_masks.to(device, non_blocking=True)
413
+ if any_res_masks.shape[-2:] == (video_H, video_W):
414
+ video_res_masks = any_res_masks
415
+ else:
416
+ video_res_masks = torch.nn.functional.interpolate(
417
+ any_res_masks,
418
+ size=(video_H, video_W),
419
+ mode="bilinear",
420
+ align_corners=False,
421
+ )
422
+ if self.non_overlap_masks:
423
+ video_res_masks = self._apply_non_overlapping_constraints(video_res_masks)
424
+ return any_res_masks, video_res_masks
425
+
426
+ def _consolidate_temp_output_across_obj(
427
+ self,
428
+ inference_state,
429
+ frame_idx,
430
+ is_cond,
431
+ run_mem_encoder,
432
+ consolidate_at_video_res=False,
433
+ ):
434
+ """
435
+ Consolidate the per-object temporary outputs in `temp_output_dict_per_obj` on
436
+ a frame into a single output for all objects, including
437
+ 1) fill any missing objects either from `output_dict_per_obj` (if they exist in
438
+ `output_dict_per_obj` for this frame) or leave them as placeholder values
439
+ (if they don't exist in `output_dict_per_obj` for this frame);
440
+ 2) if specified, rerun memory encoder after apply non-overlapping constraints
441
+ on the object scores.
442
+ """
443
+ batch_size = self._get_obj_num(inference_state)
444
+ storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
445
+ # Optionally, we allow consolidating the temporary outputs at the original
446
+ # video resolution (to provide a better editing experience for mask prompts).
447
+ if consolidate_at_video_res:
448
+ assert not run_mem_encoder, "memory encoder cannot run at video resolution"
449
+ consolidated_H = inference_state["video_height"]
450
+ consolidated_W = inference_state["video_width"]
451
+ consolidated_mask_key = "pred_masks_video_res"
452
+ else:
453
+ consolidated_H = consolidated_W = self.image_size // 4
454
+ consolidated_mask_key = "pred_masks"
455
+
456
+ # Initialize `consolidated_out`. Its "maskmem_features" and "maskmem_pos_enc"
457
+ # will be added when rerunning the memory encoder after applying non-overlapping
458
+ # constraints to object scores. Its "pred_masks" are prefilled with a large
459
+ # negative value (NO_OBJ_SCORE) to represent missing objects.
460
+ consolidated_out = {
461
+ "maskmem_features": None,
462
+ "maskmem_pos_enc": None,
463
+ consolidated_mask_key: torch.full(
464
+ size=(batch_size, 1, consolidated_H, consolidated_W),
465
+ fill_value=NO_OBJ_SCORE,
466
+ dtype=torch.float32,
467
+ device=inference_state["storage_device"],
468
+ ),
469
+ "obj_ptr": torch.full(
470
+ size=(batch_size, self.hidden_dim),
471
+ fill_value=NO_OBJ_SCORE,
472
+ dtype=torch.float32,
473
+ device=inference_state["device"],
474
+ ),
475
+ "object_score_logits": torch.full(
476
+ size=(batch_size, 1),
477
+ # default to 10.0 for object_score_logits, i.e. assuming the object is
478
+ # present as sigmoid(10)=1, same as in `predict_masks` of `MaskDecoder`
479
+ fill_value=10.0,
480
+ dtype=torch.float32,
481
+ device=inference_state["device"],
482
+ ),
483
+ }
484
+ empty_mask_ptr = None
485
+ for obj_idx in range(batch_size):
486
+ obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
487
+ obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
488
+ out = obj_temp_output_dict[storage_key].get(frame_idx, None)
489
+ # If the object doesn't appear in "temp_output_dict_per_obj" on this frame,
490
+ # we fall back and look up its previous output in "output_dict_per_obj".
491
+ # We look up both "cond_frame_outputs" and "non_cond_frame_outputs" in
492
+ # "output_dict_per_obj" to find a previous output for this object.
493
+ if out is None:
494
+ out = obj_output_dict["cond_frame_outputs"].get(frame_idx, None)
495
+ if out is None:
496
+ out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx, None)
497
+ # If the object doesn't appear in "output_dict_per_obj" either, we skip it
498
+ # and leave its mask scores to the default scores (i.e. the NO_OBJ_SCORE
499
+ # placeholder above) and set its object pointer to be a dummy pointer.
500
+ if out is None:
501
+ # Fill in dummy object pointers for those objects without any inputs or
502
+ # tracking outcomes on this frame (only do it under `run_mem_encoder=True`,
503
+ # i.e. when we need to build the memory for tracking).
504
+ if run_mem_encoder:
505
+ if empty_mask_ptr is None:
506
+ empty_mask_ptr = self._get_empty_mask_ptr(
507
+ inference_state, frame_idx
508
+ )
509
+ # fill object pointer with a dummy pointer (based on an empty mask)
510
+ consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = empty_mask_ptr
511
+ continue
512
+ # Add the temporary object output mask to consolidated output mask
513
+ obj_mask = out["pred_masks"]
514
+ consolidated_pred_masks = consolidated_out[consolidated_mask_key]
515
+ if obj_mask.shape[-2:] == consolidated_pred_masks.shape[-2:]:
516
+ consolidated_pred_masks[obj_idx : obj_idx + 1] = obj_mask
517
+ else:
518
+ # Resize first if temporary object mask has a different resolution
519
+ resized_obj_mask = torch.nn.functional.interpolate(
520
+ obj_mask,
521
+ size=consolidated_pred_masks.shape[-2:],
522
+ mode="bilinear",
523
+ align_corners=False,
524
+ )
525
+ consolidated_pred_masks[obj_idx : obj_idx + 1] = resized_obj_mask
526
+ consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = out["obj_ptr"]
527
+ consolidated_out["object_score_logits"][obj_idx : obj_idx + 1] = out[
528
+ "object_score_logits"
529
+ ]
530
+
531
+ # Optionally, apply non-overlapping constraints on the consolidated scores
532
+ # and rerun the memory encoder
533
+ if run_mem_encoder:
534
+ device = inference_state["device"]
535
+ high_res_masks = torch.nn.functional.interpolate(
536
+ consolidated_out["pred_masks"].to(device, non_blocking=True),
537
+ size=(self.image_size, self.image_size),
538
+ mode="bilinear",
539
+ align_corners=False,
540
+ )
541
+ if self.non_overlap_masks_for_mem_enc:
542
+ high_res_masks = self._apply_non_overlapping_constraints(high_res_masks)
543
+ maskmem_features, maskmem_pos_enc = self._run_memory_encoder(
544
+ inference_state=inference_state,
545
+ frame_idx=frame_idx,
546
+ batch_size=batch_size,
547
+ high_res_masks=high_res_masks,
548
+ object_score_logits=consolidated_out["object_score_logits"],
549
+ is_mask_from_pts=True, # these frames are what the user interacted with
550
+ )
551
+ consolidated_out["maskmem_features"] = maskmem_features
552
+ consolidated_out["maskmem_pos_enc"] = maskmem_pos_enc
553
+
554
+ return consolidated_out
555
+
556
+ def _get_empty_mask_ptr(self, inference_state, frame_idx):
557
+ """Get a dummy object pointer based on an empty mask on the current frame."""
558
+ # A dummy (empty) mask with a single object
559
+ batch_size = 1
560
+ mask_inputs = torch.zeros(
561
+ (batch_size, 1, self.image_size, self.image_size),
562
+ dtype=torch.float32,
563
+ device=inference_state["device"],
564
+ )
565
+
566
+ # Retrieve correct image features
567
+ (
568
+ _,
569
+ _,
570
+ current_vision_feats,
571
+ current_vision_pos_embeds,
572
+ feat_sizes,
573
+ ) = self._get_image_feature(inference_state, frame_idx, batch_size)
574
+
575
+ # Feed the empty mask and image feature above to get a dummy object pointer
576
+ current_out = self.track_step(
577
+ frame_idx=frame_idx,
578
+ is_init_cond_frame=True,
579
+ current_vision_feats=current_vision_feats,
580
+ current_vision_pos_embeds=current_vision_pos_embeds,
581
+ feat_sizes=feat_sizes,
582
+ point_inputs=None,
583
+ mask_inputs=mask_inputs,
584
+ output_dict={},
585
+ num_frames=inference_state["num_frames"],
586
+ track_in_reverse=False,
587
+ run_mem_encoder=False,
588
+ prev_sam_mask_logits=None,
589
+ )
590
+ return current_out["obj_ptr"]
591
+
592
+ @torch.inference_mode()
593
+ def propagate_in_video_preflight(self, inference_state):
594
+ """Prepare inference_state and consolidate temporary outputs before tracking."""
595
+ # Tracking has started and we don't allow adding new objects until session is reset.
596
+ inference_state["tracking_has_started"] = True
597
+ batch_size = self._get_obj_num(inference_state)
598
+
599
+ # Consolidate per-object temporary outputs in "temp_output_dict_per_obj" and
600
+ # add them into "output_dict".
601
+ temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
602
+ output_dict = inference_state["output_dict"]
603
+ # "consolidated_frame_inds" contains indices of those frames where consolidated
604
+ # temporary outputs have been added (either in this call or any previous calls
605
+ # to `propagate_in_video_preflight`).
606
+ consolidated_frame_inds = inference_state["consolidated_frame_inds"]
607
+ for is_cond in [False, True]:
608
+ # Separately consolidate conditioning and non-conditioning temp outputs
609
+ storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
610
+ # Find all the frames that contain temporary outputs for any objects
611
+ # (these should be the frames that have just received clicks for mask inputs
612
+ # via `add_new_points_or_box` or `add_new_mask`)
613
+ temp_frame_inds = set()
614
+ for obj_temp_output_dict in temp_output_dict_per_obj.values():
615
+ temp_frame_inds.update(obj_temp_output_dict[storage_key].keys())
616
+ consolidated_frame_inds[storage_key].update(temp_frame_inds)
617
+ # consolidate the temporary output across all objects on this frame
618
+ for frame_idx in temp_frame_inds:
619
+ consolidated_out = self._consolidate_temp_output_across_obj(
620
+ inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=True
621
+ )
622
+ # merge them into "output_dict" and also create per-object slices
623
+ output_dict[storage_key][frame_idx] = consolidated_out
624
+ self._add_output_per_object(
625
+ inference_state, frame_idx, consolidated_out, storage_key
626
+ )
627
+ clear_non_cond_mem = self.clear_non_cond_mem_around_input and (
628
+ self.clear_non_cond_mem_for_multi_obj or batch_size <= 1
629
+ )
630
+ if clear_non_cond_mem:
631
+ # clear non-conditioning memory of the surrounding frames
632
+ self._clear_non_cond_mem_around_input(inference_state, frame_idx)
633
+
634
+ # clear temporary outputs in `temp_output_dict_per_obj`
635
+ for obj_temp_output_dict in temp_output_dict_per_obj.values():
636
+ obj_temp_output_dict[storage_key].clear()
637
+
638
+ # edge case: if an output is added to "cond_frame_outputs", we remove any prior
639
+ # output on the same frame in "non_cond_frame_outputs"
640
+ for frame_idx in output_dict["cond_frame_outputs"]:
641
+ output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
642
+ for obj_output_dict in inference_state["output_dict_per_obj"].values():
643
+ for frame_idx in obj_output_dict["cond_frame_outputs"]:
644
+ obj_output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
645
+ for frame_idx in consolidated_frame_inds["cond_frame_outputs"]:
646
+ assert frame_idx in output_dict["cond_frame_outputs"]
647
+ consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx)
648
+
649
+ # Make sure that the frame indices in "consolidated_frame_inds" are exactly those frames
650
+ # with either points or mask inputs (which should be true under a correct workflow).
651
+ all_consolidated_frame_inds = (
652
+ consolidated_frame_inds["cond_frame_outputs"]
653
+ | consolidated_frame_inds["non_cond_frame_outputs"]
654
+ )
655
+ input_frames_inds = set()
656
+ for point_inputs_per_frame in inference_state["point_inputs_per_obj"].values():
657
+ input_frames_inds.update(point_inputs_per_frame.keys())
658
+ for mask_inputs_per_frame in inference_state["mask_inputs_per_obj"].values():
659
+ input_frames_inds.update(mask_inputs_per_frame.keys())
660
+ assert all_consolidated_frame_inds == input_frames_inds
661
+
662
+ @torch.inference_mode()
663
+ def propagate_in_video(
664
+ self,
665
+ inference_state,
666
+ start_frame_idx=None,
667
+ max_frame_num_to_track=None,
668
+ reverse=False,
669
+ ):
670
+ """Propagate the input points across frames to track in the entire video."""
671
+ self.propagate_in_video_preflight(inference_state)
672
+
673
+ output_dict = inference_state["output_dict"]
674
+ consolidated_frame_inds = inference_state["consolidated_frame_inds"]
675
+ obj_ids = inference_state["obj_ids"]
676
+ num_frames = inference_state["num_frames"]
677
+ batch_size = self._get_obj_num(inference_state)
678
+ if len(output_dict["cond_frame_outputs"]) == 0:
679
+ raise RuntimeError("No points are provided; please add points first")
680
+ clear_non_cond_mem = self.clear_non_cond_mem_around_input and (
681
+ self.clear_non_cond_mem_for_multi_obj or batch_size <= 1
682
+ )
683
+
684
+ # set start index, end index, and processing order
685
+ if start_frame_idx is None:
686
+ # default: start from the earliest frame with input points
687
+ start_frame_idx = min(output_dict["cond_frame_outputs"])
688
+ if max_frame_num_to_track is None:
689
+ # default: track all the frames in the video
690
+ max_frame_num_to_track = num_frames
691
+ if reverse:
692
+ end_frame_idx = max(start_frame_idx - max_frame_num_to_track, 0)
693
+ if start_frame_idx > 0:
694
+ processing_order = range(start_frame_idx, end_frame_idx - 1, -1)
695
+ else:
696
+ processing_order = [] # skip reverse tracking if starting from frame 0
697
+ else:
698
+ end_frame_idx = min(
699
+ start_frame_idx + max_frame_num_to_track, num_frames - 1
700
+ )
701
+ processing_order = range(start_frame_idx, end_frame_idx + 1)
702
+
703
+ for frame_idx in tqdm(processing_order, desc="propagate in video"):
704
+ # We skip those frames already in consolidated outputs (these are frames
705
+ # that received input clicks or mask). Note that we cannot directly run
706
+ # batched forward on them via `_run_single_frame_inference` because the
707
+ # number of clicks on each object might be different.
708
+ if frame_idx in consolidated_frame_inds["cond_frame_outputs"]:
709
+ storage_key = "cond_frame_outputs"
710
+ current_out = output_dict[storage_key][frame_idx]
711
+ pred_masks = current_out["pred_masks"]
712
+ if clear_non_cond_mem:
713
+ # clear non-conditioning memory of the surrounding frames
714
+ self._clear_non_cond_mem_around_input(inference_state, frame_idx)
715
+ elif frame_idx in consolidated_frame_inds["non_cond_frame_outputs"]:
716
+ storage_key = "non_cond_frame_outputs"
717
+ current_out = output_dict[storage_key][frame_idx]
718
+ pred_masks = current_out["pred_masks"]
719
+ else:
720
+ storage_key = "non_cond_frame_outputs"
721
+ current_out, pred_masks = self._run_single_frame_inference(
722
+ inference_state=inference_state,
723
+ output_dict=output_dict,
724
+ frame_idx=frame_idx,
725
+ batch_size=batch_size,
726
+ is_init_cond_frame=False,
727
+ point_inputs=None,
728
+ mask_inputs=None,
729
+ reverse=reverse,
730
+ run_mem_encoder=True,
731
+ )
732
+ output_dict[storage_key][frame_idx] = current_out
733
+ # Create slices of per-object outputs for subsequent interaction with each
734
+ # individual object after tracking.
735
+ self._add_output_per_object(
736
+ inference_state, frame_idx, current_out, storage_key
737
+ )
738
+ inference_state["frames_already_tracked"][frame_idx] = {"reverse": reverse}
739
+
740
+ # Resize the output mask to the original video resolution (we directly use
741
+ # the mask scores on GPU for output to avoid any CPU conversion in between)
742
+ _, video_res_masks = self._get_orig_video_res_output(
743
+ inference_state, pred_masks
744
+ )
745
+ yield frame_idx, obj_ids, video_res_masks
746
+
747
+ def _add_output_per_object(
748
+ self, inference_state, frame_idx, current_out, storage_key
749
+ ):
750
+ """
751
+ Split a multi-object output into per-object output slices and add them into
752
+ `output_dict_per_obj`. The resulting slices share the same tensor storage.
753
+ """
754
+ maskmem_features = current_out["maskmem_features"]
755
+ assert maskmem_features is None or isinstance(maskmem_features, torch.Tensor)
756
+
757
+ maskmem_pos_enc = current_out["maskmem_pos_enc"]
758
+ assert maskmem_pos_enc is None or isinstance(maskmem_pos_enc, list)
759
+
760
+ output_dict_per_obj = inference_state["output_dict_per_obj"]
761
+ for obj_idx, obj_output_dict in output_dict_per_obj.items():
762
+ obj_slice = slice(obj_idx, obj_idx + 1)
763
+ obj_out = {
764
+ "maskmem_features": None,
765
+ "maskmem_pos_enc": None,
766
+ "pred_masks": current_out["pred_masks"][obj_slice],
767
+ "obj_ptr": current_out["obj_ptr"][obj_slice],
768
+ "object_score_logits": current_out["object_score_logits"][obj_slice],
769
+ }
770
+ if maskmem_features is not None:
771
+ obj_out["maskmem_features"] = maskmem_features[obj_slice]
772
+ if maskmem_pos_enc is not None:
773
+ obj_out["maskmem_pos_enc"] = [x[obj_slice] for x in maskmem_pos_enc]
774
+ obj_output_dict[storage_key][frame_idx] = obj_out
775
+
776
+ @torch.inference_mode()
777
+ def clear_all_prompts_in_frame(
778
+ self, inference_state, frame_idx, obj_id, need_output=True
779
+ ):
780
+ """Remove all input points or mask in a specific frame for a given object."""
781
+ obj_idx = self._obj_id_to_idx(inference_state, obj_id)
782
+
783
+ # Clear the conditioning information on the given frame
784
+ inference_state["point_inputs_per_obj"][obj_idx].pop(frame_idx, None)
785
+ inference_state["mask_inputs_per_obj"][obj_idx].pop(frame_idx, None)
786
+
787
+ temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
788
+ temp_output_dict_per_obj[obj_idx]["cond_frame_outputs"].pop(frame_idx, None)
789
+ temp_output_dict_per_obj[obj_idx]["non_cond_frame_outputs"].pop(frame_idx, None)
790
+
791
+ # Check and see if there are still any inputs left on this frame
792
+ batch_size = self._get_obj_num(inference_state)
793
+ frame_has_input = False
794
+ for obj_idx2 in range(batch_size):
795
+ if frame_idx in inference_state["point_inputs_per_obj"][obj_idx2]:
796
+ frame_has_input = True
797
+ break
798
+ if frame_idx in inference_state["mask_inputs_per_obj"][obj_idx2]:
799
+ frame_has_input = True
800
+ break
801
+
802
+ # If this frame has no remaining inputs for any objects, we further clear its
803
+ # conditioning frame status
804
+ if not frame_has_input:
805
+ output_dict = inference_state["output_dict"]
806
+ consolidated_frame_inds = inference_state["consolidated_frame_inds"]
807
+ consolidated_frame_inds["cond_frame_outputs"].discard(frame_idx)
808
+ consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx)
809
+ # Remove the frame's conditioning output (possibly downgrading it to non-conditioning)
810
+ out = output_dict["cond_frame_outputs"].pop(frame_idx, None)
811
+ if out is not None:
812
+ # The frame is not a conditioning frame anymore since it's not receiving inputs,
813
+ # so we "downgrade" its output (if exists) to a non-conditioning frame output.
814
+ output_dict["non_cond_frame_outputs"][frame_idx] = out
815
+ inference_state["frames_already_tracked"].pop(frame_idx, None)
816
+ # Similarly, do it for the sliced output on each object.
817
+ for obj_idx2 in range(batch_size):
818
+ obj_output_dict = inference_state["output_dict_per_obj"][obj_idx2]
819
+ obj_out = obj_output_dict["cond_frame_outputs"].pop(frame_idx, None)
820
+ if obj_out is not None:
821
+ obj_output_dict["non_cond_frame_outputs"][frame_idx] = obj_out
822
+
823
+ # If all the conditioning frames have been removed, we also clear the tracking outputs
824
+ if len(output_dict["cond_frame_outputs"]) == 0:
825
+ self._reset_tracking_results(inference_state)
826
+
827
+ if not need_output:
828
+ return
829
+ # Finally, output updated masks per object (after removing the inputs above)
830
+ obj_ids = inference_state["obj_ids"]
831
+ is_cond = any(
832
+ frame_idx in obj_temp_output_dict["cond_frame_outputs"]
833
+ for obj_temp_output_dict in temp_output_dict_per_obj.values()
834
+ )
835
+ consolidated_out = self._consolidate_temp_output_across_obj(
836
+ inference_state,
837
+ frame_idx,
838
+ is_cond=is_cond,
839
+ run_mem_encoder=False,
840
+ consolidate_at_video_res=True,
841
+ )
842
+ _, video_res_masks = self._get_orig_video_res_output(
843
+ inference_state, consolidated_out["pred_masks_video_res"]
844
+ )
845
+ return frame_idx, obj_ids, video_res_masks
846
+
847
+ @torch.inference_mode()
848
+ def reset_state(self, inference_state):
849
+ """Remove all input points or mask in all frames throughout the video."""
850
+ self._reset_tracking_results(inference_state)
851
+ # Remove all object ids
852
+ inference_state["obj_id_to_idx"].clear()
853
+ inference_state["obj_idx_to_id"].clear()
854
+ inference_state["obj_ids"].clear()
855
+ inference_state["point_inputs_per_obj"].clear()
856
+ inference_state["mask_inputs_per_obj"].clear()
857
+ inference_state["output_dict_per_obj"].clear()
858
+ inference_state["temp_output_dict_per_obj"].clear()
859
+
860
+ def _reset_tracking_results(self, inference_state):
861
+ """Reset all tracking inputs and results across the videos."""
862
+ for v in inference_state["point_inputs_per_obj"].values():
863
+ v.clear()
864
+ for v in inference_state["mask_inputs_per_obj"].values():
865
+ v.clear()
866
+ for v in inference_state["output_dict_per_obj"].values():
867
+ v["cond_frame_outputs"].clear()
868
+ v["non_cond_frame_outputs"].clear()
869
+ for v in inference_state["temp_output_dict_per_obj"].values():
870
+ v["cond_frame_outputs"].clear()
871
+ v["non_cond_frame_outputs"].clear()
872
+ inference_state["output_dict"]["cond_frame_outputs"].clear()
873
+ inference_state["output_dict"]["non_cond_frame_outputs"].clear()
874
+ inference_state["consolidated_frame_inds"]["cond_frame_outputs"].clear()
875
+ inference_state["consolidated_frame_inds"]["non_cond_frame_outputs"].clear()
876
+ inference_state["tracking_has_started"] = False
877
+ inference_state["frames_already_tracked"].clear()
878
+
879
+ def _get_image_feature(self, inference_state, frame_idx, batch_size):
880
+ """Compute the image features on a given frame."""
881
+ # Look up in the cache first
882
+ image, backbone_out = inference_state["cached_features"].get(
883
+ frame_idx, (None, None)
884
+ )
885
+ if backbone_out is None:
886
+ # Cache miss -- we will run inference on a single image
887
+ device = inference_state["device"]
888
+ image = inference_state["images"][frame_idx].to(device).float().unsqueeze(0)
889
+ backbone_out = self.forward_image(image)
890
+ # Cache the most recent frame's feature (for repeated interactions with
891
+ # a frame; we can use an LRU cache for more frames in the future).
892
+ inference_state["cached_features"] = {frame_idx: (image, backbone_out)}
893
+
894
+ # expand the features to have the same dimension as the number of objects
895
+ expanded_image = image.expand(batch_size, -1, -1, -1)
896
+ expanded_backbone_out = {
897
+ "backbone_fpn": backbone_out["backbone_fpn"].copy(),
898
+ "vision_pos_enc": backbone_out["vision_pos_enc"].copy(),
899
+ }
900
+ for i, feat in enumerate(expanded_backbone_out["backbone_fpn"]):
901
+ expanded_backbone_out["backbone_fpn"][i] = feat.expand(
902
+ batch_size, -1, -1, -1
903
+ )
904
+ for i, pos in enumerate(expanded_backbone_out["vision_pos_enc"]):
905
+ pos = pos.expand(batch_size, -1, -1, -1)
906
+ expanded_backbone_out["vision_pos_enc"][i] = pos
907
+
908
+ features = self._prepare_backbone_features(expanded_backbone_out)
909
+ features = (expanded_image,) + features
910
+ return features
911
+
912
+ def _run_single_frame_inference(
913
+ self,
914
+ inference_state,
915
+ output_dict,
916
+ frame_idx,
917
+ batch_size,
918
+ is_init_cond_frame,
919
+ point_inputs,
920
+ mask_inputs,
921
+ reverse,
922
+ run_mem_encoder,
923
+ prev_sam_mask_logits=None,
924
+ ):
925
+ """Run tracking on a single frame based on current inputs and previous memory."""
926
+ # Retrieve correct image features
927
+ (
928
+ _,
929
+ _,
930
+ current_vision_feats,
931
+ current_vision_pos_embeds,
932
+ feat_sizes,
933
+ ) = self._get_image_feature(inference_state, frame_idx, batch_size)
934
+
935
+ # point and mask should not appear as input simultaneously on the same frame
936
+ assert point_inputs is None or mask_inputs is None
937
+ current_out = self.track_step(
938
+ frame_idx=frame_idx,
939
+ is_init_cond_frame=is_init_cond_frame,
940
+ current_vision_feats=current_vision_feats,
941
+ current_vision_pos_embeds=current_vision_pos_embeds,
942
+ feat_sizes=feat_sizes,
943
+ point_inputs=point_inputs,
944
+ mask_inputs=mask_inputs,
945
+ output_dict=output_dict,
946
+ num_frames=inference_state["num_frames"],
947
+ track_in_reverse=reverse,
948
+ run_mem_encoder=run_mem_encoder,
949
+ prev_sam_mask_logits=prev_sam_mask_logits,
950
+ )
951
+
952
+ # optionally offload the output to CPU memory to save GPU space
953
+ storage_device = inference_state["storage_device"]
954
+ maskmem_features = current_out["maskmem_features"]
955
+ if maskmem_features is not None:
956
+ maskmem_features = maskmem_features.to(torch.bfloat16)
957
+ maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
958
+ pred_masks_gpu = current_out["pred_masks"]
959
+ # potentially fill holes in the predicted masks
960
+ if self.fill_hole_area > 0:
961
+ pred_masks_gpu = fill_holes_in_mask_scores(
962
+ pred_masks_gpu, self.fill_hole_area
963
+ )
964
+ pred_masks = pred_masks_gpu.to(storage_device, non_blocking=True)
965
+ # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
966
+ maskmem_pos_enc = self._get_maskmem_pos_enc(inference_state, current_out)
967
+ # object pointer is a small tensor, so we always keep it on GPU memory for fast access
968
+ obj_ptr = current_out["obj_ptr"]
969
+ object_score_logits = current_out["object_score_logits"]
970
+ # make a compact version of this frame's output to reduce the state size
971
+ compact_current_out = {
972
+ "maskmem_features": maskmem_features,
973
+ "maskmem_pos_enc": maskmem_pos_enc,
974
+ "pred_masks": pred_masks,
975
+ "obj_ptr": obj_ptr,
976
+ "object_score_logits": object_score_logits,
977
+ }
978
+ return compact_current_out, pred_masks_gpu
979
+
980
+ def _run_memory_encoder(
981
+ self,
982
+ inference_state,
983
+ frame_idx,
984
+ batch_size,
985
+ high_res_masks,
986
+ object_score_logits,
987
+ is_mask_from_pts,
988
+ ):
989
+ """
990
+ Run the memory encoder on `high_res_masks`. This is usually after applying
991
+ non-overlapping constraints to object scores. Since their scores changed, their
992
+ memory also need to be computed again with the memory encoder.
993
+ """
994
+ # Retrieve correct image features
995
+ _, _, current_vision_feats, _, feat_sizes = self._get_image_feature(
996
+ inference_state, frame_idx, batch_size
997
+ )
998
+ maskmem_features, maskmem_pos_enc = self._encode_new_memory(
999
+ current_vision_feats=current_vision_feats,
1000
+ feat_sizes=feat_sizes,
1001
+ pred_masks_high_res=high_res_masks,
1002
+ object_score_logits=object_score_logits,
1003
+ is_mask_from_pts=is_mask_from_pts,
1004
+ )
1005
+
1006
+ # optionally offload the output to CPU memory to save GPU space
1007
+ storage_device = inference_state["storage_device"]
1008
+ maskmem_features = maskmem_features.to(torch.bfloat16)
1009
+ maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
1010
+ # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
1011
+ maskmem_pos_enc = self._get_maskmem_pos_enc(
1012
+ inference_state, {"maskmem_pos_enc": maskmem_pos_enc}
1013
+ )
1014
+ return maskmem_features, maskmem_pos_enc
1015
+
1016
+ def _get_maskmem_pos_enc(self, inference_state, current_out):
1017
+ """
1018
+ `maskmem_pos_enc` is the same across frames and objects, so we cache it as
1019
+ a constant in the inference session to reduce session storage size.
1020
+ """
1021
+ model_constants = inference_state["constants"]
1022
+ # "out_maskmem_pos_enc" should be either a list of tensors or None
1023
+ out_maskmem_pos_enc = current_out["maskmem_pos_enc"]
1024
+ if out_maskmem_pos_enc is not None:
1025
+ if "maskmem_pos_enc" not in model_constants:
1026
+ assert isinstance(out_maskmem_pos_enc, list)
1027
+ # only take the slice for one object, since it's same across objects
1028
+ maskmem_pos_enc = [x[0:1].clone() for x in out_maskmem_pos_enc]
1029
+ model_constants["maskmem_pos_enc"] = maskmem_pos_enc
1030
+ else:
1031
+ maskmem_pos_enc = model_constants["maskmem_pos_enc"]
1032
+ # expand the cached maskmem_pos_enc to the actual batch size
1033
+ batch_size = out_maskmem_pos_enc[0].size(0)
1034
+ expanded_maskmem_pos_enc = [
1035
+ x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc
1036
+ ]
1037
+ else:
1038
+ expanded_maskmem_pos_enc = None
1039
+ return expanded_maskmem_pos_enc
1040
+
1041
+ @torch.inference_mode()
1042
+ def remove_object(self, inference_state, obj_id, strict=False, need_output=True):
1043
+ """
1044
+ Remove an object id from the tracking state. If strict is True, we check whether
1045
+ the object id actually exists and raise an error if it doesn't exist.
1046
+ """
1047
+ old_obj_idx_to_rm = inference_state["obj_id_to_idx"].get(obj_id, None)
1048
+ updated_frames = []
1049
+ # Check whether this object_id to remove actually exists and possibly raise an error.
1050
+ if old_obj_idx_to_rm is None:
1051
+ if not strict:
1052
+ return inference_state["obj_ids"], updated_frames
1053
+ raise RuntimeError(
1054
+ f"Cannot remove object id {obj_id} as it doesn't exist. "
1055
+ f"All existing object ids: {inference_state['obj_ids']}."
1056
+ )
1057
+
1058
+ # If this is the only remaining object id, we simply reset the state.
1059
+ if len(inference_state["obj_id_to_idx"]) == 1:
1060
+ self.reset_state(inference_state)
1061
+ return inference_state["obj_ids"], updated_frames
1062
+
1063
+ # There are still remaining objects after removing this object id. In this case,
1064
+ # we need to delete the object storage from inference state tensors.
1065
+ # Step 0: clear the input on those frames where this object id has point or mask input
1066
+ # (note that this step is required as it might downgrade conditioning frames to
1067
+ # non-conditioning ones)
1068
+ obj_input_frames_inds = set()
1069
+ obj_input_frames_inds.update(
1070
+ inference_state["point_inputs_per_obj"][old_obj_idx_to_rm]
1071
+ )
1072
+ obj_input_frames_inds.update(
1073
+ inference_state["mask_inputs_per_obj"][old_obj_idx_to_rm]
1074
+ )
1075
+ for frame_idx in obj_input_frames_inds:
1076
+ self.clear_all_prompts_in_frame(
1077
+ inference_state, frame_idx, obj_id, need_output=False
1078
+ )
1079
+
1080
+ # Step 1: Update the object id mapping (note that it must be done after Step 0,
1081
+ # since Step 0 still requires the old object id mappings in inference_state)
1082
+ old_obj_ids = inference_state["obj_ids"]
1083
+ old_obj_inds = list(range(len(old_obj_ids)))
1084
+ remain_old_obj_inds = old_obj_inds.copy()
1085
+ remain_old_obj_inds.remove(old_obj_idx_to_rm)
1086
+ new_obj_ids = [old_obj_ids[old_idx] for old_idx in remain_old_obj_inds]
1087
+ new_obj_inds = list(range(len(new_obj_ids)))
1088
+ # build new mappings
1089
+ old_idx_to_new_idx = dict(zip(remain_old_obj_inds, new_obj_inds))
1090
+ inference_state["obj_id_to_idx"] = dict(zip(new_obj_ids, new_obj_inds))
1091
+ inference_state["obj_idx_to_id"] = dict(zip(new_obj_inds, new_obj_ids))
1092
+ inference_state["obj_ids"] = new_obj_ids
1093
+
1094
+ # Step 2: For per-object tensor storage, we shift their obj_idx in the dict keys.
1095
+ # (note that "consolidated_frame_inds" doesn't need to be updated in this step as
1096
+ # it's already handled in Step 0)
1097
+ def _map_keys(container):
1098
+ new_kvs = []
1099
+ for k in old_obj_inds:
1100
+ v = container.pop(k)
1101
+ if k in old_idx_to_new_idx:
1102
+ new_kvs.append((old_idx_to_new_idx[k], v))
1103
+ container.update(new_kvs)
1104
+
1105
+ _map_keys(inference_state["point_inputs_per_obj"])
1106
+ _map_keys(inference_state["mask_inputs_per_obj"])
1107
+ _map_keys(inference_state["output_dict_per_obj"])
1108
+ _map_keys(inference_state["temp_output_dict_per_obj"])
1109
+
1110
+ # Step 3: For packed tensor storage, we index the remaining ids and rebuild the per-object slices.
1111
+ def _slice_state(output_dict, storage_key):
1112
+ for frame_idx, out in output_dict[storage_key].items():
1113
+ out["maskmem_features"] = out["maskmem_features"][remain_old_obj_inds]
1114
+ out["maskmem_pos_enc"] = [
1115
+ x[remain_old_obj_inds] for x in out["maskmem_pos_enc"]
1116
+ ]
1117
+ # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
1118
+ out["maskmem_pos_enc"] = self._get_maskmem_pos_enc(inference_state, out)
1119
+ out["pred_masks"] = out["pred_masks"][remain_old_obj_inds]
1120
+ out["obj_ptr"] = out["obj_ptr"][remain_old_obj_inds]
1121
+ out["object_score_logits"] = out["object_score_logits"][
1122
+ remain_old_obj_inds
1123
+ ]
1124
+ # also update the per-object slices
1125
+ self._add_output_per_object(
1126
+ inference_state, frame_idx, out, storage_key
1127
+ )
1128
+
1129
+ _slice_state(inference_state["output_dict"], "cond_frame_outputs")
1130
+ _slice_state(inference_state["output_dict"], "non_cond_frame_outputs")
1131
+
1132
+ # Step 4: Further collect the outputs on those frames in `obj_input_frames_inds`, which
1133
+ # could show an updated mask for objects previously occluded by the object being removed
1134
+ if need_output:
1135
+ temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
1136
+ for frame_idx in obj_input_frames_inds:
1137
+ is_cond = any(
1138
+ frame_idx in obj_temp_output_dict["cond_frame_outputs"]
1139
+ for obj_temp_output_dict in temp_output_dict_per_obj.values()
1140
+ )
1141
+ consolidated_out = self._consolidate_temp_output_across_obj(
1142
+ inference_state,
1143
+ frame_idx,
1144
+ is_cond=is_cond,
1145
+ run_mem_encoder=False,
1146
+ consolidate_at_video_res=True,
1147
+ )
1148
+ _, video_res_masks = self._get_orig_video_res_output(
1149
+ inference_state, consolidated_out["pred_masks_video_res"]
1150
+ )
1151
+ updated_frames.append((frame_idx, video_res_masks))
1152
+
1153
+ return inference_state["obj_ids"], updated_frames
1154
+
1155
+ def _clear_non_cond_mem_around_input(self, inference_state, frame_idx):
1156
+ """
1157
+ Remove the non-conditioning memory around the input frame. When users provide
1158
+ correction clicks, the surrounding frames' non-conditioning memories can still
1159
+ contain outdated object appearance information and could confuse the model.
1160
+
1161
+ This method clears those non-conditioning memories surrounding the interacted
1162
+ frame to avoid giving the model both old and new information about the object.
1163
+ """
1164
+ r = self.memory_temporal_stride_for_eval
1165
+ frame_idx_begin = frame_idx - r * self.num_maskmem
1166
+ frame_idx_end = frame_idx + r * self.num_maskmem
1167
+ output_dict = inference_state["output_dict"]
1168
+ non_cond_frame_outputs = output_dict["non_cond_frame_outputs"]
1169
+ for t in range(frame_idx_begin, frame_idx_end + 1):
1170
+ non_cond_frame_outputs.pop(t, None)
1171
+ for obj_output_dict in inference_state["output_dict_per_obj"].values():
1172
+ obj_output_dict["non_cond_frame_outputs"].pop(t, None)
sam2/utils/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
sam2/utils/amg.py ADDED
@@ -0,0 +1,348 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import math
8
+ from copy import deepcopy
9
+ from itertools import product
10
+ from typing import Any, Dict, Generator, ItemsView, List, Tuple
11
+
12
+ import numpy as np
13
+ import torch
14
+
15
+ # Very lightly adapted from https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/utils/amg.py
16
+
17
+
18
+ class MaskData:
19
+ """
20
+ A structure for storing masks and their related data in batched format.
21
+ Implements basic filtering and concatenation.
22
+ """
23
+
24
+ def __init__(self, **kwargs) -> None:
25
+ for v in kwargs.values():
26
+ assert isinstance(
27
+ v, (list, np.ndarray, torch.Tensor)
28
+ ), "MaskData only supports list, numpy arrays, and torch tensors."
29
+ self._stats = dict(**kwargs)
30
+
31
+ def __setitem__(self, key: str, item: Any) -> None:
32
+ assert isinstance(
33
+ item, (list, np.ndarray, torch.Tensor)
34
+ ), "MaskData only supports list, numpy arrays, and torch tensors."
35
+ self._stats[key] = item
36
+
37
+ def __delitem__(self, key: str) -> None:
38
+ del self._stats[key]
39
+
40
+ def __getitem__(self, key: str) -> Any:
41
+ return self._stats[key]
42
+
43
+ def items(self) -> ItemsView[str, Any]:
44
+ return self._stats.items()
45
+
46
+ def filter(self, keep: torch.Tensor) -> None:
47
+ for k, v in self._stats.items():
48
+ if v is None:
49
+ self._stats[k] = None
50
+ elif isinstance(v, torch.Tensor):
51
+ self._stats[k] = v[torch.as_tensor(keep, device=v.device)]
52
+ elif isinstance(v, np.ndarray):
53
+ self._stats[k] = v[keep.detach().cpu().numpy()]
54
+ elif isinstance(v, list) and keep.dtype == torch.bool:
55
+ self._stats[k] = [a for i, a in enumerate(v) if keep[i]]
56
+ elif isinstance(v, list):
57
+ self._stats[k] = [v[i] for i in keep]
58
+ else:
59
+ raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
60
+
61
+ def cat(self, new_stats: "MaskData") -> None:
62
+ for k, v in new_stats.items():
63
+ if k not in self._stats or self._stats[k] is None:
64
+ self._stats[k] = deepcopy(v)
65
+ elif isinstance(v, torch.Tensor):
66
+ self._stats[k] = torch.cat([self._stats[k], v], dim=0)
67
+ elif isinstance(v, np.ndarray):
68
+ self._stats[k] = np.concatenate([self._stats[k], v], axis=0)
69
+ elif isinstance(v, list):
70
+ self._stats[k] = self._stats[k] + deepcopy(v)
71
+ else:
72
+ raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
73
+
74
+ def to_numpy(self) -> None:
75
+ for k, v in self._stats.items():
76
+ if isinstance(v, torch.Tensor):
77
+ self._stats[k] = v.float().detach().cpu().numpy()
78
+
79
+
80
+ def is_box_near_crop_edge(
81
+ boxes: torch.Tensor, crop_box: List[int], orig_box: List[int], atol: float = 20.0
82
+ ) -> torch.Tensor:
83
+ """Filter masks at the edge of a crop, but not at the edge of the original image."""
84
+ crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device)
85
+ orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device)
86
+ boxes = uncrop_boxes_xyxy(boxes, crop_box).float()
87
+ near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0)
88
+ near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0)
89
+ near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge)
90
+ return torch.any(near_crop_edge, dim=1)
91
+
92
+
93
+ def box_xyxy_to_xywh(box_xyxy: torch.Tensor) -> torch.Tensor:
94
+ box_xywh = deepcopy(box_xyxy)
95
+ box_xywh[2] = box_xywh[2] - box_xywh[0]
96
+ box_xywh[3] = box_xywh[3] - box_xywh[1]
97
+ return box_xywh
98
+
99
+
100
+ def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
101
+ assert len(args) > 0 and all(
102
+ len(a) == len(args[0]) for a in args
103
+ ), "Batched iteration must have inputs of all the same size."
104
+ n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
105
+ for b in range(n_batches):
106
+ yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args]
107
+
108
+
109
+ def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]:
110
+ """
111
+ Encodes masks to an uncompressed RLE, in the format expected by
112
+ pycoco tools.
113
+ """
114
+ # Put in fortran order and flatten h,w
115
+ b, h, w = tensor.shape
116
+ tensor = tensor.permute(0, 2, 1).flatten(1)
117
+
118
+ # Compute change indices
119
+ diff = tensor[:, 1:] ^ tensor[:, :-1]
120
+ change_indices = diff.nonzero()
121
+
122
+ # Encode run length
123
+ out = []
124
+ for i in range(b):
125
+ cur_idxs = change_indices[change_indices[:, 0] == i, 1]
126
+ cur_idxs = torch.cat(
127
+ [
128
+ torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device),
129
+ cur_idxs + 1,
130
+ torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device),
131
+ ]
132
+ )
133
+ btw_idxs = cur_idxs[1:] - cur_idxs[:-1]
134
+ counts = [] if tensor[i, 0] == 0 else [0]
135
+ counts.extend(btw_idxs.detach().cpu().tolist())
136
+ out.append({"size": [h, w], "counts": counts})
137
+ return out
138
+
139
+
140
+ def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray:
141
+ """Compute a binary mask from an uncompressed RLE."""
142
+ h, w = rle["size"]
143
+ mask = np.empty(h * w, dtype=bool)
144
+ idx = 0
145
+ parity = False
146
+ for count in rle["counts"]:
147
+ mask[idx : idx + count] = parity
148
+ idx += count
149
+ parity ^= True
150
+ mask = mask.reshape(w, h)
151
+ return mask.transpose() # Put in C order
152
+
153
+
154
+ def area_from_rle(rle: Dict[str, Any]) -> int:
155
+ return sum(rle["counts"][1::2])
156
+
157
+
158
+ def calculate_stability_score(
159
+ masks: torch.Tensor, mask_threshold: float, threshold_offset: float
160
+ ) -> torch.Tensor:
161
+ """
162
+ Computes the stability score for a batch of masks. The stability
163
+ score is the IoU between the binary masks obtained by thresholding
164
+ the predicted mask logits at high and low values.
165
+ """
166
+ # One mask is always contained inside the other.
167
+ # Save memory by preventing unnecessary cast to torch.int64
168
+ intersections = (
169
+ (masks > (mask_threshold + threshold_offset))
170
+ .sum(-1, dtype=torch.int16)
171
+ .sum(-1, dtype=torch.int32)
172
+ )
173
+ unions = (
174
+ (masks > (mask_threshold - threshold_offset))
175
+ .sum(-1, dtype=torch.int16)
176
+ .sum(-1, dtype=torch.int32)
177
+ )
178
+ return intersections / unions
179
+
180
+
181
+ def build_point_grid(n_per_side: int) -> np.ndarray:
182
+ """Generates a 2D grid of points evenly spaced in [0,1]x[0,1]."""
183
+ offset = 1 / (2 * n_per_side)
184
+ points_one_side = np.linspace(offset, 1 - offset, n_per_side)
185
+ points_x = np.tile(points_one_side[None, :], (n_per_side, 1))
186
+ points_y = np.tile(points_one_side[:, None], (1, n_per_side))
187
+ points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2)
188
+ return points
189
+
190
+
191
+ def build_all_layer_point_grids(
192
+ n_per_side: int, n_layers: int, scale_per_layer: int
193
+ ) -> List[np.ndarray]:
194
+ """Generates point grids for all crop layers."""
195
+ points_by_layer = []
196
+ for i in range(n_layers + 1):
197
+ n_points = int(n_per_side / (scale_per_layer**i))
198
+ points_by_layer.append(build_point_grid(n_points))
199
+ return points_by_layer
200
+
201
+
202
+ def generate_crop_boxes(
203
+ im_size: Tuple[int, ...], n_layers: int, overlap_ratio: float
204
+ ) -> Tuple[List[List[int]], List[int]]:
205
+ """
206
+ Generates a list of crop boxes of different sizes. Each layer
207
+ has (2**i)**2 boxes for the ith layer.
208
+ """
209
+ crop_boxes, layer_idxs = [], []
210
+ im_h, im_w = im_size
211
+ short_side = min(im_h, im_w)
212
+
213
+ # Original image
214
+ crop_boxes.append([0, 0, im_w, im_h])
215
+ layer_idxs.append(0)
216
+
217
+ def crop_len(orig_len, n_crops, overlap):
218
+ return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops))
219
+
220
+ for i_layer in range(n_layers):
221
+ n_crops_per_side = 2 ** (i_layer + 1)
222
+ overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side))
223
+
224
+ crop_w = crop_len(im_w, n_crops_per_side, overlap)
225
+ crop_h = crop_len(im_h, n_crops_per_side, overlap)
226
+
227
+ crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)]
228
+ crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)]
229
+
230
+ # Crops in XYWH format
231
+ for x0, y0 in product(crop_box_x0, crop_box_y0):
232
+ box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)]
233
+ crop_boxes.append(box)
234
+ layer_idxs.append(i_layer + 1)
235
+
236
+ return crop_boxes, layer_idxs
237
+
238
+
239
+ def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
240
+ x0, y0, _, _ = crop_box
241
+ offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device)
242
+ # Check if boxes has a channel dimension
243
+ if len(boxes.shape) == 3:
244
+ offset = offset.unsqueeze(1)
245
+ return boxes + offset
246
+
247
+
248
+ def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
249
+ x0, y0, _, _ = crop_box
250
+ offset = torch.tensor([[x0, y0]], device=points.device)
251
+ # Check if points has a channel dimension
252
+ if len(points.shape) == 3:
253
+ offset = offset.unsqueeze(1)
254
+ return points + offset
255
+
256
+
257
+ def uncrop_masks(
258
+ masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int
259
+ ) -> torch.Tensor:
260
+ x0, y0, x1, y1 = crop_box
261
+ if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h:
262
+ return masks
263
+ # Coordinate transform masks
264
+ pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0)
265
+ pad = (x0, pad_x - x0, y0, pad_y - y0)
266
+ return torch.nn.functional.pad(masks, pad, value=0)
267
+
268
+
269
+ def remove_small_regions(
270
+ mask: np.ndarray, area_thresh: float, mode: str
271
+ ) -> Tuple[np.ndarray, bool]:
272
+ """
273
+ Removes small disconnected regions and holes in a mask. Returns the
274
+ mask and an indicator of if the mask has been modified.
275
+ """
276
+ import cv2 # type: ignore
277
+
278
+ assert mode in ["holes", "islands"]
279
+ correct_holes = mode == "holes"
280
+ working_mask = (correct_holes ^ mask).astype(np.uint8)
281
+ n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8)
282
+ sizes = stats[:, -1][1:] # Row 0 is background label
283
+ small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh]
284
+ if len(small_regions) == 0:
285
+ return mask, False
286
+ fill_labels = [0] + small_regions
287
+ if not correct_holes:
288
+ fill_labels = [i for i in range(n_labels) if i not in fill_labels]
289
+ # If every region is below threshold, keep largest
290
+ if len(fill_labels) == 0:
291
+ fill_labels = [int(np.argmax(sizes)) + 1]
292
+ mask = np.isin(regions, fill_labels)
293
+ return mask, True
294
+
295
+
296
+ def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]:
297
+ from pycocotools import mask as mask_utils # type: ignore
298
+
299
+ h, w = uncompressed_rle["size"]
300
+ rle = mask_utils.frPyObjects(uncompressed_rle, h, w)
301
+ rle["counts"] = rle["counts"].decode("utf-8") # Necessary to serialize with json
302
+ return rle
303
+
304
+
305
+ def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor:
306
+ """
307
+ Calculates boxes in XYXY format around masks. Return [0,0,0,0] for
308
+ an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4.
309
+ """
310
+ # torch.max below raises an error on empty inputs, just skip in this case
311
+ if torch.numel(masks) == 0:
312
+ return torch.zeros(*masks.shape[:-2], 4, device=masks.device)
313
+
314
+ # Normalize shape to CxHxW
315
+ shape = masks.shape
316
+ h, w = shape[-2:]
317
+ if len(shape) > 2:
318
+ masks = masks.flatten(0, -3)
319
+ else:
320
+ masks = masks.unsqueeze(0)
321
+
322
+ # Get top and bottom edges
323
+ in_height, _ = torch.max(masks, dim=-1)
324
+ in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :]
325
+ bottom_edges, _ = torch.max(in_height_coords, dim=-1)
326
+ in_height_coords = in_height_coords + h * (~in_height)
327
+ top_edges, _ = torch.min(in_height_coords, dim=-1)
328
+
329
+ # Get left and right edges
330
+ in_width, _ = torch.max(masks, dim=-2)
331
+ in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :]
332
+ right_edges, _ = torch.max(in_width_coords, dim=-1)
333
+ in_width_coords = in_width_coords + w * (~in_width)
334
+ left_edges, _ = torch.min(in_width_coords, dim=-1)
335
+
336
+ # If the mask is empty the right edge will be to the left of the left edge.
337
+ # Replace these boxes with [0, 0, 0, 0]
338
+ empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges)
339
+ out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1)
340
+ out = out * (~empty_filter).unsqueeze(-1)
341
+
342
+ # Return to original shape
343
+ if len(shape) > 2:
344
+ out = out.reshape(*shape[:-2], 4)
345
+ else:
346
+ out = out[0]
347
+
348
+ return out
sam2/utils/misc.py ADDED
@@ -0,0 +1,349 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import os
8
+ import warnings
9
+ from threading import Thread
10
+
11
+ import numpy as np
12
+ import torch
13
+ from PIL import Image
14
+ from tqdm import tqdm
15
+
16
+
17
+ def get_sdpa_settings():
18
+ if torch.cuda.is_available():
19
+ old_gpu = torch.cuda.get_device_properties(0).major < 7
20
+ # only use Flash Attention on Ampere (8.0) or newer GPUs
21
+ use_flash_attn = torch.cuda.get_device_properties(0).major >= 8
22
+ if not use_flash_attn:
23
+ warnings.warn(
24
+ "Flash Attention is disabled as it requires a GPU with Ampere (8.0) CUDA capability.",
25
+ category=UserWarning,
26
+ stacklevel=2,
27
+ )
28
+ # keep math kernel for PyTorch versions before 2.2 (Flash Attention v2 is only
29
+ # available on PyTorch 2.2+, while Flash Attention v1 cannot handle all cases)
30
+ pytorch_version = tuple(int(v) for v in torch.__version__.split(".")[:2])
31
+ if pytorch_version < (2, 2):
32
+ warnings.warn(
33
+ f"You are using PyTorch {torch.__version__} without Flash Attention v2 support. "
34
+ "Consider upgrading to PyTorch 2.2+ for Flash Attention v2 (which could be faster).",
35
+ category=UserWarning,
36
+ stacklevel=2,
37
+ )
38
+ math_kernel_on = pytorch_version < (2, 2) or not use_flash_attn
39
+ else:
40
+ old_gpu = True
41
+ use_flash_attn = False
42
+ math_kernel_on = True
43
+
44
+ return old_gpu, use_flash_attn, math_kernel_on
45
+
46
+
47
+ def get_connected_components(mask):
48
+ """
49
+ Get the connected components (8-connectivity) of binary masks of shape (N, 1, H, W).
50
+
51
+ Inputs:
52
+ - mask: A binary mask tensor of shape (N, 1, H, W), where 1 is foreground and 0 is
53
+ background.
54
+
55
+ Outputs:
56
+ - labels: A tensor of shape (N, 1, H, W) containing the connected component labels
57
+ for foreground pixels and 0 for background pixels.
58
+ - counts: A tensor of shape (N, 1, H, W) containing the area of the connected
59
+ components for foreground pixels and 0 for background pixels.
60
+ """
61
+ from sam2 import _C
62
+
63
+ return _C.get_connected_componnets(mask.to(torch.uint8).contiguous())
64
+
65
+
66
+ def mask_to_box(masks: torch.Tensor):
67
+ """
68
+ compute bounding box given an input mask
69
+
70
+ Inputs:
71
+ - masks: [B, 1, H, W] masks, dtype=torch.Tensor
72
+
73
+ Returns:
74
+ - box_coords: [B, 1, 4], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.Tensor
75
+ """
76
+ B, _, h, w = masks.shape
77
+ device = masks.device
78
+ xs = torch.arange(w, device=device, dtype=torch.int32)
79
+ ys = torch.arange(h, device=device, dtype=torch.int32)
80
+ grid_xs, grid_ys = torch.meshgrid(xs, ys, indexing="xy")
81
+ grid_xs = grid_xs[None, None, ...].expand(B, 1, h, w)
82
+ grid_ys = grid_ys[None, None, ...].expand(B, 1, h, w)
83
+ min_xs, _ = torch.min(torch.where(masks, grid_xs, w).flatten(-2), dim=-1)
84
+ max_xs, _ = torch.max(torch.where(masks, grid_xs, -1).flatten(-2), dim=-1)
85
+ min_ys, _ = torch.min(torch.where(masks, grid_ys, h).flatten(-2), dim=-1)
86
+ max_ys, _ = torch.max(torch.where(masks, grid_ys, -1).flatten(-2), dim=-1)
87
+ bbox_coords = torch.stack((min_xs, min_ys, max_xs, max_ys), dim=-1)
88
+
89
+ return bbox_coords
90
+
91
+
92
+ def _load_img_as_tensor(img_path, image_size):
93
+ img_pil = Image.open(img_path)
94
+ img_np = np.array(img_pil.convert("RGB").resize((image_size, image_size)))
95
+ if img_np.dtype == np.uint8: # np.uint8 is expected for JPEG images
96
+ img_np = img_np / 255.0
97
+ else:
98
+ raise RuntimeError(f"Unknown image dtype: {img_np.dtype} on {img_path}")
99
+ img = torch.from_numpy(img_np).permute(2, 0, 1)
100
+ video_width, video_height = img_pil.size # the original video size
101
+ return img, video_height, video_width
102
+
103
+
104
+ class AsyncVideoFrameLoader:
105
+ """
106
+ A list of video frames to be load asynchronously without blocking session start.
107
+ """
108
+
109
+ def __init__(
110
+ self,
111
+ img_paths,
112
+ image_size,
113
+ offload_video_to_cpu,
114
+ img_mean,
115
+ img_std,
116
+ compute_device,
117
+ ):
118
+ self.img_paths = img_paths
119
+ self.image_size = image_size
120
+ self.offload_video_to_cpu = offload_video_to_cpu
121
+ self.img_mean = img_mean
122
+ self.img_std = img_std
123
+ # items in `self.images` will be loaded asynchronously
124
+ self.images = [None] * len(img_paths)
125
+ # catch and raise any exceptions in the async loading thread
126
+ self.exception = None
127
+ # video_height and video_width be filled when loading the first image
128
+ self.video_height = None
129
+ self.video_width = None
130
+ self.compute_device = compute_device
131
+
132
+ # load the first frame to fill video_height and video_width and also
133
+ # to cache it (since it's most likely where the user will click)
134
+ self.__getitem__(0)
135
+
136
+ # load the rest of frames asynchronously without blocking the session start
137
+ def _load_frames():
138
+ try:
139
+ for n in tqdm(range(len(self.images)), desc="frame loading (JPEG)"):
140
+ self.__getitem__(n)
141
+ except Exception as e:
142
+ self.exception = e
143
+
144
+ self.thread = Thread(target=_load_frames, daemon=True)
145
+ self.thread.start()
146
+
147
+ def __getitem__(self, index):
148
+ if self.exception is not None:
149
+ raise RuntimeError("Failure in frame loading thread") from self.exception
150
+
151
+ img = self.images[index]
152
+ if img is not None:
153
+ return img
154
+
155
+ img, video_height, video_width = _load_img_as_tensor(
156
+ self.img_paths[index], self.image_size
157
+ )
158
+ self.video_height = video_height
159
+ self.video_width = video_width
160
+ # normalize by mean and std
161
+ img -= self.img_mean
162
+ img /= self.img_std
163
+ if not self.offload_video_to_cpu:
164
+ img = img.to(self.compute_device, non_blocking=True)
165
+ self.images[index] = img
166
+ return img
167
+
168
+ def __len__(self):
169
+ return len(self.images)
170
+
171
+
172
+ def load_video_frames(
173
+ video_path,
174
+ image_size,
175
+ offload_video_to_cpu,
176
+ img_mean=(0.485, 0.456, 0.406),
177
+ img_std=(0.229, 0.224, 0.225),
178
+ async_loading_frames=False,
179
+ compute_device=torch.device("cuda"),
180
+ ):
181
+ """
182
+ Load the video frames from video_path. The frames are resized to image_size as in
183
+ the model and are loaded to GPU if offload_video_to_cpu=False. This is used by the demo.
184
+ """
185
+ is_bytes = isinstance(video_path, bytes)
186
+ is_str = isinstance(video_path, str)
187
+ is_mp4_path = is_str and os.path.splitext(video_path)[-1] in [".mp4", ".MP4"]
188
+ if is_bytes or is_mp4_path:
189
+ return load_video_frames_from_video_file(
190
+ video_path=video_path,
191
+ image_size=image_size,
192
+ offload_video_to_cpu=offload_video_to_cpu,
193
+ img_mean=img_mean,
194
+ img_std=img_std,
195
+ compute_device=compute_device,
196
+ )
197
+ elif is_str and os.path.isdir(video_path):
198
+ return load_video_frames_from_jpg_images(
199
+ video_path=video_path,
200
+ image_size=image_size,
201
+ offload_video_to_cpu=offload_video_to_cpu,
202
+ img_mean=img_mean,
203
+ img_std=img_std,
204
+ async_loading_frames=async_loading_frames,
205
+ compute_device=compute_device,
206
+ )
207
+ else:
208
+ raise NotImplementedError(
209
+ "Only MP4 video and JPEG folder are supported at this moment"
210
+ )
211
+
212
+
213
+ def load_video_frames_from_jpg_images(
214
+ video_path,
215
+ image_size,
216
+ offload_video_to_cpu,
217
+ img_mean=(0.485, 0.456, 0.406),
218
+ img_std=(0.229, 0.224, 0.225),
219
+ async_loading_frames=False,
220
+ compute_device=torch.device("cuda"),
221
+ ):
222
+ """
223
+ Load the video frames from a directory of JPEG files ("<frame_index>.jpg" format).
224
+
225
+ The frames are resized to image_size x image_size and are loaded to GPU if
226
+ `offload_video_to_cpu` is `False` and to CPU if `offload_video_to_cpu` is `True`.
227
+
228
+ You can load a frame asynchronously by setting `async_loading_frames` to `True`.
229
+ """
230
+ if isinstance(video_path, str) and os.path.isdir(video_path):
231
+ jpg_folder = video_path
232
+ else:
233
+ raise NotImplementedError(
234
+ "Only JPEG frames are supported at this moment. For video files, you may use "
235
+ "ffmpeg (https://ffmpeg.org/) to extract frames into a folder of JPEG files, such as \n"
236
+ "```\n"
237
+ "ffmpeg -i <your_video>.mp4 -q:v 2 -start_number 0 <output_dir>/'%05d.jpg'\n"
238
+ "```\n"
239
+ "where `-q:v` generates high-quality JPEG frames and `-start_number 0` asks "
240
+ "ffmpeg to start the JPEG file from 00000.jpg."
241
+ )
242
+
243
+ frame_names = [
244
+ p
245
+ for p in os.listdir(jpg_folder)
246
+ if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
247
+ ]
248
+ frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
249
+ num_frames = len(frame_names)
250
+ if num_frames == 0:
251
+ raise RuntimeError(f"no images found in {jpg_folder}")
252
+ img_paths = [os.path.join(jpg_folder, frame_name) for frame_name in frame_names]
253
+ img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None]
254
+ img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None]
255
+
256
+ if async_loading_frames:
257
+ lazy_images = AsyncVideoFrameLoader(
258
+ img_paths,
259
+ image_size,
260
+ offload_video_to_cpu,
261
+ img_mean,
262
+ img_std,
263
+ compute_device,
264
+ )
265
+ return lazy_images, lazy_images.video_height, lazy_images.video_width
266
+
267
+ images = torch.zeros(num_frames, 3, image_size, image_size, dtype=torch.float32)
268
+ for n, img_path in enumerate(tqdm(img_paths, desc="frame loading (JPEG)")):
269
+ images[n], video_height, video_width = _load_img_as_tensor(img_path, image_size)
270
+ if not offload_video_to_cpu:
271
+ images = images.to(compute_device)
272
+ img_mean = img_mean.to(compute_device)
273
+ img_std = img_std.to(compute_device)
274
+ # normalize by mean and std
275
+ images -= img_mean
276
+ images /= img_std
277
+ return images, video_height, video_width
278
+
279
+
280
+ def load_video_frames_from_video_file(
281
+ video_path,
282
+ image_size,
283
+ offload_video_to_cpu,
284
+ img_mean=(0.485, 0.456, 0.406),
285
+ img_std=(0.229, 0.224, 0.225),
286
+ compute_device=torch.device("cuda"),
287
+ ):
288
+ """Load the video frames from a video file."""
289
+ import decord
290
+
291
+ img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None]
292
+ img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None]
293
+ # Get the original video height and width
294
+ decord.bridge.set_bridge("torch")
295
+ video_height, video_width, _ = decord.VideoReader(video_path).next().shape
296
+ # Iterate over all frames in the video
297
+ images = []
298
+ for frame in decord.VideoReader(video_path, width=image_size, height=image_size):
299
+ images.append(frame.permute(2, 0, 1))
300
+
301
+ images = torch.stack(images, dim=0).float() / 255.0
302
+ if not offload_video_to_cpu:
303
+ images = images.to(compute_device)
304
+ img_mean = img_mean.to(compute_device)
305
+ img_std = img_std.to(compute_device)
306
+ # normalize by mean and std
307
+ images -= img_mean
308
+ images /= img_std
309
+ return images, video_height, video_width
310
+
311
+
312
+ def fill_holes_in_mask_scores(mask, max_area):
313
+ """
314
+ A post processor to fill small holes in mask scores with area under `max_area`.
315
+ """
316
+ # Holes are those connected components in background with area <= self.max_area
317
+ # (background regions are those with mask scores <= 0)
318
+ assert max_area > 0, "max_area must be positive"
319
+
320
+ input_mask = mask
321
+ try:
322
+ labels, areas = get_connected_components(mask <= 0)
323
+ is_hole = (labels > 0) & (areas <= max_area)
324
+ # We fill holes with a small positive mask score (0.1) to change them to foreground.
325
+ mask = torch.where(is_hole, 0.1, mask)
326
+ except Exception as e:
327
+ # Skip the post-processing step on removing small holes if the CUDA kernel fails
328
+ warnings.warn(
329
+ f"{e}\n\nSkipping the post-processing step due to the error above. You can "
330
+ "still use SAM 2 and it's OK to ignore the error above, although some post-processing "
331
+ "functionality may be limited (which doesn't affect the results in most cases; see "
332
+ "https://github.com/facebookresearch/sam2/blob/main/INSTALL.md).",
333
+ category=UserWarning,
334
+ stacklevel=2,
335
+ )
336
+ mask = input_mask
337
+
338
+ return mask
339
+
340
+
341
+ def concat_points(old_point_inputs, new_points, new_labels):
342
+ """Add new points and labels to previous point inputs (add at the end)."""
343
+ if old_point_inputs is None:
344
+ points, labels = new_points, new_labels
345
+ else:
346
+ points = torch.cat([old_point_inputs["point_coords"], new_points], dim=1)
347
+ labels = torch.cat([old_point_inputs["point_labels"], new_labels], dim=1)
348
+
349
+ return {"point_coords": points, "point_labels": labels}
sam2/utils/transforms.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import warnings
8
+
9
+ import torch
10
+ import torch.nn as nn
11
+ import torch.nn.functional as F
12
+ from torchvision.transforms import Normalize, Resize, ToTensor
13
+
14
+
15
+ class SAM2Transforms(nn.Module):
16
+ def __init__(
17
+ self, resolution, mask_threshold, max_hole_area=0.0, max_sprinkle_area=0.0
18
+ ):
19
+ """
20
+ Transforms for SAM2.
21
+ """
22
+ super().__init__()
23
+ self.resolution = resolution
24
+ self.mask_threshold = mask_threshold
25
+ self.max_hole_area = max_hole_area
26
+ self.max_sprinkle_area = max_sprinkle_area
27
+ self.mean = [0.485, 0.456, 0.406]
28
+ self.std = [0.229, 0.224, 0.225]
29
+ self.to_tensor = ToTensor()
30
+ self.transforms = torch.jit.script(
31
+ nn.Sequential(
32
+ Resize((self.resolution, self.resolution)),
33
+ Normalize(self.mean, self.std),
34
+ )
35
+ )
36
+
37
+ def __call__(self, x):
38
+ x = self.to_tensor(x)
39
+ return self.transforms(x)
40
+
41
+ def forward_batch(self, img_list):
42
+ img_batch = [self.transforms(self.to_tensor(img)) for img in img_list]
43
+ img_batch = torch.stack(img_batch, dim=0)
44
+ return img_batch
45
+
46
+ def transform_coords(
47
+ self, coords: torch.Tensor, normalize=False, orig_hw=None
48
+ ) -> torch.Tensor:
49
+ """
50
+ Expects a torch tensor with length 2 in the last dimension. The coordinates can be in absolute image or normalized coordinates,
51
+ If the coords are in absolute image coordinates, normalize should be set to True and original image size is required.
52
+
53
+ Returns
54
+ Un-normalized coordinates in the range of [0, 1] which is expected by the SAM2 model.
55
+ """
56
+ if normalize:
57
+ assert orig_hw is not None
58
+ h, w = orig_hw
59
+ coords = coords.clone()
60
+ coords[..., 0] = coords[..., 0] / w
61
+ coords[..., 1] = coords[..., 1] / h
62
+
63
+ coords = coords * self.resolution # unnormalize coords
64
+ return coords
65
+
66
+ def transform_boxes(
67
+ self, boxes: torch.Tensor, normalize=False, orig_hw=None
68
+ ) -> torch.Tensor:
69
+ """
70
+ Expects a tensor of shape Bx4. The coordinates can be in absolute image or normalized coordinates,
71
+ if the coords are in absolute image coordinates, normalize should be set to True and original image size is required.
72
+ """
73
+ boxes = self.transform_coords(boxes.reshape(-1, 2, 2), normalize, orig_hw)
74
+ return boxes
75
+
76
+ def postprocess_masks(self, masks: torch.Tensor, orig_hw) -> torch.Tensor:
77
+ """
78
+ Perform PostProcessing on output masks.
79
+ """
80
+ from sam2.utils.misc import get_connected_components
81
+
82
+ masks = masks.float()
83
+ input_masks = masks
84
+ mask_flat = masks.flatten(0, 1).unsqueeze(1) # flatten as 1-channel image
85
+ try:
86
+ if self.max_hole_area > 0:
87
+ # Holes are those connected components in background with area <= self.fill_hole_area
88
+ # (background regions are those with mask scores <= self.mask_threshold)
89
+ labels, areas = get_connected_components(
90
+ mask_flat <= self.mask_threshold
91
+ )
92
+ is_hole = (labels > 0) & (areas <= self.max_hole_area)
93
+ is_hole = is_hole.reshape_as(masks)
94
+ # We fill holes with a small positive mask score (10.0) to change them to foreground.
95
+ masks = torch.where(is_hole, self.mask_threshold + 10.0, masks)
96
+
97
+ if self.max_sprinkle_area > 0:
98
+ labels, areas = get_connected_components(
99
+ mask_flat > self.mask_threshold
100
+ )
101
+ is_hole = (labels > 0) & (areas <= self.max_sprinkle_area)
102
+ is_hole = is_hole.reshape_as(masks)
103
+ # We fill holes with negative mask score (-10.0) to change them to background.
104
+ masks = torch.where(is_hole, self.mask_threshold - 10.0, masks)
105
+ except Exception as e:
106
+ # Skip the post-processing step if the CUDA kernel fails
107
+ warnings.warn(
108
+ f"{e}\n\nSkipping the post-processing step due to the error above. You can "
109
+ "still use SAM 2 and it's OK to ignore the error above, although some post-processing "
110
+ "functionality may be limited (which doesn't affect the results in most cases; see "
111
+ "https://github.com/facebookresearch/sam2/blob/main/INSTALL.md).",
112
+ category=UserWarning,
113
+ stacklevel=2,
114
+ )
115
+ masks = input_masks
116
+
117
+ masks = F.interpolate(masks, orig_hw, mode="bilinear", align_corners=False)
118
+ return masks
tools/vos_inference.py ADDED
@@ -0,0 +1,507 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import argparse
8
+ import os
9
+ from collections import defaultdict
10
+
11
+ import numpy as np
12
+ import torch
13
+ from PIL import Image
14
+ from sam2.build_sam import build_sam2_video_predictor
15
+
16
+
17
+ # the PNG palette for DAVIS 2017 dataset
18
+ DAVIS_PALETTE = b"\x00\x00\x00\x80\x00\x00\x00\x80\x00\x80\x80\x00\x00\x00\x80\x80\x00\x80\x00\x80\x80\x80\x80\x80@\x00\x00\xc0\x00\x00@\x80\x00\xc0\x80\x00@\x00\x80\xc0\x00\x80@\x80\x80\xc0\x80\x80\x00@\x00\x80@\x00\x00\xc0\x00\x80\xc0\x00\x00@\x80\x80@\x80\x00\xc0\x80\x80\xc0\x80@@\x00\xc0@\x00@\xc0\x00\xc0\xc0\x00@@\x80\xc0@\x80@\xc0\x80\xc0\xc0\x80\x00\x00@\x80\x00@\x00\x80@\x80\x80@\x00\x00\xc0\x80\x00\xc0\x00\x80\xc0\x80\x80\xc0@\x00@\xc0\x00@@\x80@\xc0\x80@@\x00\xc0\xc0\x00\xc0@\x80\xc0\xc0\x80\xc0\x00@@\x80@@\x00\xc0@\x80\xc0@\x00@\xc0\x80@\xc0\x00\xc0\xc0\x80\xc0\xc0@@@\xc0@@@\xc0@\xc0\xc0@@@\xc0\xc0@\xc0@\xc0\xc0\xc0\xc0\xc0 \x00\x00\xa0\x00\x00 \x80\x00\xa0\x80\x00 \x00\x80\xa0\x00\x80 \x80\x80\xa0\x80\x80`\x00\x00\xe0\x00\x00`\x80\x00\xe0\x80\x00`\x00\x80\xe0\x00\x80`\x80\x80\xe0\x80\x80 @\x00\xa0@\x00 \xc0\x00\xa0\xc0\x00 @\x80\xa0@\x80 \xc0\x80\xa0\xc0\x80`@\x00\xe0@\x00`\xc0\x00\xe0\xc0\x00`@\x80\xe0@\x80`\xc0\x80\xe0\xc0\x80 \x00@\xa0\x00@ \x80@\xa0\x80@ \x00\xc0\xa0\x00\xc0 \x80\xc0\xa0\x80\xc0`\x00@\xe0\x00@`\x80@\xe0\x80@`\x00\xc0\xe0\x00\xc0`\x80\xc0\xe0\x80\xc0 @@\xa0@@ \xc0@\xa0\xc0@ @\xc0\xa0@\xc0 \xc0\xc0\xa0\xc0\xc0`@@\xe0@@`\xc0@\xe0\xc0@`@\xc0\xe0@\xc0`\xc0\xc0\xe0\xc0\xc0\x00 \x00\x80 \x00\x00\xa0\x00\x80\xa0\x00\x00 \x80\x80 \x80\x00\xa0\x80\x80\xa0\x80@ \x00\xc0 \x00@\xa0\x00\xc0\xa0\x00@ \x80\xc0 \x80@\xa0\x80\xc0\xa0\x80\x00`\x00\x80`\x00\x00\xe0\x00\x80\xe0\x00\x00`\x80\x80`\x80\x00\xe0\x80\x80\xe0\x80@`\x00\xc0`\x00@\xe0\x00\xc0\xe0\x00@`\x80\xc0`\x80@\xe0\x80\xc0\xe0\x80\x00 @\x80 @\x00\xa0@\x80\xa0@\x00 \xc0\x80 \xc0\x00\xa0\xc0\x80\xa0\xc0@ @\xc0 @@\xa0@\xc0\xa0@@ \xc0\xc0 \xc0@\xa0\xc0\xc0\xa0\xc0\x00`@\x80`@\x00\xe0@\x80\xe0@\x00`\xc0\x80`\xc0\x00\xe0\xc0\x80\xe0\xc0@`@\xc0`@@\xe0@\xc0\xe0@@`\xc0\xc0`\xc0@\xe0\xc0\xc0\xe0\xc0 \x00\xa0 \x00 \xa0\x00\xa0\xa0\x00 \x80\xa0 \x80 \xa0\x80\xa0\xa0\x80` \x00\xe0 \x00`\xa0\x00\xe0\xa0\x00` \x80\xe0 \x80`\xa0\x80\xe0\xa0\x80 `\x00\xa0`\x00 \xe0\x00\xa0\xe0\x00 `\x80\xa0`\x80 \xe0\x80\xa0\xe0\x80``\x00\xe0`\x00`\xe0\x00\xe0\xe0\x00``\x80\xe0`\x80`\xe0\x80\xe0\xe0\x80 @\xa0 @ \xa0@\xa0\xa0@ \xc0\xa0 \xc0 \xa0\xc0\xa0\xa0\xc0` @\xe0 @`\xa0@\xe0\xa0@` \xc0\xe0 \xc0`\xa0\xc0\xe0\xa0\xc0 `@\xa0`@ \xe0@\xa0\xe0@ `\xc0\xa0`\xc0 \xe0\xc0\xa0\xe0\xc0``@\xe0`@`\xe0@\xe0\xe0@``\xc0\xe0`\xc0`\xe0\xc0\xe0\xe0\xc0"
19
+
20
+
21
+ def load_ann_png(path):
22
+ """Load a PNG file as a mask and its palette."""
23
+ mask = Image.open(path)
24
+ palette = mask.getpalette()
25
+ mask = np.array(mask).astype(np.uint8)
26
+ return mask, palette
27
+
28
+
29
+ def save_ann_png(path, mask, palette):
30
+ """Save a mask as a PNG file with the given palette."""
31
+ assert mask.dtype == np.uint8
32
+ assert mask.ndim == 2
33
+ output_mask = Image.fromarray(mask)
34
+ output_mask.putpalette(palette)
35
+ output_mask.save(path)
36
+
37
+
38
+ def get_per_obj_mask(mask):
39
+ """Split a mask into per-object masks."""
40
+ object_ids = np.unique(mask)
41
+ object_ids = object_ids[object_ids > 0].tolist()
42
+ per_obj_mask = {object_id: (mask == object_id) for object_id in object_ids}
43
+ return per_obj_mask
44
+
45
+
46
+ def put_per_obj_mask(per_obj_mask, height, width):
47
+ """Combine per-object masks into a single mask."""
48
+ mask = np.zeros((height, width), dtype=np.uint8)
49
+ object_ids = sorted(per_obj_mask)[::-1]
50
+ for object_id in object_ids:
51
+ object_mask = per_obj_mask[object_id]
52
+ object_mask = object_mask.reshape(height, width)
53
+ mask[object_mask] = object_id
54
+ return mask
55
+
56
+
57
+ def load_masks_from_dir(
58
+ input_mask_dir, video_name, frame_name, per_obj_png_file, allow_missing=False
59
+ ):
60
+ """Load masks from a directory as a dict of per-object masks."""
61
+ if not per_obj_png_file:
62
+ input_mask_path = os.path.join(input_mask_dir, video_name, f"{frame_name}.png")
63
+ if allow_missing and not os.path.exists(input_mask_path):
64
+ return {}, None
65
+ input_mask, input_palette = load_ann_png(input_mask_path)
66
+ per_obj_input_mask = get_per_obj_mask(input_mask)
67
+ else:
68
+ per_obj_input_mask = {}
69
+ input_palette = None
70
+ # each object is a directory in "{object_id:%03d}" format
71
+ for object_name in os.listdir(os.path.join(input_mask_dir, video_name)):
72
+ object_id = int(object_name)
73
+ input_mask_path = os.path.join(
74
+ input_mask_dir, video_name, object_name, f"{frame_name}.png"
75
+ )
76
+ if allow_missing and not os.path.exists(input_mask_path):
77
+ continue
78
+ input_mask, input_palette = load_ann_png(input_mask_path)
79
+ per_obj_input_mask[object_id] = input_mask > 0
80
+
81
+ return per_obj_input_mask, input_palette
82
+
83
+
84
+ def save_masks_to_dir(
85
+ output_mask_dir,
86
+ video_name,
87
+ frame_name,
88
+ per_obj_output_mask,
89
+ height,
90
+ width,
91
+ per_obj_png_file,
92
+ output_palette,
93
+ ):
94
+ """Save masks to a directory as PNG files."""
95
+ os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True)
96
+ if not per_obj_png_file:
97
+ output_mask = put_per_obj_mask(per_obj_output_mask, height, width)
98
+ output_mask_path = os.path.join(
99
+ output_mask_dir, video_name, f"{frame_name}.png"
100
+ )
101
+ save_ann_png(output_mask_path, output_mask, output_palette)
102
+ else:
103
+ for object_id, object_mask in per_obj_output_mask.items():
104
+ object_name = f"{object_id:03d}"
105
+ os.makedirs(
106
+ os.path.join(output_mask_dir, video_name, object_name),
107
+ exist_ok=True,
108
+ )
109
+ output_mask = object_mask.reshape(height, width).astype(np.uint8)
110
+ output_mask_path = os.path.join(
111
+ output_mask_dir, video_name, object_name, f"{frame_name}.png"
112
+ )
113
+ save_ann_png(output_mask_path, output_mask, output_palette)
114
+
115
+
116
+ @torch.inference_mode()
117
+ @torch.autocast(device_type="cuda", dtype=torch.bfloat16)
118
+ def vos_inference(
119
+ predictor,
120
+ base_video_dir,
121
+ input_mask_dir,
122
+ output_mask_dir,
123
+ video_name,
124
+ score_thresh=0.0,
125
+ use_all_masks=False,
126
+ per_obj_png_file=False,
127
+ ):
128
+ """Run VOS inference on a single video with the given predictor."""
129
+ # load the video frames and initialize the inference state on this video
130
+ video_dir = os.path.join(base_video_dir, video_name)
131
+ frame_names = [
132
+ os.path.splitext(p)[0]
133
+ for p in os.listdir(video_dir)
134
+ if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
135
+ ]
136
+ frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
137
+ inference_state = predictor.init_state(
138
+ video_path=video_dir, async_loading_frames=False
139
+ )
140
+ height = inference_state["video_height"]
141
+ width = inference_state["video_width"]
142
+ input_palette = None
143
+
144
+ # fetch mask inputs from input_mask_dir (either only mask for the first frame, or all available masks)
145
+ if not use_all_masks:
146
+ # use only the first video's ground-truth mask as the input mask
147
+ input_frame_inds = [0]
148
+ else:
149
+ # use all mask files available in the input_mask_dir as the input masks
150
+ if not per_obj_png_file:
151
+ input_frame_inds = [
152
+ idx
153
+ for idx, name in enumerate(frame_names)
154
+ if os.path.exists(
155
+ os.path.join(input_mask_dir, video_name, f"{name}.png")
156
+ )
157
+ ]
158
+ else:
159
+ input_frame_inds = [
160
+ idx
161
+ for object_name in os.listdir(os.path.join(input_mask_dir, video_name))
162
+ for idx, name in enumerate(frame_names)
163
+ if os.path.exists(
164
+ os.path.join(input_mask_dir, video_name, object_name, f"{name}.png")
165
+ )
166
+ ]
167
+ # check and make sure we got at least one input frame
168
+ if len(input_frame_inds) == 0:
169
+ raise RuntimeError(
170
+ f"In {video_name=}, got no input masks in {input_mask_dir=}. "
171
+ "Please make sure the input masks are available in the correct format."
172
+ )
173
+ input_frame_inds = sorted(set(input_frame_inds))
174
+
175
+ # add those input masks to SAM 2 inference state before propagation
176
+ object_ids_set = None
177
+ for input_frame_idx in input_frame_inds:
178
+ try:
179
+ per_obj_input_mask, input_palette = load_masks_from_dir(
180
+ input_mask_dir=input_mask_dir,
181
+ video_name=video_name,
182
+ frame_name=frame_names[input_frame_idx],
183
+ per_obj_png_file=per_obj_png_file,
184
+ )
185
+ except FileNotFoundError as e:
186
+ raise RuntimeError(
187
+ f"In {video_name=}, failed to load input mask for frame {input_frame_idx=}. "
188
+ "Please add the `--track_object_appearing_later_in_video` flag "
189
+ "for VOS datasets that don't have all objects to track appearing "
190
+ "in the first frame (such as LVOS or YouTube-VOS)."
191
+ ) from e
192
+ # get the list of object ids to track from the first input frame
193
+ if object_ids_set is None:
194
+ object_ids_set = set(per_obj_input_mask)
195
+ for object_id, object_mask in per_obj_input_mask.items():
196
+ # check and make sure no new object ids appear only in later frames
197
+ if object_id not in object_ids_set:
198
+ raise RuntimeError(
199
+ f"In {video_name=}, got a new {object_id=} appearing only in a "
200
+ f"later {input_frame_idx=} (but not appearing in the first frame). "
201
+ "Please add the `--track_object_appearing_later_in_video` flag "
202
+ "for VOS datasets that don't have all objects to track appearing "
203
+ "in the first frame (such as LVOS or YouTube-VOS)."
204
+ )
205
+ predictor.add_new_mask(
206
+ inference_state=inference_state,
207
+ frame_idx=input_frame_idx,
208
+ obj_id=object_id,
209
+ mask=object_mask,
210
+ )
211
+
212
+ # check and make sure we have at least one object to track
213
+ if object_ids_set is None or len(object_ids_set) == 0:
214
+ raise RuntimeError(
215
+ f"In {video_name=}, got no object ids on {input_frame_inds=}. "
216
+ "Please add the `--track_object_appearing_later_in_video` flag "
217
+ "for VOS datasets that don't have all objects to track appearing "
218
+ "in the first frame (such as LVOS or YouTube-VOS)."
219
+ )
220
+ # run propagation throughout the video and collect the results in a dict
221
+ os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True)
222
+ output_palette = input_palette or DAVIS_PALETTE
223
+ video_segments = {} # video_segments contains the per-frame segmentation results
224
+ for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(
225
+ inference_state
226
+ ):
227
+ per_obj_output_mask = {
228
+ out_obj_id: (out_mask_logits[i] > score_thresh).cpu().numpy()
229
+ for i, out_obj_id in enumerate(out_obj_ids)
230
+ }
231
+ video_segments[out_frame_idx] = per_obj_output_mask
232
+
233
+ # write the output masks as palette PNG files to output_mask_dir
234
+ for out_frame_idx, per_obj_output_mask in video_segments.items():
235
+ save_masks_to_dir(
236
+ output_mask_dir=output_mask_dir,
237
+ video_name=video_name,
238
+ frame_name=frame_names[out_frame_idx],
239
+ per_obj_output_mask=per_obj_output_mask,
240
+ height=height,
241
+ width=width,
242
+ per_obj_png_file=per_obj_png_file,
243
+ output_palette=output_palette,
244
+ )
245
+
246
+
247
+ @torch.inference_mode()
248
+ @torch.autocast(device_type="cuda", dtype=torch.bfloat16)
249
+ def vos_separate_inference_per_object(
250
+ predictor,
251
+ base_video_dir,
252
+ input_mask_dir,
253
+ output_mask_dir,
254
+ video_name,
255
+ score_thresh=0.0,
256
+ use_all_masks=False,
257
+ per_obj_png_file=False,
258
+ ):
259
+ """
260
+ Run VOS inference on a single video with the given predictor.
261
+
262
+ Unlike `vos_inference`, this function run inference separately for each object
263
+ in a video, which could be applied to datasets like LVOS or YouTube-VOS that
264
+ don't have all objects to track appearing in the first frame (i.e. some objects
265
+ might appear only later in the video).
266
+ """
267
+ # load the video frames and initialize the inference state on this video
268
+ video_dir = os.path.join(base_video_dir, video_name)
269
+ frame_names = [
270
+ os.path.splitext(p)[0]
271
+ for p in os.listdir(video_dir)
272
+ if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
273
+ ]
274
+ frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
275
+ inference_state = predictor.init_state(
276
+ video_path=video_dir, async_loading_frames=False
277
+ )
278
+ height = inference_state["video_height"]
279
+ width = inference_state["video_width"]
280
+ input_palette = None
281
+
282
+ # collect all the object ids and their input masks
283
+ inputs_per_object = defaultdict(dict)
284
+ for idx, name in enumerate(frame_names):
285
+ if per_obj_png_file or os.path.exists(
286
+ os.path.join(input_mask_dir, video_name, f"{name}.png")
287
+ ):
288
+ per_obj_input_mask, input_palette = load_masks_from_dir(
289
+ input_mask_dir=input_mask_dir,
290
+ video_name=video_name,
291
+ frame_name=frame_names[idx],
292
+ per_obj_png_file=per_obj_png_file,
293
+ allow_missing=True,
294
+ )
295
+ for object_id, object_mask in per_obj_input_mask.items():
296
+ # skip empty masks
297
+ if not np.any(object_mask):
298
+ continue
299
+ # if `use_all_masks=False`, we only use the first mask for each object
300
+ if len(inputs_per_object[object_id]) > 0 and not use_all_masks:
301
+ continue
302
+ print(f"adding mask from frame {idx} as input for {object_id=}")
303
+ inputs_per_object[object_id][idx] = object_mask
304
+
305
+ # run inference separately for each object in the video
306
+ object_ids = sorted(inputs_per_object)
307
+ output_scores_per_object = defaultdict(dict)
308
+ for object_id in object_ids:
309
+ # add those input masks to SAM 2 inference state before propagation
310
+ input_frame_inds = sorted(inputs_per_object[object_id])
311
+ predictor.reset_state(inference_state)
312
+ for input_frame_idx in input_frame_inds:
313
+ predictor.add_new_mask(
314
+ inference_state=inference_state,
315
+ frame_idx=input_frame_idx,
316
+ obj_id=object_id,
317
+ mask=inputs_per_object[object_id][input_frame_idx],
318
+ )
319
+
320
+ # run propagation throughout the video and collect the results in a dict
321
+ for out_frame_idx, _, out_mask_logits in predictor.propagate_in_video(
322
+ inference_state,
323
+ start_frame_idx=min(input_frame_inds),
324
+ reverse=False,
325
+ ):
326
+ obj_scores = out_mask_logits.cpu().numpy()
327
+ output_scores_per_object[object_id][out_frame_idx] = obj_scores
328
+
329
+ # post-processing: consolidate the per-object scores into per-frame masks
330
+ os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True)
331
+ output_palette = input_palette or DAVIS_PALETTE
332
+ video_segments = {} # video_segments contains the per-frame segmentation results
333
+ for frame_idx in range(len(frame_names)):
334
+ scores = torch.full(
335
+ size=(len(object_ids), 1, height, width),
336
+ fill_value=-1024.0,
337
+ dtype=torch.float32,
338
+ )
339
+ for i, object_id in enumerate(object_ids):
340
+ if frame_idx in output_scores_per_object[object_id]:
341
+ scores[i] = torch.from_numpy(
342
+ output_scores_per_object[object_id][frame_idx]
343
+ )
344
+
345
+ if not per_obj_png_file:
346
+ scores = predictor._apply_non_overlapping_constraints(scores)
347
+ per_obj_output_mask = {
348
+ object_id: (scores[i] > score_thresh).cpu().numpy()
349
+ for i, object_id in enumerate(object_ids)
350
+ }
351
+ video_segments[frame_idx] = per_obj_output_mask
352
+
353
+ # write the output masks as palette PNG files to output_mask_dir
354
+ for frame_idx, per_obj_output_mask in video_segments.items():
355
+ save_masks_to_dir(
356
+ output_mask_dir=output_mask_dir,
357
+ video_name=video_name,
358
+ frame_name=frame_names[frame_idx],
359
+ per_obj_output_mask=per_obj_output_mask,
360
+ height=height,
361
+ width=width,
362
+ per_obj_png_file=per_obj_png_file,
363
+ output_palette=output_palette,
364
+ )
365
+
366
+
367
+ def main():
368
+ parser = argparse.ArgumentParser()
369
+ parser.add_argument(
370
+ "--sam2_cfg",
371
+ type=str,
372
+ default="configs/sam2.1/sam2.1_hiera_b+.yaml",
373
+ help="SAM 2 model configuration file",
374
+ )
375
+ parser.add_argument(
376
+ "--sam2_checkpoint",
377
+ type=str,
378
+ default="./checkpoints/sam2.1_hiera_base_plus.pt",
379
+ help="path to the SAM 2 model checkpoint",
380
+ )
381
+ parser.add_argument(
382
+ "--base_video_dir",
383
+ type=str,
384
+ required=True,
385
+ help="directory containing videos (as JPEG files) to run VOS prediction on",
386
+ )
387
+ parser.add_argument(
388
+ "--input_mask_dir",
389
+ type=str,
390
+ required=True,
391
+ help="directory containing input masks (as PNG files) of each video",
392
+ )
393
+ parser.add_argument(
394
+ "--video_list_file",
395
+ type=str,
396
+ default=None,
397
+ help="text file containing the list of video names to run VOS prediction on",
398
+ )
399
+ parser.add_argument(
400
+ "--output_mask_dir",
401
+ type=str,
402
+ required=True,
403
+ help="directory to save the output masks (as PNG files)",
404
+ )
405
+ parser.add_argument(
406
+ "--score_thresh",
407
+ type=float,
408
+ default=0.0,
409
+ help="threshold for the output mask logits (default: 0.0)",
410
+ )
411
+ parser.add_argument(
412
+ "--use_all_masks",
413
+ action="store_true",
414
+ help="whether to use all available PNG files in input_mask_dir "
415
+ "(default without this flag: just the first PNG file as input to the SAM 2 model; "
416
+ "usually we don't need this flag, since semi-supervised VOS evaluation usually takes input from the first frame only)",
417
+ )
418
+ parser.add_argument(
419
+ "--per_obj_png_file",
420
+ action="store_true",
421
+ help="whether use separate per-object PNG files for input and output masks "
422
+ "(default without this flag: all object masks are packed into a single PNG file on each frame following DAVIS format; "
423
+ "note that the SA-V dataset stores each object mask as an individual PNG file and requires this flag)",
424
+ )
425
+ parser.add_argument(
426
+ "--apply_postprocessing",
427
+ action="store_true",
428
+ help="whether to apply postprocessing (e.g. hole-filling) to the output masks "
429
+ "(we don't apply such post-processing in the SAM 2 model evaluation)",
430
+ )
431
+ parser.add_argument(
432
+ "--track_object_appearing_later_in_video",
433
+ action="store_true",
434
+ help="whether to track objects that appear later in the video (i.e. not on the first frame; "
435
+ "some VOS datasets like LVOS or YouTube-VOS don't have all objects appearing in the first frame)",
436
+ )
437
+ parser.add_argument(
438
+ "--use_vos_optimized_video_predictor",
439
+ action="store_true",
440
+ help="whether to use vos optimized video predictor with all modules compiled",
441
+ )
442
+ args = parser.parse_args()
443
+
444
+ # if we use per-object PNG files, they could possibly overlap in inputs and outputs
445
+ hydra_overrides_extra = [
446
+ "++model.non_overlap_masks=" + ("false" if args.per_obj_png_file else "true")
447
+ ]
448
+ predictor = build_sam2_video_predictor(
449
+ config_file=args.sam2_cfg,
450
+ ckpt_path=args.sam2_checkpoint,
451
+ apply_postprocessing=args.apply_postprocessing,
452
+ hydra_overrides_extra=hydra_overrides_extra,
453
+ vos_optimized=args.use_vos_optimized_video_predictor,
454
+ )
455
+
456
+ if args.use_all_masks:
457
+ print("using all available masks in input_mask_dir as input to the SAM 2 model")
458
+ else:
459
+ print(
460
+ "using only the first frame's mask in input_mask_dir as input to the SAM 2 model"
461
+ )
462
+ # if a video list file is provided, read the video names from the file
463
+ # (otherwise, we use all subdirectories in base_video_dir)
464
+ if args.video_list_file is not None:
465
+ with open(args.video_list_file, "r") as f:
466
+ video_names = [v.strip() for v in f.readlines()]
467
+ else:
468
+ video_names = [
469
+ p
470
+ for p in os.listdir(args.base_video_dir)
471
+ if os.path.isdir(os.path.join(args.base_video_dir, p))
472
+ ]
473
+ print(f"running VOS prediction on {len(video_names)} videos:\n{video_names}")
474
+
475
+ for n_video, video_name in enumerate(video_names):
476
+ print(f"\n{n_video + 1}/{len(video_names)} - running on {video_name}")
477
+ if not args.track_object_appearing_later_in_video:
478
+ vos_inference(
479
+ predictor=predictor,
480
+ base_video_dir=args.base_video_dir,
481
+ input_mask_dir=args.input_mask_dir,
482
+ output_mask_dir=args.output_mask_dir,
483
+ video_name=video_name,
484
+ score_thresh=args.score_thresh,
485
+ use_all_masks=args.use_all_masks,
486
+ per_obj_png_file=args.per_obj_png_file,
487
+ )
488
+ else:
489
+ vos_separate_inference_per_object(
490
+ predictor=predictor,
491
+ base_video_dir=args.base_video_dir,
492
+ input_mask_dir=args.input_mask_dir,
493
+ output_mask_dir=args.output_mask_dir,
494
+ video_name=video_name,
495
+ score_thresh=args.score_thresh,
496
+ use_all_masks=args.use_all_masks,
497
+ per_obj_png_file=args.per_obj_png_file,
498
+ )
499
+
500
+ print(
501
+ f"completed VOS prediction on {len(video_names)} videos -- "
502
+ f"output masks saved to {args.output_mask_dir}"
503
+ )
504
+
505
+
506
+ if __name__ == "__main__":
507
+ main()