vk
commited on
Commit
·
45a6ede
1
Parent(s):
4247c78
first commit
Browse files- .gitignore +16 -0
- app.py +101 -0
- requirements.txt +7 -0
- sam2/__init__.py +11 -0
- sam2/automatic_mask_generator.py +454 -0
- sam2/benchmark.py +92 -0
- sam2/build_sam.py +174 -0
- sam2/configs/sam2.1/sam2.1_hiera_b+.yaml +116 -0
- sam2/configs/sam2.1/sam2.1_hiera_l.yaml +120 -0
- sam2/configs/sam2.1/sam2.1_hiera_s.yaml +119 -0
- sam2/configs/sam2.1/sam2.1_hiera_t.yaml +121 -0
- sam2/csrc/connected_components.cu +289 -0
- sam2/modeling/__init__.py +5 -0
- sam2/modeling/backbones/__init__.py +5 -0
- sam2/modeling/backbones/hieradet.py +317 -0
- sam2/modeling/backbones/image_encoder.py +134 -0
- sam2/modeling/backbones/utils.py +93 -0
- sam2/modeling/memory_attention.py +169 -0
- sam2/modeling/memory_encoder.py +181 -0
- sam2/modeling/position_encoding.py +239 -0
- sam2/modeling/sam/__init__.py +5 -0
- sam2/modeling/sam/mask_decoder.py +295 -0
- sam2/modeling/sam/prompt_encoder.py +202 -0
- sam2/modeling/sam/transformer.py +311 -0
- sam2/modeling/sam2_base.py +909 -0
- sam2/modeling/sam2_utils.py +323 -0
- sam2/sam2.1_hiera_l.yaml +120 -0
- sam2/sam2_image_predictor.py +466 -0
- sam2/sam2_video_predictor.py +1223 -0
- sam2/sam2_video_predictor_legacy.py +1172 -0
- sam2/utils/__init__.py +5 -0
- sam2/utils/amg.py +348 -0
- sam2/utils/misc.py +349 -0
- sam2/utils/transforms.py +118 -0
- tools/vos_inference.py +507 -0
.gitignore
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.vscode/
|
2 |
+
.DS_Store
|
3 |
+
__pycache__/
|
4 |
+
*-checkpoint.ipynb
|
5 |
+
.venv
|
6 |
+
*.egg*
|
7 |
+
build/*
|
8 |
+
_C.*
|
9 |
+
*.pt
|
10 |
+
*.ipynb
|
11 |
+
outputs/*
|
12 |
+
training
|
13 |
+
notebooks
|
14 |
+
demo
|
15 |
+
checkpoints/*.pt
|
16 |
+
demo/backend/checkpoints/*.pt
|
app.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import hydra
|
3 |
+
from omegaconf import DictConfig
|
4 |
+
from sam2.build_sam import build_sam2
|
5 |
+
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
|
6 |
+
from PIL import Image
|
7 |
+
from matplotlib import pyplot as plt
|
8 |
+
import numpy as np
|
9 |
+
import cv2
|
10 |
+
from glob import glob
|
11 |
+
import gradio as gr
|
12 |
+
import os
|
13 |
+
import hydra
|
14 |
+
|
15 |
+
|
16 |
+
def show_example(path):
|
17 |
+
return cv2.cvtColor(cv2.imread(path), cv2.COLOR_BGR2RGB)
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
def overlay_masks_on_image(image, anns, borders=True):
|
22 |
+
"""
|
23 |
+
Overlays segmentation masks from 'anns' on top of 'image'.
|
24 |
+
|
25 |
+
Parameters:
|
26 |
+
image: np.ndarray (H, W, 3) — source RGB image
|
27 |
+
anns: list of dicts — each with a 'segmentation' key containing a boolean mask
|
28 |
+
borders: bool — whether to draw contours
|
29 |
+
show_mask: bool — whether to show each mask separately
|
30 |
+
|
31 |
+
Returns:
|
32 |
+
masked_image: np.ndarray (H, W, 3) — image with overlays
|
33 |
+
"""
|
34 |
+
if len(anns) == 0:
|
35 |
+
return image
|
36 |
+
|
37 |
+
# Copy image to avoid modifying original
|
38 |
+
masked_image = image.copy().astype(np.float32) / 255.0
|
39 |
+
|
40 |
+
sorted_anns = sorted(anns, key=lambda x: x['area'], reverse=True)
|
41 |
+
|
42 |
+
for ann in sorted_anns:
|
43 |
+
m = ann['segmentation'].astype(bool)
|
44 |
+
color_mask = np.random.random(3) # RGB color
|
45 |
+
alpha = 0.5 # transparency
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
# Blend mask with source image
|
50 |
+
for c in range(3): # RGB channels
|
51 |
+
masked_image[:, :, c] = np.where(
|
52 |
+
m,
|
53 |
+
(1 - alpha) * masked_image[:, :, c] + alpha * color_mask[c],
|
54 |
+
masked_image[:, :, c]
|
55 |
+
)
|
56 |
+
|
57 |
+
if borders:
|
58 |
+
contours, _ = cv2.findContours(m.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
59 |
+
contours = [cv2.approxPolyDP(contour, epsilon=0.01 * cv2.arcLength(contour, True), closed=True)
|
60 |
+
for contour in contours]
|
61 |
+
cv2.drawContours(masked_image, contours, -1, color=(0, 0, 1), thickness=1)
|
62 |
+
|
63 |
+
return (masked_image * 255).astype(np.uint8)
|
64 |
+
|
65 |
+
def get_response(image):
|
66 |
+
image = np.array(image.convert("RGB"))
|
67 |
+
masks = mask_generator.generate(image)
|
68 |
+
return overlay_masks_on_image(image,masks)
|
69 |
+
|
70 |
+
def download_checkpoint():
|
71 |
+
os.system('wget https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_large.pt')
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
def load_model_cfg():
|
76 |
+
return SAM2AutomaticMaskGenerator(build_sam2(model_cfg, checkpoint, device='cpu'))
|
77 |
+
|
78 |
+
|
79 |
+
if __name__ == "__main__":
|
80 |
+
|
81 |
+
iface = gr.Interface(
|
82 |
+
cache_examples=False,
|
83 |
+
fn=get_response,
|
84 |
+
inputs=[gr.Image(type="pil")], # Accepts image input
|
85 |
+
examples=[[show_example('test-images/5fc8c5b53c.png')],[show_example('test-images/80719af02f.png')],[show_example('test-images/f32c7bd62b.png')]],
|
86 |
+
outputs=[gr.Image(type="numpy")],
|
87 |
+
title="Segmenting Microscopic images with Segment Anything",
|
88 |
+
description="Segmenting Microscopic images with Meta Segment Anything")
|
89 |
+
|
90 |
+
|
91 |
+
checkpoint = "sam2.1_hiera_large.pt"
|
92 |
+
model_cfg = "sam2.1_hiera_l.yaml"
|
93 |
+
|
94 |
+
if not os.path.exists(checkpoint):
|
95 |
+
print('Downloading checkpoint')
|
96 |
+
download_checkpoint()
|
97 |
+
print('Checkpoint Downloaded')
|
98 |
+
|
99 |
+
mask_generator = load_model_cfg()
|
100 |
+
|
101 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=2.5.1
|
2 |
+
torchvision>=0.20.1
|
3 |
+
numpy>=1.24.4
|
4 |
+
tqdm>=4.66.1
|
5 |
+
opencv_python
|
6 |
+
hydra-core>=1.3.2
|
7 |
+
#-e .
|
sam2/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
from hydra import initialize_config_module
|
8 |
+
from hydra.core.global_hydra import GlobalHydra
|
9 |
+
|
10 |
+
if not GlobalHydra.instance().is_initialized():
|
11 |
+
initialize_config_module("sam2", version_base="1.2")
|
sam2/automatic_mask_generator.py
ADDED
@@ -0,0 +1,454 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
# Adapted from https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/automatic_mask_generator.py
|
8 |
+
from typing import Any, Dict, List, Optional, Tuple
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
from torchvision.ops.boxes import batched_nms, box_area # type: ignore
|
13 |
+
|
14 |
+
from sam2.modeling.sam2_base import SAM2Base
|
15 |
+
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
16 |
+
from sam2.utils.amg import (
|
17 |
+
area_from_rle,
|
18 |
+
batch_iterator,
|
19 |
+
batched_mask_to_box,
|
20 |
+
box_xyxy_to_xywh,
|
21 |
+
build_all_layer_point_grids,
|
22 |
+
calculate_stability_score,
|
23 |
+
coco_encode_rle,
|
24 |
+
generate_crop_boxes,
|
25 |
+
is_box_near_crop_edge,
|
26 |
+
mask_to_rle_pytorch,
|
27 |
+
MaskData,
|
28 |
+
remove_small_regions,
|
29 |
+
rle_to_mask,
|
30 |
+
uncrop_boxes_xyxy,
|
31 |
+
uncrop_masks,
|
32 |
+
uncrop_points,
|
33 |
+
)
|
34 |
+
|
35 |
+
|
36 |
+
class SAM2AutomaticMaskGenerator:
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
model: SAM2Base,
|
40 |
+
points_per_side: Optional[int] = 32,
|
41 |
+
points_per_batch: int = 64,
|
42 |
+
pred_iou_thresh: float = 0.8,
|
43 |
+
stability_score_thresh: float = 0.95,
|
44 |
+
stability_score_offset: float = 1.0,
|
45 |
+
mask_threshold: float = 0.0,
|
46 |
+
box_nms_thresh: float = 0.7,
|
47 |
+
crop_n_layers: int = 0,
|
48 |
+
crop_nms_thresh: float = 0.7,
|
49 |
+
crop_overlap_ratio: float = 512 / 1500,
|
50 |
+
crop_n_points_downscale_factor: int = 1,
|
51 |
+
point_grids: Optional[List[np.ndarray]] = None,
|
52 |
+
min_mask_region_area: int = 0,
|
53 |
+
output_mode: str = "binary_mask",
|
54 |
+
use_m2m: bool = False,
|
55 |
+
multimask_output: bool = True,
|
56 |
+
**kwargs,
|
57 |
+
) -> None:
|
58 |
+
"""
|
59 |
+
Using a SAM 2 model, generates masks for the entire image.
|
60 |
+
Generates a grid of point prompts over the image, then filters
|
61 |
+
low quality and duplicate masks. The default settings are chosen
|
62 |
+
for SAM 2 with a HieraL backbone.
|
63 |
+
|
64 |
+
Arguments:
|
65 |
+
model (Sam): The SAM 2 model to use for mask prediction.
|
66 |
+
points_per_side (int or None): The number of points to be sampled
|
67 |
+
along one side of the image. The total number of points is
|
68 |
+
points_per_side**2. If None, 'point_grids' must provide explicit
|
69 |
+
point sampling.
|
70 |
+
points_per_batch (int): Sets the number of points run simultaneously
|
71 |
+
by the model. Higher numbers may be faster but use more GPU memory.
|
72 |
+
pred_iou_thresh (float): A filtering threshold in [0,1], using the
|
73 |
+
model's predicted mask quality.
|
74 |
+
stability_score_thresh (float): A filtering threshold in [0,1], using
|
75 |
+
the stability of the mask under changes to the cutoff used to binarize
|
76 |
+
the model's mask predictions.
|
77 |
+
stability_score_offset (float): The amount to shift the cutoff when
|
78 |
+
calculated the stability score.
|
79 |
+
mask_threshold (float): Threshold for binarizing the mask logits
|
80 |
+
box_nms_thresh (float): The box IoU cutoff used by non-maximal
|
81 |
+
suppression to filter duplicate masks.
|
82 |
+
crop_n_layers (int): If >0, mask prediction will be run again on
|
83 |
+
crops of the image. Sets the number of layers to run, where each
|
84 |
+
layer has 2**i_layer number of image crops.
|
85 |
+
crop_nms_thresh (float): The box IoU cutoff used by non-maximal
|
86 |
+
suppression to filter duplicate masks between different crops.
|
87 |
+
crop_overlap_ratio (float): Sets the degree to which crops overlap.
|
88 |
+
In the first crop layer, crops will overlap by this fraction of
|
89 |
+
the image length. Later layers with more crops scale down this overlap.
|
90 |
+
crop_n_points_downscale_factor (int): The number of points-per-side
|
91 |
+
sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
|
92 |
+
point_grids (list(np.ndarray) or None): A list over explicit grids
|
93 |
+
of points used for sampling, normalized to [0,1]. The nth grid in the
|
94 |
+
list is used in the nth crop layer. Exclusive with points_per_side.
|
95 |
+
min_mask_region_area (int): If >0, postprocessing will be applied
|
96 |
+
to remove disconnected regions and holes in masks with area smaller
|
97 |
+
than min_mask_region_area. Requires opencv.
|
98 |
+
output_mode (str): The form masks are returned in. Can be 'binary_mask',
|
99 |
+
'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools.
|
100 |
+
For large resolutions, 'binary_mask' may consume large amounts of
|
101 |
+
memory.
|
102 |
+
use_m2m (bool): Whether to add a one step refinement using previous mask predictions.
|
103 |
+
multimask_output (bool): Whether to output multimask at each point of the grid.
|
104 |
+
"""
|
105 |
+
|
106 |
+
assert (points_per_side is None) != (
|
107 |
+
point_grids is None
|
108 |
+
), "Exactly one of points_per_side or point_grid must be provided."
|
109 |
+
if points_per_side is not None:
|
110 |
+
self.point_grids = build_all_layer_point_grids(
|
111 |
+
points_per_side,
|
112 |
+
crop_n_layers,
|
113 |
+
crop_n_points_downscale_factor,
|
114 |
+
)
|
115 |
+
elif point_grids is not None:
|
116 |
+
self.point_grids = point_grids
|
117 |
+
else:
|
118 |
+
raise ValueError("Can't have both points_per_side and point_grid be None.")
|
119 |
+
|
120 |
+
assert output_mode in [
|
121 |
+
"binary_mask",
|
122 |
+
"uncompressed_rle",
|
123 |
+
"coco_rle",
|
124 |
+
], f"Unknown output_mode {output_mode}."
|
125 |
+
if output_mode == "coco_rle":
|
126 |
+
try:
|
127 |
+
from pycocotools import mask as mask_utils # type: ignore # noqa: F401
|
128 |
+
except ImportError as e:
|
129 |
+
print("Please install pycocotools")
|
130 |
+
raise e
|
131 |
+
|
132 |
+
self.predictor = SAM2ImagePredictor(
|
133 |
+
model,
|
134 |
+
max_hole_area=min_mask_region_area,
|
135 |
+
max_sprinkle_area=min_mask_region_area,
|
136 |
+
)
|
137 |
+
self.points_per_batch = points_per_batch
|
138 |
+
self.pred_iou_thresh = pred_iou_thresh
|
139 |
+
self.stability_score_thresh = stability_score_thresh
|
140 |
+
self.stability_score_offset = stability_score_offset
|
141 |
+
self.mask_threshold = mask_threshold
|
142 |
+
self.box_nms_thresh = box_nms_thresh
|
143 |
+
self.crop_n_layers = crop_n_layers
|
144 |
+
self.crop_nms_thresh = crop_nms_thresh
|
145 |
+
self.crop_overlap_ratio = crop_overlap_ratio
|
146 |
+
self.crop_n_points_downscale_factor = crop_n_points_downscale_factor
|
147 |
+
self.min_mask_region_area = min_mask_region_area
|
148 |
+
self.output_mode = output_mode
|
149 |
+
self.use_m2m = use_m2m
|
150 |
+
self.multimask_output = multimask_output
|
151 |
+
|
152 |
+
@classmethod
|
153 |
+
def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2AutomaticMaskGenerator":
|
154 |
+
"""
|
155 |
+
Load a pretrained model from the Hugging Face hub.
|
156 |
+
|
157 |
+
Arguments:
|
158 |
+
model_id (str): The Hugging Face repository ID.
|
159 |
+
**kwargs: Additional arguments to pass to the model constructor.
|
160 |
+
|
161 |
+
Returns:
|
162 |
+
(SAM2AutomaticMaskGenerator): The loaded model.
|
163 |
+
"""
|
164 |
+
from sam2.build_sam import build_sam2_hf
|
165 |
+
|
166 |
+
sam_model = build_sam2_hf(model_id, **kwargs)
|
167 |
+
return cls(sam_model, **kwargs)
|
168 |
+
|
169 |
+
@torch.no_grad()
|
170 |
+
def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:
|
171 |
+
"""
|
172 |
+
Generates masks for the given image.
|
173 |
+
|
174 |
+
Arguments:
|
175 |
+
image (np.ndarray): The image to generate masks for, in HWC uint8 format.
|
176 |
+
|
177 |
+
Returns:
|
178 |
+
list(dict(str, any)): A list over records for masks. Each record is
|
179 |
+
a dict containing the following keys:
|
180 |
+
segmentation (dict(str, any) or np.ndarray): The mask. If
|
181 |
+
output_mode='binary_mask', is an array of shape HW. Otherwise,
|
182 |
+
is a dictionary containing the RLE.
|
183 |
+
bbox (list(float)): The box around the mask, in XYWH format.
|
184 |
+
area (int): The area in pixels of the mask.
|
185 |
+
predicted_iou (float): The model's own prediction of the mask's
|
186 |
+
quality. This is filtered by the pred_iou_thresh parameter.
|
187 |
+
point_coords (list(list(float))): The point coordinates input
|
188 |
+
to the model to generate this mask.
|
189 |
+
stability_score (float): A measure of the mask's quality. This
|
190 |
+
is filtered on using the stability_score_thresh parameter.
|
191 |
+
crop_box (list(float)): The crop of the image used to generate
|
192 |
+
the mask, given in XYWH format.
|
193 |
+
"""
|
194 |
+
|
195 |
+
# Generate masks
|
196 |
+
mask_data = self._generate_masks(image)
|
197 |
+
|
198 |
+
# Encode masks
|
199 |
+
if self.output_mode == "coco_rle":
|
200 |
+
mask_data["segmentations"] = [
|
201 |
+
coco_encode_rle(rle) for rle in mask_data["rles"]
|
202 |
+
]
|
203 |
+
elif self.output_mode == "binary_mask":
|
204 |
+
mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]]
|
205 |
+
else:
|
206 |
+
mask_data["segmentations"] = mask_data["rles"]
|
207 |
+
|
208 |
+
# Write mask records
|
209 |
+
curr_anns = []
|
210 |
+
for idx in range(len(mask_data["segmentations"])):
|
211 |
+
ann = {
|
212 |
+
"segmentation": mask_data["segmentations"][idx],
|
213 |
+
"area": area_from_rle(mask_data["rles"][idx]),
|
214 |
+
"bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(),
|
215 |
+
"predicted_iou": mask_data["iou_preds"][idx].item(),
|
216 |
+
"point_coords": [mask_data["points"][idx].tolist()],
|
217 |
+
"stability_score": mask_data["stability_score"][idx].item(),
|
218 |
+
"crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(),
|
219 |
+
}
|
220 |
+
curr_anns.append(ann)
|
221 |
+
|
222 |
+
return curr_anns
|
223 |
+
|
224 |
+
def _generate_masks(self, image: np.ndarray) -> MaskData:
|
225 |
+
orig_size = image.shape[:2]
|
226 |
+
crop_boxes, layer_idxs = generate_crop_boxes(
|
227 |
+
orig_size, self.crop_n_layers, self.crop_overlap_ratio
|
228 |
+
)
|
229 |
+
|
230 |
+
# Iterate over image crops
|
231 |
+
data = MaskData()
|
232 |
+
for crop_box, layer_idx in zip(crop_boxes, layer_idxs):
|
233 |
+
crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)
|
234 |
+
data.cat(crop_data)
|
235 |
+
|
236 |
+
# Remove duplicate masks between crops
|
237 |
+
if len(crop_boxes) > 1:
|
238 |
+
# Prefer masks from smaller crops
|
239 |
+
scores = 1 / box_area(data["crop_boxes"])
|
240 |
+
scores = scores.to(data["boxes"].device)
|
241 |
+
keep_by_nms = batched_nms(
|
242 |
+
data["boxes"].float(),
|
243 |
+
scores,
|
244 |
+
torch.zeros_like(data["boxes"][:, 0]), # categories
|
245 |
+
iou_threshold=self.crop_nms_thresh,
|
246 |
+
)
|
247 |
+
data.filter(keep_by_nms)
|
248 |
+
data.to_numpy()
|
249 |
+
return data
|
250 |
+
|
251 |
+
def _process_crop(
|
252 |
+
self,
|
253 |
+
image: np.ndarray,
|
254 |
+
crop_box: List[int],
|
255 |
+
crop_layer_idx: int,
|
256 |
+
orig_size: Tuple[int, ...],
|
257 |
+
) -> MaskData:
|
258 |
+
# Crop the image and calculate embeddings
|
259 |
+
x0, y0, x1, y1 = crop_box
|
260 |
+
cropped_im = image[y0:y1, x0:x1, :]
|
261 |
+
cropped_im_size = cropped_im.shape[:2]
|
262 |
+
self.predictor.set_image(cropped_im)
|
263 |
+
|
264 |
+
# Get points for this crop
|
265 |
+
points_scale = np.array(cropped_im_size)[None, ::-1]
|
266 |
+
points_for_image = self.point_grids[crop_layer_idx] * points_scale
|
267 |
+
|
268 |
+
# Generate masks for this crop in batches
|
269 |
+
data = MaskData()
|
270 |
+
for (points,) in batch_iterator(self.points_per_batch, points_for_image):
|
271 |
+
batch_data = self._process_batch(
|
272 |
+
points, cropped_im_size, crop_box, orig_size, normalize=True
|
273 |
+
)
|
274 |
+
data.cat(batch_data)
|
275 |
+
del batch_data
|
276 |
+
self.predictor.reset_predictor()
|
277 |
+
|
278 |
+
# Remove duplicates within this crop.
|
279 |
+
keep_by_nms = batched_nms(
|
280 |
+
data["boxes"].float(),
|
281 |
+
data["iou_preds"],
|
282 |
+
torch.zeros_like(data["boxes"][:, 0]), # categories
|
283 |
+
iou_threshold=self.box_nms_thresh,
|
284 |
+
)
|
285 |
+
data.filter(keep_by_nms)
|
286 |
+
|
287 |
+
# Return to the original image frame
|
288 |
+
data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box)
|
289 |
+
data["points"] = uncrop_points(data["points"], crop_box)
|
290 |
+
data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))])
|
291 |
+
|
292 |
+
return data
|
293 |
+
|
294 |
+
def _process_batch(
|
295 |
+
self,
|
296 |
+
points: np.ndarray,
|
297 |
+
im_size: Tuple[int, ...],
|
298 |
+
crop_box: List[int],
|
299 |
+
orig_size: Tuple[int, ...],
|
300 |
+
normalize=False,
|
301 |
+
) -> MaskData:
|
302 |
+
orig_h, orig_w = orig_size
|
303 |
+
|
304 |
+
# Run model on this batch
|
305 |
+
points = torch.as_tensor(
|
306 |
+
points, dtype=torch.float32, device=self.predictor.device
|
307 |
+
)
|
308 |
+
in_points = self.predictor._transforms.transform_coords(
|
309 |
+
points, normalize=normalize, orig_hw=im_size
|
310 |
+
)
|
311 |
+
in_labels = torch.ones(
|
312 |
+
in_points.shape[0], dtype=torch.int, device=in_points.device
|
313 |
+
)
|
314 |
+
masks, iou_preds, low_res_masks = self.predictor._predict(
|
315 |
+
in_points[:, None, :],
|
316 |
+
in_labels[:, None],
|
317 |
+
multimask_output=self.multimask_output,
|
318 |
+
return_logits=True,
|
319 |
+
)
|
320 |
+
|
321 |
+
# Serialize predictions and store in MaskData
|
322 |
+
data = MaskData(
|
323 |
+
masks=masks.flatten(0, 1),
|
324 |
+
iou_preds=iou_preds.flatten(0, 1),
|
325 |
+
points=points.repeat_interleave(masks.shape[1], dim=0),
|
326 |
+
low_res_masks=low_res_masks.flatten(0, 1),
|
327 |
+
)
|
328 |
+
del masks
|
329 |
+
|
330 |
+
if not self.use_m2m:
|
331 |
+
# Filter by predicted IoU
|
332 |
+
if self.pred_iou_thresh > 0.0:
|
333 |
+
keep_mask = data["iou_preds"] > self.pred_iou_thresh
|
334 |
+
data.filter(keep_mask)
|
335 |
+
|
336 |
+
# Calculate and filter by stability score
|
337 |
+
data["stability_score"] = calculate_stability_score(
|
338 |
+
data["masks"], self.mask_threshold, self.stability_score_offset
|
339 |
+
)
|
340 |
+
if self.stability_score_thresh > 0.0:
|
341 |
+
keep_mask = data["stability_score"] >= self.stability_score_thresh
|
342 |
+
data.filter(keep_mask)
|
343 |
+
else:
|
344 |
+
# One step refinement using previous mask predictions
|
345 |
+
in_points = self.predictor._transforms.transform_coords(
|
346 |
+
data["points"], normalize=normalize, orig_hw=im_size
|
347 |
+
)
|
348 |
+
labels = torch.ones(
|
349 |
+
in_points.shape[0], dtype=torch.int, device=in_points.device
|
350 |
+
)
|
351 |
+
masks, ious = self.refine_with_m2m(
|
352 |
+
in_points, labels, data["low_res_masks"], self.points_per_batch
|
353 |
+
)
|
354 |
+
data["masks"] = masks.squeeze(1)
|
355 |
+
data["iou_preds"] = ious.squeeze(1)
|
356 |
+
|
357 |
+
if self.pred_iou_thresh > 0.0:
|
358 |
+
keep_mask = data["iou_preds"] > self.pred_iou_thresh
|
359 |
+
data.filter(keep_mask)
|
360 |
+
|
361 |
+
data["stability_score"] = calculate_stability_score(
|
362 |
+
data["masks"], self.mask_threshold, self.stability_score_offset
|
363 |
+
)
|
364 |
+
if self.stability_score_thresh > 0.0:
|
365 |
+
keep_mask = data["stability_score"] >= self.stability_score_thresh
|
366 |
+
data.filter(keep_mask)
|
367 |
+
|
368 |
+
# Threshold masks and calculate boxes
|
369 |
+
data["masks"] = data["masks"] > self.mask_threshold
|
370 |
+
data["boxes"] = batched_mask_to_box(data["masks"])
|
371 |
+
|
372 |
+
# Filter boxes that touch crop boundaries
|
373 |
+
keep_mask = ~is_box_near_crop_edge(
|
374 |
+
data["boxes"], crop_box, [0, 0, orig_w, orig_h]
|
375 |
+
)
|
376 |
+
if not torch.all(keep_mask):
|
377 |
+
data.filter(keep_mask)
|
378 |
+
|
379 |
+
# Compress to RLE
|
380 |
+
data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w)
|
381 |
+
data["rles"] = mask_to_rle_pytorch(data["masks"])
|
382 |
+
del data["masks"]
|
383 |
+
|
384 |
+
return data
|
385 |
+
|
386 |
+
@staticmethod
|
387 |
+
def postprocess_small_regions(
|
388 |
+
mask_data: MaskData, min_area: int, nms_thresh: float
|
389 |
+
) -> MaskData:
|
390 |
+
"""
|
391 |
+
Removes small disconnected regions and holes in masks, then reruns
|
392 |
+
box NMS to remove any new duplicates.
|
393 |
+
|
394 |
+
Edits mask_data in place.
|
395 |
+
|
396 |
+
Requires open-cv as a dependency.
|
397 |
+
"""
|
398 |
+
if len(mask_data["rles"]) == 0:
|
399 |
+
return mask_data
|
400 |
+
|
401 |
+
# Filter small disconnected regions and holes
|
402 |
+
new_masks = []
|
403 |
+
scores = []
|
404 |
+
for rle in mask_data["rles"]:
|
405 |
+
mask = rle_to_mask(rle)
|
406 |
+
|
407 |
+
mask, changed = remove_small_regions(mask, min_area, mode="holes")
|
408 |
+
unchanged = not changed
|
409 |
+
mask, changed = remove_small_regions(mask, min_area, mode="islands")
|
410 |
+
unchanged = unchanged and not changed
|
411 |
+
|
412 |
+
new_masks.append(torch.as_tensor(mask).unsqueeze(0))
|
413 |
+
# Give score=0 to changed masks and score=1 to unchanged masks
|
414 |
+
# so NMS will prefer ones that didn't need postprocessing
|
415 |
+
scores.append(float(unchanged))
|
416 |
+
|
417 |
+
# Recalculate boxes and remove any new duplicates
|
418 |
+
masks = torch.cat(new_masks, dim=0)
|
419 |
+
boxes = batched_mask_to_box(masks)
|
420 |
+
keep_by_nms = batched_nms(
|
421 |
+
boxes.float(),
|
422 |
+
torch.as_tensor(scores),
|
423 |
+
torch.zeros_like(boxes[:, 0]), # categories
|
424 |
+
iou_threshold=nms_thresh,
|
425 |
+
)
|
426 |
+
|
427 |
+
# Only recalculate RLEs for masks that have changed
|
428 |
+
for i_mask in keep_by_nms:
|
429 |
+
if scores[i_mask] == 0.0:
|
430 |
+
mask_torch = masks[i_mask].unsqueeze(0)
|
431 |
+
mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0]
|
432 |
+
mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly
|
433 |
+
mask_data.filter(keep_by_nms)
|
434 |
+
|
435 |
+
return mask_data
|
436 |
+
|
437 |
+
def refine_with_m2m(self, points, point_labels, low_res_masks, points_per_batch):
|
438 |
+
new_masks = []
|
439 |
+
new_iou_preds = []
|
440 |
+
|
441 |
+
for cur_points, cur_point_labels, low_res_mask in batch_iterator(
|
442 |
+
points_per_batch, points, point_labels, low_res_masks
|
443 |
+
):
|
444 |
+
best_masks, best_iou_preds, _ = self.predictor._predict(
|
445 |
+
cur_points[:, None, :],
|
446 |
+
cur_point_labels[:, None],
|
447 |
+
mask_input=low_res_mask[:, None, :],
|
448 |
+
multimask_output=False,
|
449 |
+
return_logits=True,
|
450 |
+
)
|
451 |
+
new_masks.append(best_masks)
|
452 |
+
new_iou_preds.append(best_iou_preds)
|
453 |
+
masks = torch.cat(new_masks, dim=0)
|
454 |
+
return masks, torch.cat(new_iou_preds, dim=0)
|
sam2/benchmark.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import os
|
8 |
+
import time
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
from tqdm import tqdm
|
13 |
+
|
14 |
+
from sam2.build_sam import build_sam2_video_predictor
|
15 |
+
|
16 |
+
# Only cuda supported
|
17 |
+
assert torch.cuda.is_available()
|
18 |
+
device = torch.device("cuda")
|
19 |
+
|
20 |
+
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
21 |
+
if torch.cuda.get_device_properties(0).major >= 8:
|
22 |
+
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
|
23 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
24 |
+
torch.backends.cudnn.allow_tf32 = True
|
25 |
+
|
26 |
+
# Config and checkpoint
|
27 |
+
sam2_checkpoint = "checkpoints/sam2.1_hiera_base_plus.pt"
|
28 |
+
model_cfg = "configs/sam2.1/sam2.1_hiera_b+.yaml"
|
29 |
+
|
30 |
+
# Build video predictor with vos_optimized=True setting
|
31 |
+
predictor = build_sam2_video_predictor(
|
32 |
+
model_cfg, sam2_checkpoint, device=device, vos_optimized=True
|
33 |
+
)
|
34 |
+
|
35 |
+
|
36 |
+
# Initialize with video
|
37 |
+
video_dir = "notebooks/videos/bedroom"
|
38 |
+
# scan all the JPEG frame names in this directory
|
39 |
+
frame_names = [
|
40 |
+
p
|
41 |
+
for p in os.listdir(video_dir)
|
42 |
+
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
|
43 |
+
]
|
44 |
+
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
|
45 |
+
inference_state = predictor.init_state(video_path=video_dir)
|
46 |
+
|
47 |
+
|
48 |
+
# Number of runs, warmup etc
|
49 |
+
warm_up, runs = 5, 25
|
50 |
+
verbose = True
|
51 |
+
num_frames = len(frame_names)
|
52 |
+
total, count = 0, 0
|
53 |
+
torch.cuda.empty_cache()
|
54 |
+
|
55 |
+
# We will select an object with a click.
|
56 |
+
# See video_predictor_example.ipynb for more detailed explanation
|
57 |
+
ann_frame_idx, ann_obj_id = 0, 1
|
58 |
+
# Add a positive click at (x, y) = (210, 350)
|
59 |
+
# For labels, `1` means positive click
|
60 |
+
points = np.array([[210, 350]], dtype=np.float32)
|
61 |
+
labels = np.array([1], np.int32)
|
62 |
+
|
63 |
+
_, out_obj_ids, out_mask_logits = predictor.add_new_points_or_box(
|
64 |
+
inference_state=inference_state,
|
65 |
+
frame_idx=ann_frame_idx,
|
66 |
+
obj_id=ann_obj_id,
|
67 |
+
points=points,
|
68 |
+
labels=labels,
|
69 |
+
)
|
70 |
+
|
71 |
+
# Warmup and then average FPS over several runs
|
72 |
+
with torch.autocast("cuda", torch.bfloat16):
|
73 |
+
with torch.inference_mode():
|
74 |
+
for i in tqdm(range(runs), disable=not verbose, desc="Benchmarking"):
|
75 |
+
start = time.time()
|
76 |
+
# Start tracking
|
77 |
+
for (
|
78 |
+
out_frame_idx,
|
79 |
+
out_obj_ids,
|
80 |
+
out_mask_logits,
|
81 |
+
) in predictor.propagate_in_video(inference_state):
|
82 |
+
pass
|
83 |
+
|
84 |
+
end = time.time()
|
85 |
+
total += end - start
|
86 |
+
count += 1
|
87 |
+
if i == warm_up - 1:
|
88 |
+
print("Warmup FPS: ", count * num_frames / total)
|
89 |
+
total = 0
|
90 |
+
count = 0
|
91 |
+
|
92 |
+
print("FPS: ", count * num_frames / total)
|
sam2/build_sam.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import logging
|
8 |
+
import os
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from hydra import compose
|
12 |
+
from hydra.utils import instantiate
|
13 |
+
from omegaconf import OmegaConf
|
14 |
+
|
15 |
+
import sam2
|
16 |
+
|
17 |
+
# Check if the user is running Python from the parent directory of the sam2 repo
|
18 |
+
# (i.e. the directory where this repo is cloned into) -- this is not supported since
|
19 |
+
# it could shadow the sam2 package and cause issues.
|
20 |
+
if os.path.isdir(os.path.join(sam2.__path__[0], "sam2")):
|
21 |
+
# If the user has "sam2/sam2" in their path, they are likey importing the repo itself
|
22 |
+
# as "sam2" rather than importing the "sam2" python package (i.e. "sam2/sam2" directory).
|
23 |
+
# This typically happens because the user is running Python from the parent directory
|
24 |
+
# that contains the sam2 repo they cloned.
|
25 |
+
raise RuntimeError(
|
26 |
+
"You're likely running Python from the parent directory of the sam2 repository "
|
27 |
+
"(i.e. the directory where https://github.com/facebookresearch/sam2 is cloned into). "
|
28 |
+
"This is not supported since the `sam2` Python package could be shadowed by the "
|
29 |
+
"repository name (the repository is also named `sam2` and contains the Python package "
|
30 |
+
"in `sam2/sam2`). Please run Python from another directory (e.g. from the repo dir "
|
31 |
+
"rather than its parent dir, or from your home directory) after installing SAM 2."
|
32 |
+
)
|
33 |
+
|
34 |
+
|
35 |
+
HF_MODEL_ID_TO_FILENAMES = {
|
36 |
+
"facebook/sam2-hiera-tiny": (
|
37 |
+
"configs/sam2/sam2_hiera_t.yaml",
|
38 |
+
"sam2_hiera_tiny.pt",
|
39 |
+
),
|
40 |
+
"facebook/sam2-hiera-small": (
|
41 |
+
"configs/sam2/sam2_hiera_s.yaml",
|
42 |
+
"sam2_hiera_small.pt",
|
43 |
+
),
|
44 |
+
"facebook/sam2-hiera-base-plus": (
|
45 |
+
"configs/sam2/sam2_hiera_b+.yaml",
|
46 |
+
"sam2_hiera_base_plus.pt",
|
47 |
+
),
|
48 |
+
"facebook/sam2-hiera-large": (
|
49 |
+
"configs/sam2/sam2_hiera_l.yaml",
|
50 |
+
"sam2_hiera_large.pt",
|
51 |
+
),
|
52 |
+
"facebook/sam2.1-hiera-tiny": (
|
53 |
+
"configs/sam2.1/sam2.1_hiera_t.yaml",
|
54 |
+
"sam2.1_hiera_tiny.pt",
|
55 |
+
),
|
56 |
+
"facebook/sam2.1-hiera-small": (
|
57 |
+
"configs/sam2.1/sam2.1_hiera_s.yaml",
|
58 |
+
"sam2.1_hiera_small.pt",
|
59 |
+
),
|
60 |
+
"facebook/sam2.1-hiera-base-plus": (
|
61 |
+
"configs/sam2.1/sam2.1_hiera_b+.yaml",
|
62 |
+
"sam2.1_hiera_base_plus.pt",
|
63 |
+
),
|
64 |
+
"facebook/sam2.1-hiera-large": (
|
65 |
+
"configs/sam2.1/sam2.1_hiera_l.yaml",
|
66 |
+
"sam2.1_hiera_large.pt",
|
67 |
+
),
|
68 |
+
}
|
69 |
+
|
70 |
+
|
71 |
+
def build_sam2(
|
72 |
+
config_file,
|
73 |
+
ckpt_path=None,
|
74 |
+
device="cuda",
|
75 |
+
mode="eval",
|
76 |
+
hydra_overrides_extra=[],
|
77 |
+
apply_postprocessing=True,
|
78 |
+
**kwargs,
|
79 |
+
):
|
80 |
+
|
81 |
+
if apply_postprocessing:
|
82 |
+
hydra_overrides_extra = hydra_overrides_extra.copy()
|
83 |
+
hydra_overrides_extra += [
|
84 |
+
# dynamically fall back to multi-mask if the single mask is not stable
|
85 |
+
"++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
|
86 |
+
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
|
87 |
+
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
|
88 |
+
]
|
89 |
+
# Read config and init model
|
90 |
+
cfg = compose(config_name=config_file, overrides=hydra_overrides_extra)
|
91 |
+
OmegaConf.resolve(cfg)
|
92 |
+
model = instantiate(cfg.model, _recursive_=True)
|
93 |
+
_load_checkpoint(model, ckpt_path)
|
94 |
+
model = model.to(device)
|
95 |
+
if mode == "eval":
|
96 |
+
model.eval()
|
97 |
+
return model
|
98 |
+
|
99 |
+
|
100 |
+
def build_sam2_video_predictor(
|
101 |
+
config_file,
|
102 |
+
ckpt_path=None,
|
103 |
+
device="cuda",
|
104 |
+
mode="eval",
|
105 |
+
hydra_overrides_extra=[],
|
106 |
+
apply_postprocessing=True,
|
107 |
+
vos_optimized=False,
|
108 |
+
**kwargs,
|
109 |
+
):
|
110 |
+
hydra_overrides = [
|
111 |
+
"++model._target_=sam2.sam2_video_predictor.SAM2VideoPredictor",
|
112 |
+
]
|
113 |
+
if vos_optimized:
|
114 |
+
hydra_overrides = [
|
115 |
+
"++model._target_=sam2.sam2_video_predictor.SAM2VideoPredictorVOS",
|
116 |
+
"++model.compile_image_encoder=True", # Let sam2_base handle this
|
117 |
+
]
|
118 |
+
|
119 |
+
if apply_postprocessing:
|
120 |
+
hydra_overrides_extra = hydra_overrides_extra.copy()
|
121 |
+
hydra_overrides_extra += [
|
122 |
+
# dynamically fall back to multi-mask if the single mask is not stable
|
123 |
+
"++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
|
124 |
+
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
|
125 |
+
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
|
126 |
+
# the sigmoid mask logits on interacted frames with clicks in the memory encoder so that the encoded masks are exactly as what users see from clicking
|
127 |
+
"++model.binarize_mask_from_pts_for_mem_enc=true",
|
128 |
+
# fill small holes in the low-res masks up to `fill_hole_area` (before resizing them to the original video resolution)
|
129 |
+
"++model.fill_hole_area=8",
|
130 |
+
]
|
131 |
+
hydra_overrides.extend(hydra_overrides_extra)
|
132 |
+
|
133 |
+
# Read config and init model
|
134 |
+
cfg = compose(config_name=config_file, overrides=hydra_overrides)
|
135 |
+
OmegaConf.resolve(cfg)
|
136 |
+
model = instantiate(cfg.model, _recursive_=True)
|
137 |
+
_load_checkpoint(model, ckpt_path)
|
138 |
+
model = model.to(device)
|
139 |
+
if mode == "eval":
|
140 |
+
model.eval()
|
141 |
+
return model
|
142 |
+
|
143 |
+
|
144 |
+
def _hf_download(model_id):
|
145 |
+
from huggingface_hub import hf_hub_download
|
146 |
+
|
147 |
+
config_name, checkpoint_name = HF_MODEL_ID_TO_FILENAMES[model_id]
|
148 |
+
ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name)
|
149 |
+
return config_name, ckpt_path
|
150 |
+
|
151 |
+
|
152 |
+
def build_sam2_hf(model_id, **kwargs):
|
153 |
+
config_name, ckpt_path = _hf_download(model_id)
|
154 |
+
return build_sam2(config_file=config_name, ckpt_path=ckpt_path, **kwargs)
|
155 |
+
|
156 |
+
|
157 |
+
def build_sam2_video_predictor_hf(model_id, **kwargs):
|
158 |
+
config_name, ckpt_path = _hf_download(model_id)
|
159 |
+
return build_sam2_video_predictor(
|
160 |
+
config_file=config_name, ckpt_path=ckpt_path, **kwargs
|
161 |
+
)
|
162 |
+
|
163 |
+
|
164 |
+
def _load_checkpoint(model, ckpt_path):
|
165 |
+
if ckpt_path is not None:
|
166 |
+
sd = torch.load(ckpt_path, map_location="cpu", weights_only=True)["model"]
|
167 |
+
missing_keys, unexpected_keys = model.load_state_dict(sd)
|
168 |
+
if missing_keys:
|
169 |
+
logging.error(missing_keys)
|
170 |
+
raise RuntimeError()
|
171 |
+
if unexpected_keys:
|
172 |
+
logging.error(unexpected_keys)
|
173 |
+
raise RuntimeError()
|
174 |
+
logging.info("Loaded checkpoint sucessfully")
|
sam2/configs/sam2.1/sam2.1_hiera_b+.yaml
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# Model
|
4 |
+
model:
|
5 |
+
_target_: sam2.modeling.sam2_base.SAM2Base
|
6 |
+
image_encoder:
|
7 |
+
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
8 |
+
scalp: 1
|
9 |
+
trunk:
|
10 |
+
_target_: sam2.modeling.backbones.hieradet.Hiera
|
11 |
+
embed_dim: 112
|
12 |
+
num_heads: 2
|
13 |
+
neck:
|
14 |
+
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
|
15 |
+
position_encoding:
|
16 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
17 |
+
num_pos_feats: 256
|
18 |
+
normalize: true
|
19 |
+
scale: null
|
20 |
+
temperature: 10000
|
21 |
+
d_model: 256
|
22 |
+
backbone_channel_list: [896, 448, 224, 112]
|
23 |
+
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
24 |
+
fpn_interp_model: nearest
|
25 |
+
|
26 |
+
memory_attention:
|
27 |
+
_target_: sam2.modeling.memory_attention.MemoryAttention
|
28 |
+
d_model: 256
|
29 |
+
pos_enc_at_input: true
|
30 |
+
layer:
|
31 |
+
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
32 |
+
activation: relu
|
33 |
+
dim_feedforward: 2048
|
34 |
+
dropout: 0.1
|
35 |
+
pos_enc_at_attn: false
|
36 |
+
self_attention:
|
37 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
38 |
+
rope_theta: 10000.0
|
39 |
+
feat_sizes: [64, 64]
|
40 |
+
embedding_dim: 256
|
41 |
+
num_heads: 1
|
42 |
+
downsample_rate: 1
|
43 |
+
dropout: 0.1
|
44 |
+
d_model: 256
|
45 |
+
pos_enc_at_cross_attn_keys: true
|
46 |
+
pos_enc_at_cross_attn_queries: false
|
47 |
+
cross_attention:
|
48 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
49 |
+
rope_theta: 10000.0
|
50 |
+
feat_sizes: [64, 64]
|
51 |
+
rope_k_repeat: True
|
52 |
+
embedding_dim: 256
|
53 |
+
num_heads: 1
|
54 |
+
downsample_rate: 1
|
55 |
+
dropout: 0.1
|
56 |
+
kv_in_dim: 64
|
57 |
+
num_layers: 4
|
58 |
+
|
59 |
+
memory_encoder:
|
60 |
+
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
61 |
+
out_dim: 64
|
62 |
+
position_encoding:
|
63 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
64 |
+
num_pos_feats: 64
|
65 |
+
normalize: true
|
66 |
+
scale: null
|
67 |
+
temperature: 10000
|
68 |
+
mask_downsampler:
|
69 |
+
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
70 |
+
kernel_size: 3
|
71 |
+
stride: 2
|
72 |
+
padding: 1
|
73 |
+
fuser:
|
74 |
+
_target_: sam2.modeling.memory_encoder.Fuser
|
75 |
+
layer:
|
76 |
+
_target_: sam2.modeling.memory_encoder.CXBlock
|
77 |
+
dim: 256
|
78 |
+
kernel_size: 7
|
79 |
+
padding: 3
|
80 |
+
layer_scale_init_value: 1e-6
|
81 |
+
use_dwconv: True # depth-wise convs
|
82 |
+
num_layers: 2
|
83 |
+
|
84 |
+
num_maskmem: 7
|
85 |
+
image_size: 1024
|
86 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
87 |
+
sigmoid_scale_for_mem_enc: 20.0
|
88 |
+
sigmoid_bias_for_mem_enc: -10.0
|
89 |
+
use_mask_input_as_output_without_sam: true
|
90 |
+
# Memory
|
91 |
+
directly_add_no_mem_embed: true
|
92 |
+
no_obj_embed_spatial: true
|
93 |
+
# use high-resolution feature map in the SAM mask decoder
|
94 |
+
use_high_res_features_in_sam: true
|
95 |
+
# output 3 masks on the first click on initial conditioning frames
|
96 |
+
multimask_output_in_sam: true
|
97 |
+
# SAM heads
|
98 |
+
iou_prediction_use_sigmoid: True
|
99 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
100 |
+
use_obj_ptrs_in_encoder: true
|
101 |
+
add_tpos_enc_to_obj_ptrs: true
|
102 |
+
proj_tpos_enc_in_obj_ptrs: true
|
103 |
+
use_signed_tpos_enc_to_obj_ptrs: true
|
104 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
105 |
+
# object occlusion prediction
|
106 |
+
pred_obj_scores: true
|
107 |
+
pred_obj_scores_mlp: true
|
108 |
+
fixed_no_obj_ptr: true
|
109 |
+
# multimask tracking settings
|
110 |
+
multimask_output_for_tracking: true
|
111 |
+
use_multimask_token_for_obj_ptr: true
|
112 |
+
multimask_min_pt_num: 0
|
113 |
+
multimask_max_pt_num: 1
|
114 |
+
use_mlp_for_obj_ptr_proj: true
|
115 |
+
# Compilation flag
|
116 |
+
compile_image_encoder: False
|
sam2/configs/sam2.1/sam2.1_hiera_l.yaml
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# Model
|
4 |
+
model:
|
5 |
+
_target_: sam2.modeling.sam2_base.SAM2Base
|
6 |
+
image_encoder:
|
7 |
+
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
8 |
+
scalp: 1
|
9 |
+
trunk:
|
10 |
+
_target_: sam2.modeling.backbones.hieradet.Hiera
|
11 |
+
embed_dim: 144
|
12 |
+
num_heads: 2
|
13 |
+
stages: [2, 6, 36, 4]
|
14 |
+
global_att_blocks: [23, 33, 43]
|
15 |
+
window_pos_embed_bkg_spatial_size: [7, 7]
|
16 |
+
window_spec: [8, 4, 16, 8]
|
17 |
+
neck:
|
18 |
+
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
|
19 |
+
position_encoding:
|
20 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
21 |
+
num_pos_feats: 256
|
22 |
+
normalize: true
|
23 |
+
scale: null
|
24 |
+
temperature: 10000
|
25 |
+
d_model: 256
|
26 |
+
backbone_channel_list: [1152, 576, 288, 144]
|
27 |
+
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
28 |
+
fpn_interp_model: nearest
|
29 |
+
|
30 |
+
memory_attention:
|
31 |
+
_target_: sam2.modeling.memory_attention.MemoryAttention
|
32 |
+
d_model: 256
|
33 |
+
pos_enc_at_input: true
|
34 |
+
layer:
|
35 |
+
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
36 |
+
activation: relu
|
37 |
+
dim_feedforward: 2048
|
38 |
+
dropout: 0.1
|
39 |
+
pos_enc_at_attn: false
|
40 |
+
self_attention:
|
41 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
42 |
+
rope_theta: 10000.0
|
43 |
+
feat_sizes: [64, 64]
|
44 |
+
embedding_dim: 256
|
45 |
+
num_heads: 1
|
46 |
+
downsample_rate: 1
|
47 |
+
dropout: 0.1
|
48 |
+
d_model: 256
|
49 |
+
pos_enc_at_cross_attn_keys: true
|
50 |
+
pos_enc_at_cross_attn_queries: false
|
51 |
+
cross_attention:
|
52 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
53 |
+
rope_theta: 10000.0
|
54 |
+
feat_sizes: [64, 64]
|
55 |
+
rope_k_repeat: True
|
56 |
+
embedding_dim: 256
|
57 |
+
num_heads: 1
|
58 |
+
downsample_rate: 1
|
59 |
+
dropout: 0.1
|
60 |
+
kv_in_dim: 64
|
61 |
+
num_layers: 4
|
62 |
+
|
63 |
+
memory_encoder:
|
64 |
+
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
65 |
+
out_dim: 64
|
66 |
+
position_encoding:
|
67 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
68 |
+
num_pos_feats: 64
|
69 |
+
normalize: true
|
70 |
+
scale: null
|
71 |
+
temperature: 10000
|
72 |
+
mask_downsampler:
|
73 |
+
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
74 |
+
kernel_size: 3
|
75 |
+
stride: 2
|
76 |
+
padding: 1
|
77 |
+
fuser:
|
78 |
+
_target_: sam2.modeling.memory_encoder.Fuser
|
79 |
+
layer:
|
80 |
+
_target_: sam2.modeling.memory_encoder.CXBlock
|
81 |
+
dim: 256
|
82 |
+
kernel_size: 7
|
83 |
+
padding: 3
|
84 |
+
layer_scale_init_value: 1e-6
|
85 |
+
use_dwconv: True # depth-wise convs
|
86 |
+
num_layers: 2
|
87 |
+
|
88 |
+
num_maskmem: 7
|
89 |
+
image_size: 1024
|
90 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
91 |
+
sigmoid_scale_for_mem_enc: 20.0
|
92 |
+
sigmoid_bias_for_mem_enc: -10.0
|
93 |
+
use_mask_input_as_output_without_sam: true
|
94 |
+
# Memory
|
95 |
+
directly_add_no_mem_embed: true
|
96 |
+
no_obj_embed_spatial: true
|
97 |
+
# use high-resolution feature map in the SAM mask decoder
|
98 |
+
use_high_res_features_in_sam: true
|
99 |
+
# output 3 masks on the first click on initial conditioning frames
|
100 |
+
multimask_output_in_sam: true
|
101 |
+
# SAM heads
|
102 |
+
iou_prediction_use_sigmoid: True
|
103 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
104 |
+
use_obj_ptrs_in_encoder: true
|
105 |
+
add_tpos_enc_to_obj_ptrs: true
|
106 |
+
proj_tpos_enc_in_obj_ptrs: true
|
107 |
+
use_signed_tpos_enc_to_obj_ptrs: true
|
108 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
109 |
+
# object occlusion prediction
|
110 |
+
pred_obj_scores: true
|
111 |
+
pred_obj_scores_mlp: true
|
112 |
+
fixed_no_obj_ptr: true
|
113 |
+
# multimask tracking settings
|
114 |
+
multimask_output_for_tracking: true
|
115 |
+
use_multimask_token_for_obj_ptr: true
|
116 |
+
multimask_min_pt_num: 0
|
117 |
+
multimask_max_pt_num: 1
|
118 |
+
use_mlp_for_obj_ptr_proj: true
|
119 |
+
# Compilation flag
|
120 |
+
compile_image_encoder: False
|
sam2/configs/sam2.1/sam2.1_hiera_s.yaml
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# Model
|
4 |
+
model:
|
5 |
+
_target_: sam2.modeling.sam2_base.SAM2Base
|
6 |
+
image_encoder:
|
7 |
+
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
8 |
+
scalp: 1
|
9 |
+
trunk:
|
10 |
+
_target_: sam2.modeling.backbones.hieradet.Hiera
|
11 |
+
embed_dim: 96
|
12 |
+
num_heads: 1
|
13 |
+
stages: [1, 2, 11, 2]
|
14 |
+
global_att_blocks: [7, 10, 13]
|
15 |
+
window_pos_embed_bkg_spatial_size: [7, 7]
|
16 |
+
neck:
|
17 |
+
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
|
18 |
+
position_encoding:
|
19 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
20 |
+
num_pos_feats: 256
|
21 |
+
normalize: true
|
22 |
+
scale: null
|
23 |
+
temperature: 10000
|
24 |
+
d_model: 256
|
25 |
+
backbone_channel_list: [768, 384, 192, 96]
|
26 |
+
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
27 |
+
fpn_interp_model: nearest
|
28 |
+
|
29 |
+
memory_attention:
|
30 |
+
_target_: sam2.modeling.memory_attention.MemoryAttention
|
31 |
+
d_model: 256
|
32 |
+
pos_enc_at_input: true
|
33 |
+
layer:
|
34 |
+
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
35 |
+
activation: relu
|
36 |
+
dim_feedforward: 2048
|
37 |
+
dropout: 0.1
|
38 |
+
pos_enc_at_attn: false
|
39 |
+
self_attention:
|
40 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
41 |
+
rope_theta: 10000.0
|
42 |
+
feat_sizes: [64, 64]
|
43 |
+
embedding_dim: 256
|
44 |
+
num_heads: 1
|
45 |
+
downsample_rate: 1
|
46 |
+
dropout: 0.1
|
47 |
+
d_model: 256
|
48 |
+
pos_enc_at_cross_attn_keys: true
|
49 |
+
pos_enc_at_cross_attn_queries: false
|
50 |
+
cross_attention:
|
51 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
52 |
+
rope_theta: 10000.0
|
53 |
+
feat_sizes: [64, 64]
|
54 |
+
rope_k_repeat: True
|
55 |
+
embedding_dim: 256
|
56 |
+
num_heads: 1
|
57 |
+
downsample_rate: 1
|
58 |
+
dropout: 0.1
|
59 |
+
kv_in_dim: 64
|
60 |
+
num_layers: 4
|
61 |
+
|
62 |
+
memory_encoder:
|
63 |
+
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
64 |
+
out_dim: 64
|
65 |
+
position_encoding:
|
66 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
67 |
+
num_pos_feats: 64
|
68 |
+
normalize: true
|
69 |
+
scale: null
|
70 |
+
temperature: 10000
|
71 |
+
mask_downsampler:
|
72 |
+
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
73 |
+
kernel_size: 3
|
74 |
+
stride: 2
|
75 |
+
padding: 1
|
76 |
+
fuser:
|
77 |
+
_target_: sam2.modeling.memory_encoder.Fuser
|
78 |
+
layer:
|
79 |
+
_target_: sam2.modeling.memory_encoder.CXBlock
|
80 |
+
dim: 256
|
81 |
+
kernel_size: 7
|
82 |
+
padding: 3
|
83 |
+
layer_scale_init_value: 1e-6
|
84 |
+
use_dwconv: True # depth-wise convs
|
85 |
+
num_layers: 2
|
86 |
+
|
87 |
+
num_maskmem: 7
|
88 |
+
image_size: 1024
|
89 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
90 |
+
sigmoid_scale_for_mem_enc: 20.0
|
91 |
+
sigmoid_bias_for_mem_enc: -10.0
|
92 |
+
use_mask_input_as_output_without_sam: true
|
93 |
+
# Memory
|
94 |
+
directly_add_no_mem_embed: true
|
95 |
+
no_obj_embed_spatial: true
|
96 |
+
# use high-resolution feature map in the SAM mask decoder
|
97 |
+
use_high_res_features_in_sam: true
|
98 |
+
# output 3 masks on the first click on initial conditioning frames
|
99 |
+
multimask_output_in_sam: true
|
100 |
+
# SAM heads
|
101 |
+
iou_prediction_use_sigmoid: True
|
102 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
103 |
+
use_obj_ptrs_in_encoder: true
|
104 |
+
add_tpos_enc_to_obj_ptrs: true
|
105 |
+
proj_tpos_enc_in_obj_ptrs: true
|
106 |
+
use_signed_tpos_enc_to_obj_ptrs: true
|
107 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
108 |
+
# object occlusion prediction
|
109 |
+
pred_obj_scores: true
|
110 |
+
pred_obj_scores_mlp: true
|
111 |
+
fixed_no_obj_ptr: true
|
112 |
+
# multimask tracking settings
|
113 |
+
multimask_output_for_tracking: true
|
114 |
+
use_multimask_token_for_obj_ptr: true
|
115 |
+
multimask_min_pt_num: 0
|
116 |
+
multimask_max_pt_num: 1
|
117 |
+
use_mlp_for_obj_ptr_proj: true
|
118 |
+
# Compilation flag
|
119 |
+
compile_image_encoder: False
|
sam2/configs/sam2.1/sam2.1_hiera_t.yaml
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# Model
|
4 |
+
model:
|
5 |
+
_target_: sam2.modeling.sam2_base.SAM2Base
|
6 |
+
image_encoder:
|
7 |
+
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
8 |
+
scalp: 1
|
9 |
+
trunk:
|
10 |
+
_target_: sam2.modeling.backbones.hieradet.Hiera
|
11 |
+
embed_dim: 96
|
12 |
+
num_heads: 1
|
13 |
+
stages: [1, 2, 7, 2]
|
14 |
+
global_att_blocks: [5, 7, 9]
|
15 |
+
window_pos_embed_bkg_spatial_size: [7, 7]
|
16 |
+
neck:
|
17 |
+
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
|
18 |
+
position_encoding:
|
19 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
20 |
+
num_pos_feats: 256
|
21 |
+
normalize: true
|
22 |
+
scale: null
|
23 |
+
temperature: 10000
|
24 |
+
d_model: 256
|
25 |
+
backbone_channel_list: [768, 384, 192, 96]
|
26 |
+
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
27 |
+
fpn_interp_model: nearest
|
28 |
+
|
29 |
+
memory_attention:
|
30 |
+
_target_: sam2.modeling.memory_attention.MemoryAttention
|
31 |
+
d_model: 256
|
32 |
+
pos_enc_at_input: true
|
33 |
+
layer:
|
34 |
+
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
35 |
+
activation: relu
|
36 |
+
dim_feedforward: 2048
|
37 |
+
dropout: 0.1
|
38 |
+
pos_enc_at_attn: false
|
39 |
+
self_attention:
|
40 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
41 |
+
rope_theta: 10000.0
|
42 |
+
feat_sizes: [64, 64]
|
43 |
+
embedding_dim: 256
|
44 |
+
num_heads: 1
|
45 |
+
downsample_rate: 1
|
46 |
+
dropout: 0.1
|
47 |
+
d_model: 256
|
48 |
+
pos_enc_at_cross_attn_keys: true
|
49 |
+
pos_enc_at_cross_attn_queries: false
|
50 |
+
cross_attention:
|
51 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
52 |
+
rope_theta: 10000.0
|
53 |
+
feat_sizes: [64, 64]
|
54 |
+
rope_k_repeat: True
|
55 |
+
embedding_dim: 256
|
56 |
+
num_heads: 1
|
57 |
+
downsample_rate: 1
|
58 |
+
dropout: 0.1
|
59 |
+
kv_in_dim: 64
|
60 |
+
num_layers: 4
|
61 |
+
|
62 |
+
memory_encoder:
|
63 |
+
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
64 |
+
out_dim: 64
|
65 |
+
position_encoding:
|
66 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
67 |
+
num_pos_feats: 64
|
68 |
+
normalize: true
|
69 |
+
scale: null
|
70 |
+
temperature: 10000
|
71 |
+
mask_downsampler:
|
72 |
+
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
73 |
+
kernel_size: 3
|
74 |
+
stride: 2
|
75 |
+
padding: 1
|
76 |
+
fuser:
|
77 |
+
_target_: sam2.modeling.memory_encoder.Fuser
|
78 |
+
layer:
|
79 |
+
_target_: sam2.modeling.memory_encoder.CXBlock
|
80 |
+
dim: 256
|
81 |
+
kernel_size: 7
|
82 |
+
padding: 3
|
83 |
+
layer_scale_init_value: 1e-6
|
84 |
+
use_dwconv: True # depth-wise convs
|
85 |
+
num_layers: 2
|
86 |
+
|
87 |
+
num_maskmem: 7
|
88 |
+
image_size: 1024
|
89 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
90 |
+
# SAM decoder
|
91 |
+
sigmoid_scale_for_mem_enc: 20.0
|
92 |
+
sigmoid_bias_for_mem_enc: -10.0
|
93 |
+
use_mask_input_as_output_without_sam: true
|
94 |
+
# Memory
|
95 |
+
directly_add_no_mem_embed: true
|
96 |
+
no_obj_embed_spatial: true
|
97 |
+
# use high-resolution feature map in the SAM mask decoder
|
98 |
+
use_high_res_features_in_sam: true
|
99 |
+
# output 3 masks on the first click on initial conditioning frames
|
100 |
+
multimask_output_in_sam: true
|
101 |
+
# SAM heads
|
102 |
+
iou_prediction_use_sigmoid: True
|
103 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
104 |
+
use_obj_ptrs_in_encoder: true
|
105 |
+
add_tpos_enc_to_obj_ptrs: true
|
106 |
+
proj_tpos_enc_in_obj_ptrs: true
|
107 |
+
use_signed_tpos_enc_to_obj_ptrs: true
|
108 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
109 |
+
# object occlusion prediction
|
110 |
+
pred_obj_scores: true
|
111 |
+
pred_obj_scores_mlp: true
|
112 |
+
fixed_no_obj_ptr: true
|
113 |
+
# multimask tracking settings
|
114 |
+
multimask_output_for_tracking: true
|
115 |
+
use_multimask_token_for_obj_ptr: true
|
116 |
+
multimask_min_pt_num: 0
|
117 |
+
multimask_max_pt_num: 1
|
118 |
+
use_mlp_for_obj_ptr_proj: true
|
119 |
+
# Compilation flag
|
120 |
+
# HieraT does not currently support compilation, should always be set to False
|
121 |
+
compile_image_encoder: False
|
sam2/csrc/connected_components.cu
ADDED
@@ -0,0 +1,289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
// All rights reserved.
|
3 |
+
|
4 |
+
// This source code is licensed under the license found in the
|
5 |
+
// LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
// adapted from https://github.com/zsef123/Connected_components_PyTorch
|
8 |
+
// with license found in the LICENSE_cctorch file in the root directory.
|
9 |
+
#include <ATen/cuda/CUDAContext.h>
|
10 |
+
#include <cuda.h>
|
11 |
+
#include <cuda_runtime.h>
|
12 |
+
#include <torch/extension.h>
|
13 |
+
#include <torch/script.h>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
// 2d
|
17 |
+
#define BLOCK_ROWS 16
|
18 |
+
#define BLOCK_COLS 16
|
19 |
+
|
20 |
+
namespace cc2d {
|
21 |
+
|
22 |
+
template <typename T>
|
23 |
+
__device__ __forceinline__ unsigned char hasBit(T bitmap, unsigned char pos) {
|
24 |
+
return (bitmap >> pos) & 1;
|
25 |
+
}
|
26 |
+
|
27 |
+
__device__ int32_t find(const int32_t* s_buf, int32_t n) {
|
28 |
+
while (s_buf[n] != n)
|
29 |
+
n = s_buf[n];
|
30 |
+
return n;
|
31 |
+
}
|
32 |
+
|
33 |
+
__device__ int32_t find_n_compress(int32_t* s_buf, int32_t n) {
|
34 |
+
const int32_t id = n;
|
35 |
+
while (s_buf[n] != n) {
|
36 |
+
n = s_buf[n];
|
37 |
+
s_buf[id] = n;
|
38 |
+
}
|
39 |
+
return n;
|
40 |
+
}
|
41 |
+
|
42 |
+
__device__ void union_(int32_t* s_buf, int32_t a, int32_t b) {
|
43 |
+
bool done;
|
44 |
+
do {
|
45 |
+
a = find(s_buf, a);
|
46 |
+
b = find(s_buf, b);
|
47 |
+
|
48 |
+
if (a < b) {
|
49 |
+
int32_t old = atomicMin(s_buf + b, a);
|
50 |
+
done = (old == b);
|
51 |
+
b = old;
|
52 |
+
} else if (b < a) {
|
53 |
+
int32_t old = atomicMin(s_buf + a, b);
|
54 |
+
done = (old == a);
|
55 |
+
a = old;
|
56 |
+
} else
|
57 |
+
done = true;
|
58 |
+
|
59 |
+
} while (!done);
|
60 |
+
}
|
61 |
+
|
62 |
+
__global__ void
|
63 |
+
init_labeling(int32_t* label, const uint32_t W, const uint32_t H) {
|
64 |
+
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
|
65 |
+
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
|
66 |
+
const uint32_t idx = row * W + col;
|
67 |
+
|
68 |
+
if (row < H && col < W)
|
69 |
+
label[idx] = idx;
|
70 |
+
}
|
71 |
+
|
72 |
+
__global__ void
|
73 |
+
merge(uint8_t* img, int32_t* label, const uint32_t W, const uint32_t H) {
|
74 |
+
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
|
75 |
+
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
|
76 |
+
const uint32_t idx = row * W + col;
|
77 |
+
|
78 |
+
if (row >= H || col >= W)
|
79 |
+
return;
|
80 |
+
|
81 |
+
uint32_t P = 0;
|
82 |
+
|
83 |
+
if (img[idx])
|
84 |
+
P |= 0x777;
|
85 |
+
if (row + 1 < H && img[idx + W])
|
86 |
+
P |= 0x777 << 4;
|
87 |
+
if (col + 1 < W && img[idx + 1])
|
88 |
+
P |= 0x777 << 1;
|
89 |
+
|
90 |
+
if (col == 0)
|
91 |
+
P &= 0xEEEE;
|
92 |
+
if (col + 1 >= W)
|
93 |
+
P &= 0x3333;
|
94 |
+
else if (col + 2 >= W)
|
95 |
+
P &= 0x7777;
|
96 |
+
|
97 |
+
if (row == 0)
|
98 |
+
P &= 0xFFF0;
|
99 |
+
if (row + 1 >= H)
|
100 |
+
P &= 0xFF;
|
101 |
+
|
102 |
+
if (P > 0) {
|
103 |
+
// If need check about top-left pixel(if flag the first bit) and hit the
|
104 |
+
// top-left pixel
|
105 |
+
if (hasBit(P, 0) && img[idx - W - 1]) {
|
106 |
+
union_(label, idx, idx - 2 * W - 2); // top left block
|
107 |
+
}
|
108 |
+
|
109 |
+
if ((hasBit(P, 1) && img[idx - W]) || (hasBit(P, 2) && img[idx - W + 1]))
|
110 |
+
union_(label, idx, idx - 2 * W); // top bottom block
|
111 |
+
|
112 |
+
if (hasBit(P, 3) && img[idx + 2 - W])
|
113 |
+
union_(label, idx, idx - 2 * W + 2); // top right block
|
114 |
+
|
115 |
+
if ((hasBit(P, 4) && img[idx - 1]) || (hasBit(P, 8) && img[idx + W - 1]))
|
116 |
+
union_(label, idx, idx - 2); // just left block
|
117 |
+
}
|
118 |
+
}
|
119 |
+
|
120 |
+
__global__ void compression(int32_t* label, const int32_t W, const int32_t H) {
|
121 |
+
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
|
122 |
+
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
|
123 |
+
const uint32_t idx = row * W + col;
|
124 |
+
|
125 |
+
if (row < H && col < W)
|
126 |
+
find_n_compress(label, idx);
|
127 |
+
}
|
128 |
+
|
129 |
+
__global__ void final_labeling(
|
130 |
+
const uint8_t* img,
|
131 |
+
int32_t* label,
|
132 |
+
const int32_t W,
|
133 |
+
const int32_t H) {
|
134 |
+
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
|
135 |
+
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
|
136 |
+
const uint32_t idx = row * W + col;
|
137 |
+
|
138 |
+
if (row >= H || col >= W)
|
139 |
+
return;
|
140 |
+
|
141 |
+
int32_t y = label[idx] + 1;
|
142 |
+
|
143 |
+
if (img[idx])
|
144 |
+
label[idx] = y;
|
145 |
+
else
|
146 |
+
label[idx] = 0;
|
147 |
+
|
148 |
+
if (col + 1 < W) {
|
149 |
+
if (img[idx + 1])
|
150 |
+
label[idx + 1] = y;
|
151 |
+
else
|
152 |
+
label[idx + 1] = 0;
|
153 |
+
|
154 |
+
if (row + 1 < H) {
|
155 |
+
if (img[idx + W + 1])
|
156 |
+
label[idx + W + 1] = y;
|
157 |
+
else
|
158 |
+
label[idx + W + 1] = 0;
|
159 |
+
}
|
160 |
+
}
|
161 |
+
|
162 |
+
if (row + 1 < H) {
|
163 |
+
if (img[idx + W])
|
164 |
+
label[idx + W] = y;
|
165 |
+
else
|
166 |
+
label[idx + W] = 0;
|
167 |
+
}
|
168 |
+
}
|
169 |
+
|
170 |
+
__global__ void init_counting(
|
171 |
+
const int32_t* label,
|
172 |
+
int32_t* count_init,
|
173 |
+
const int32_t W,
|
174 |
+
const int32_t H) {
|
175 |
+
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y);
|
176 |
+
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x);
|
177 |
+
const uint32_t idx = row * W + col;
|
178 |
+
|
179 |
+
if (row >= H || col >= W)
|
180 |
+
return;
|
181 |
+
|
182 |
+
int32_t y = label[idx];
|
183 |
+
if (y > 0) {
|
184 |
+
int32_t count_idx = y - 1;
|
185 |
+
atomicAdd(count_init + count_idx, 1);
|
186 |
+
}
|
187 |
+
}
|
188 |
+
|
189 |
+
__global__ void final_counting(
|
190 |
+
const int32_t* label,
|
191 |
+
const int32_t* count_init,
|
192 |
+
int32_t* count_final,
|
193 |
+
const int32_t W,
|
194 |
+
const int32_t H) {
|
195 |
+
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y);
|
196 |
+
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x);
|
197 |
+
const uint32_t idx = row * W + col;
|
198 |
+
|
199 |
+
if (row >= H || col >= W)
|
200 |
+
return;
|
201 |
+
|
202 |
+
int32_t y = label[idx];
|
203 |
+
if (y > 0) {
|
204 |
+
int32_t count_idx = y - 1;
|
205 |
+
count_final[idx] = count_init[count_idx];
|
206 |
+
} else {
|
207 |
+
count_final[idx] = 0;
|
208 |
+
}
|
209 |
+
}
|
210 |
+
|
211 |
+
} // namespace cc2d
|
212 |
+
|
213 |
+
std::vector<torch::Tensor> get_connected_componnets(
|
214 |
+
const torch::Tensor& inputs) {
|
215 |
+
AT_ASSERTM(inputs.is_cuda(), "inputs must be a CUDA tensor");
|
216 |
+
AT_ASSERTM(inputs.ndimension() == 4, "inputs must be [N, 1, H, W] shape");
|
217 |
+
AT_ASSERTM(
|
218 |
+
inputs.scalar_type() == torch::kUInt8, "inputs must be a uint8 type");
|
219 |
+
|
220 |
+
const uint32_t N = inputs.size(0);
|
221 |
+
const uint32_t C = inputs.size(1);
|
222 |
+
const uint32_t H = inputs.size(2);
|
223 |
+
const uint32_t W = inputs.size(3);
|
224 |
+
|
225 |
+
AT_ASSERTM(C == 1, "inputs must be [N, 1, H, W] shape");
|
226 |
+
AT_ASSERTM((H % 2) == 0, "height must be an even number");
|
227 |
+
AT_ASSERTM((W % 2) == 0, "width must be an even number");
|
228 |
+
|
229 |
+
// label must be uint32_t
|
230 |
+
auto label_options =
|
231 |
+
torch::TensorOptions().dtype(torch::kInt32).device(inputs.device());
|
232 |
+
torch::Tensor labels = torch::zeros({N, C, H, W}, label_options);
|
233 |
+
torch::Tensor counts_init = torch::zeros({N, C, H, W}, label_options);
|
234 |
+
torch::Tensor counts_final = torch::zeros({N, C, H, W}, label_options);
|
235 |
+
|
236 |
+
dim3 grid = dim3(
|
237 |
+
((W + 1) / 2 + BLOCK_COLS - 1) / BLOCK_COLS,
|
238 |
+
((H + 1) / 2 + BLOCK_ROWS - 1) / BLOCK_ROWS);
|
239 |
+
dim3 block = dim3(BLOCK_COLS, BLOCK_ROWS);
|
240 |
+
dim3 grid_count =
|
241 |
+
dim3((W + BLOCK_COLS) / BLOCK_COLS, (H + BLOCK_ROWS) / BLOCK_ROWS);
|
242 |
+
dim3 block_count = dim3(BLOCK_COLS, BLOCK_ROWS);
|
243 |
+
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
244 |
+
|
245 |
+
for (int n = 0; n < N; n++) {
|
246 |
+
uint32_t offset = n * H * W;
|
247 |
+
|
248 |
+
cc2d::init_labeling<<<grid, block, 0, stream>>>(
|
249 |
+
labels.data_ptr<int32_t>() + offset, W, H);
|
250 |
+
cc2d::merge<<<grid, block, 0, stream>>>(
|
251 |
+
inputs.data_ptr<uint8_t>() + offset,
|
252 |
+
labels.data_ptr<int32_t>() + offset,
|
253 |
+
W,
|
254 |
+
H);
|
255 |
+
cc2d::compression<<<grid, block, 0, stream>>>(
|
256 |
+
labels.data_ptr<int32_t>() + offset, W, H);
|
257 |
+
cc2d::final_labeling<<<grid, block, 0, stream>>>(
|
258 |
+
inputs.data_ptr<uint8_t>() + offset,
|
259 |
+
labels.data_ptr<int32_t>() + offset,
|
260 |
+
W,
|
261 |
+
H);
|
262 |
+
|
263 |
+
// get the counting of each pixel
|
264 |
+
cc2d::init_counting<<<grid_count, block_count, 0, stream>>>(
|
265 |
+
labels.data_ptr<int32_t>() + offset,
|
266 |
+
counts_init.data_ptr<int32_t>() + offset,
|
267 |
+
W,
|
268 |
+
H);
|
269 |
+
cc2d::final_counting<<<grid_count, block_count, 0, stream>>>(
|
270 |
+
labels.data_ptr<int32_t>() + offset,
|
271 |
+
counts_init.data_ptr<int32_t>() + offset,
|
272 |
+
counts_final.data_ptr<int32_t>() + offset,
|
273 |
+
W,
|
274 |
+
H);
|
275 |
+
}
|
276 |
+
|
277 |
+
// returned values are [labels, counts]
|
278 |
+
std::vector<torch::Tensor> outputs;
|
279 |
+
outputs.push_back(labels);
|
280 |
+
outputs.push_back(counts_final);
|
281 |
+
return outputs;
|
282 |
+
}
|
283 |
+
|
284 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
285 |
+
m.def(
|
286 |
+
"get_connected_componnets",
|
287 |
+
&get_connected_componnets,
|
288 |
+
"get_connected_componnets");
|
289 |
+
}
|
sam2/modeling/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
sam2/modeling/backbones/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
sam2/modeling/backbones/hieradet.py
ADDED
@@ -0,0 +1,317 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import logging
|
8 |
+
from functools import partial
|
9 |
+
from typing import List, Tuple, Union
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
import torch.nn.functional as F
|
14 |
+
from iopath.common.file_io import g_pathmgr
|
15 |
+
|
16 |
+
from sam2.modeling.backbones.utils import (
|
17 |
+
PatchEmbed,
|
18 |
+
window_partition,
|
19 |
+
window_unpartition,
|
20 |
+
)
|
21 |
+
|
22 |
+
from sam2.modeling.sam2_utils import DropPath, MLP
|
23 |
+
|
24 |
+
|
25 |
+
def do_pool(x: torch.Tensor, pool: nn.Module, norm: nn.Module = None) -> torch.Tensor:
|
26 |
+
if pool is None:
|
27 |
+
return x
|
28 |
+
# (B, H, W, C) -> (B, C, H, W)
|
29 |
+
x = x.permute(0, 3, 1, 2)
|
30 |
+
x = pool(x)
|
31 |
+
# (B, C, H', W') -> (B, H', W', C)
|
32 |
+
x = x.permute(0, 2, 3, 1)
|
33 |
+
if norm:
|
34 |
+
x = norm(x)
|
35 |
+
|
36 |
+
return x
|
37 |
+
|
38 |
+
|
39 |
+
class MultiScaleAttention(nn.Module):
|
40 |
+
def __init__(
|
41 |
+
self,
|
42 |
+
dim: int,
|
43 |
+
dim_out: int,
|
44 |
+
num_heads: int,
|
45 |
+
q_pool: nn.Module = None,
|
46 |
+
):
|
47 |
+
super().__init__()
|
48 |
+
|
49 |
+
self.dim = dim
|
50 |
+
self.dim_out = dim_out
|
51 |
+
self.num_heads = num_heads
|
52 |
+
self.q_pool = q_pool
|
53 |
+
self.qkv = nn.Linear(dim, dim_out * 3)
|
54 |
+
self.proj = nn.Linear(dim_out, dim_out)
|
55 |
+
|
56 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
57 |
+
B, H, W, _ = x.shape
|
58 |
+
# qkv with shape (B, H * W, 3, nHead, C)
|
59 |
+
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1)
|
60 |
+
# q, k, v with shape (B, H * W, nheads, C)
|
61 |
+
q, k, v = torch.unbind(qkv, 2)
|
62 |
+
|
63 |
+
# Q pooling (for downsample at stage changes)
|
64 |
+
if self.q_pool:
|
65 |
+
q = do_pool(q.reshape(B, H, W, -1), self.q_pool)
|
66 |
+
H, W = q.shape[1:3] # downsampled shape
|
67 |
+
q = q.reshape(B, H * W, self.num_heads, -1)
|
68 |
+
|
69 |
+
# Torch's SDPA expects [B, nheads, H*W, C] so we transpose
|
70 |
+
x = F.scaled_dot_product_attention(
|
71 |
+
q.transpose(1, 2),
|
72 |
+
k.transpose(1, 2),
|
73 |
+
v.transpose(1, 2),
|
74 |
+
)
|
75 |
+
# Transpose back
|
76 |
+
x = x.transpose(1, 2)
|
77 |
+
x = x.reshape(B, H, W, -1)
|
78 |
+
|
79 |
+
x = self.proj(x)
|
80 |
+
|
81 |
+
return x
|
82 |
+
|
83 |
+
|
84 |
+
class MultiScaleBlock(nn.Module):
|
85 |
+
def __init__(
|
86 |
+
self,
|
87 |
+
dim: int,
|
88 |
+
dim_out: int,
|
89 |
+
num_heads: int,
|
90 |
+
mlp_ratio: float = 4.0,
|
91 |
+
drop_path: float = 0.0,
|
92 |
+
norm_layer: Union[nn.Module, str] = "LayerNorm",
|
93 |
+
q_stride: Tuple[int, int] = None,
|
94 |
+
act_layer: nn.Module = nn.GELU,
|
95 |
+
window_size: int = 0,
|
96 |
+
):
|
97 |
+
super().__init__()
|
98 |
+
|
99 |
+
if isinstance(norm_layer, str):
|
100 |
+
norm_layer = partial(getattr(nn, norm_layer), eps=1e-6)
|
101 |
+
|
102 |
+
self.dim = dim
|
103 |
+
self.dim_out = dim_out
|
104 |
+
self.norm1 = norm_layer(dim)
|
105 |
+
|
106 |
+
self.window_size = window_size
|
107 |
+
|
108 |
+
self.pool, self.q_stride = None, q_stride
|
109 |
+
if self.q_stride:
|
110 |
+
self.pool = nn.MaxPool2d(
|
111 |
+
kernel_size=q_stride, stride=q_stride, ceil_mode=False
|
112 |
+
)
|
113 |
+
|
114 |
+
self.attn = MultiScaleAttention(
|
115 |
+
dim,
|
116 |
+
dim_out,
|
117 |
+
num_heads=num_heads,
|
118 |
+
q_pool=self.pool,
|
119 |
+
)
|
120 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
121 |
+
|
122 |
+
self.norm2 = norm_layer(dim_out)
|
123 |
+
self.mlp = MLP(
|
124 |
+
dim_out,
|
125 |
+
int(dim_out * mlp_ratio),
|
126 |
+
dim_out,
|
127 |
+
num_layers=2,
|
128 |
+
activation=act_layer,
|
129 |
+
)
|
130 |
+
|
131 |
+
if dim != dim_out:
|
132 |
+
self.proj = nn.Linear(dim, dim_out)
|
133 |
+
|
134 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
135 |
+
shortcut = x # B, H, W, C
|
136 |
+
x = self.norm1(x)
|
137 |
+
|
138 |
+
# Skip connection
|
139 |
+
if self.dim != self.dim_out:
|
140 |
+
shortcut = do_pool(self.proj(x), self.pool)
|
141 |
+
|
142 |
+
# Window partition
|
143 |
+
window_size = self.window_size
|
144 |
+
if window_size > 0:
|
145 |
+
H, W = x.shape[1], x.shape[2]
|
146 |
+
x, pad_hw = window_partition(x, window_size)
|
147 |
+
|
148 |
+
# Window Attention + Q Pooling (if stage change)
|
149 |
+
x = self.attn(x)
|
150 |
+
if self.q_stride:
|
151 |
+
# Shapes have changed due to Q pooling
|
152 |
+
window_size = self.window_size // self.q_stride[0]
|
153 |
+
H, W = shortcut.shape[1:3]
|
154 |
+
|
155 |
+
pad_h = (window_size - H % window_size) % window_size
|
156 |
+
pad_w = (window_size - W % window_size) % window_size
|
157 |
+
pad_hw = (H + pad_h, W + pad_w)
|
158 |
+
|
159 |
+
# Reverse window partition
|
160 |
+
if self.window_size > 0:
|
161 |
+
x = window_unpartition(x, window_size, pad_hw, (H, W))
|
162 |
+
|
163 |
+
x = shortcut + self.drop_path(x)
|
164 |
+
# MLP
|
165 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
166 |
+
return x
|
167 |
+
|
168 |
+
|
169 |
+
class Hiera(nn.Module):
|
170 |
+
"""
|
171 |
+
Reference: https://arxiv.org/abs/2306.00989
|
172 |
+
"""
|
173 |
+
|
174 |
+
def __init__(
|
175 |
+
self,
|
176 |
+
embed_dim: int = 96, # initial embed dim
|
177 |
+
num_heads: int = 1, # initial number of heads
|
178 |
+
drop_path_rate: float = 0.0, # stochastic depth
|
179 |
+
q_pool: int = 3, # number of q_pool stages
|
180 |
+
q_stride: Tuple[int, int] = (2, 2), # downsample stride bet. stages
|
181 |
+
stages: Tuple[int, ...] = (2, 3, 16, 3), # blocks per stage
|
182 |
+
dim_mul: float = 2.0, # dim_mul factor at stage shift
|
183 |
+
head_mul: float = 2.0, # head_mul factor at stage shift
|
184 |
+
window_pos_embed_bkg_spatial_size: Tuple[int, int] = (14, 14),
|
185 |
+
# window size per stage, when not using global att.
|
186 |
+
window_spec: Tuple[int, ...] = (
|
187 |
+
8,
|
188 |
+
4,
|
189 |
+
14,
|
190 |
+
7,
|
191 |
+
),
|
192 |
+
# global attn in these blocks
|
193 |
+
global_att_blocks: Tuple[int, ...] = (
|
194 |
+
12,
|
195 |
+
16,
|
196 |
+
20,
|
197 |
+
),
|
198 |
+
weights_path=None,
|
199 |
+
return_interm_layers=True, # return feats from every stage
|
200 |
+
):
|
201 |
+
super().__init__()
|
202 |
+
|
203 |
+
assert len(stages) == len(window_spec)
|
204 |
+
self.window_spec = window_spec
|
205 |
+
|
206 |
+
depth = sum(stages)
|
207 |
+
self.q_stride = q_stride
|
208 |
+
self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]
|
209 |
+
assert 0 <= q_pool <= len(self.stage_ends[:-1])
|
210 |
+
self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool]
|
211 |
+
self.return_interm_layers = return_interm_layers
|
212 |
+
|
213 |
+
self.patch_embed = PatchEmbed(
|
214 |
+
embed_dim=embed_dim,
|
215 |
+
)
|
216 |
+
# Which blocks have global att?
|
217 |
+
self.global_att_blocks = global_att_blocks
|
218 |
+
|
219 |
+
# Windowed positional embedding (https://arxiv.org/abs/2311.05613)
|
220 |
+
self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size
|
221 |
+
self.pos_embed = nn.Parameter(
|
222 |
+
torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size)
|
223 |
+
)
|
224 |
+
self.pos_embed_window = nn.Parameter(
|
225 |
+
torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0])
|
226 |
+
)
|
227 |
+
|
228 |
+
dpr = [
|
229 |
+
x.item() for x in torch.linspace(0, drop_path_rate, depth)
|
230 |
+
] # stochastic depth decay rule
|
231 |
+
|
232 |
+
cur_stage = 1
|
233 |
+
self.blocks = nn.ModuleList()
|
234 |
+
|
235 |
+
for i in range(depth):
|
236 |
+
dim_out = embed_dim
|
237 |
+
# lags by a block, so first block of
|
238 |
+
# next stage uses an initial window size
|
239 |
+
# of previous stage and final window size of current stage
|
240 |
+
window_size = self.window_spec[cur_stage - 1]
|
241 |
+
|
242 |
+
if self.global_att_blocks is not None:
|
243 |
+
window_size = 0 if i in self.global_att_blocks else window_size
|
244 |
+
|
245 |
+
if i - 1 in self.stage_ends:
|
246 |
+
dim_out = int(embed_dim * dim_mul)
|
247 |
+
num_heads = int(num_heads * head_mul)
|
248 |
+
cur_stage += 1
|
249 |
+
|
250 |
+
block = MultiScaleBlock(
|
251 |
+
dim=embed_dim,
|
252 |
+
dim_out=dim_out,
|
253 |
+
num_heads=num_heads,
|
254 |
+
drop_path=dpr[i],
|
255 |
+
q_stride=self.q_stride if i in self.q_pool_blocks else None,
|
256 |
+
window_size=window_size,
|
257 |
+
)
|
258 |
+
|
259 |
+
embed_dim = dim_out
|
260 |
+
self.blocks.append(block)
|
261 |
+
|
262 |
+
self.channel_list = (
|
263 |
+
[self.blocks[i].dim_out for i in self.stage_ends[::-1]]
|
264 |
+
if return_interm_layers
|
265 |
+
else [self.blocks[-1].dim_out]
|
266 |
+
)
|
267 |
+
|
268 |
+
if weights_path is not None:
|
269 |
+
with g_pathmgr.open(weights_path, "rb") as f:
|
270 |
+
chkpt = torch.load(f, map_location="cpu")
|
271 |
+
logging.info("loading Hiera", self.load_state_dict(chkpt, strict=False))
|
272 |
+
|
273 |
+
def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor:
|
274 |
+
h, w = hw
|
275 |
+
window_embed = self.pos_embed_window
|
276 |
+
pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic")
|
277 |
+
pos_embed = pos_embed + window_embed.tile(
|
278 |
+
[x // y for x, y in zip(pos_embed.shape, window_embed.shape)]
|
279 |
+
)
|
280 |
+
pos_embed = pos_embed.permute(0, 2, 3, 1)
|
281 |
+
return pos_embed
|
282 |
+
|
283 |
+
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
|
284 |
+
x = self.patch_embed(x)
|
285 |
+
# x: (B, H, W, C)
|
286 |
+
|
287 |
+
# Add pos embed
|
288 |
+
x = x + self._get_pos_embed(x.shape[1:3])
|
289 |
+
|
290 |
+
outputs = []
|
291 |
+
for i, blk in enumerate(self.blocks):
|
292 |
+
x = blk(x)
|
293 |
+
if (i == self.stage_ends[-1]) or (
|
294 |
+
i in self.stage_ends and self.return_interm_layers
|
295 |
+
):
|
296 |
+
feats = x.permute(0, 3, 1, 2)
|
297 |
+
outputs.append(feats)
|
298 |
+
|
299 |
+
return outputs
|
300 |
+
|
301 |
+
def get_layer_id(self, layer_name):
|
302 |
+
# https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py#L33
|
303 |
+
num_layers = self.get_num_layers()
|
304 |
+
|
305 |
+
if layer_name.find("rel_pos") != -1:
|
306 |
+
return num_layers + 1
|
307 |
+
elif layer_name.find("pos_embed") != -1:
|
308 |
+
return 0
|
309 |
+
elif layer_name.find("patch_embed") != -1:
|
310 |
+
return 0
|
311 |
+
elif layer_name.find("blocks") != -1:
|
312 |
+
return int(layer_name.split("blocks")[1].split(".")[1]) + 1
|
313 |
+
else:
|
314 |
+
return num_layers + 1
|
315 |
+
|
316 |
+
def get_num_layers(self) -> int:
|
317 |
+
return len(self.blocks)
|
sam2/modeling/backbones/image_encoder.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
from typing import List, Optional
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
|
13 |
+
|
14 |
+
class ImageEncoder(nn.Module):
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
trunk: nn.Module,
|
18 |
+
neck: nn.Module,
|
19 |
+
scalp: int = 0,
|
20 |
+
):
|
21 |
+
super().__init__()
|
22 |
+
self.trunk = trunk
|
23 |
+
self.neck = neck
|
24 |
+
self.scalp = scalp
|
25 |
+
assert (
|
26 |
+
self.trunk.channel_list == self.neck.backbone_channel_list
|
27 |
+
), f"Channel dims of trunk and neck do not match. Trunk: {self.trunk.channel_list}, neck: {self.neck.backbone_channel_list}"
|
28 |
+
|
29 |
+
def forward(self, sample: torch.Tensor):
|
30 |
+
# Forward through backbone
|
31 |
+
features, pos = self.neck(self.trunk(sample))
|
32 |
+
if self.scalp > 0:
|
33 |
+
# Discard the lowest resolution features
|
34 |
+
features, pos = features[: -self.scalp], pos[: -self.scalp]
|
35 |
+
|
36 |
+
src = features[-1]
|
37 |
+
output = {
|
38 |
+
"vision_features": src,
|
39 |
+
"vision_pos_enc": pos,
|
40 |
+
"backbone_fpn": features,
|
41 |
+
}
|
42 |
+
return output
|
43 |
+
|
44 |
+
|
45 |
+
class FpnNeck(nn.Module):
|
46 |
+
"""
|
47 |
+
A modified variant of Feature Pyramid Network (FPN) neck
|
48 |
+
(we remove output conv and also do bicubic interpolation similar to ViT
|
49 |
+
pos embed interpolation)
|
50 |
+
"""
|
51 |
+
|
52 |
+
def __init__(
|
53 |
+
self,
|
54 |
+
position_encoding: nn.Module,
|
55 |
+
d_model: int,
|
56 |
+
backbone_channel_list: List[int],
|
57 |
+
kernel_size: int = 1,
|
58 |
+
stride: int = 1,
|
59 |
+
padding: int = 0,
|
60 |
+
fpn_interp_model: str = "bilinear",
|
61 |
+
fuse_type: str = "sum",
|
62 |
+
fpn_top_down_levels: Optional[List[int]] = None,
|
63 |
+
):
|
64 |
+
"""Initialize the neck
|
65 |
+
:param trunk: the backbone
|
66 |
+
:param position_encoding: the positional encoding to use
|
67 |
+
:param d_model: the dimension of the model
|
68 |
+
:param neck_norm: the normalization to use
|
69 |
+
"""
|
70 |
+
super().__init__()
|
71 |
+
self.position_encoding = position_encoding
|
72 |
+
self.convs = nn.ModuleList()
|
73 |
+
self.backbone_channel_list = backbone_channel_list
|
74 |
+
self.d_model = d_model
|
75 |
+
for dim in backbone_channel_list:
|
76 |
+
current = nn.Sequential()
|
77 |
+
current.add_module(
|
78 |
+
"conv",
|
79 |
+
nn.Conv2d(
|
80 |
+
in_channels=dim,
|
81 |
+
out_channels=d_model,
|
82 |
+
kernel_size=kernel_size,
|
83 |
+
stride=stride,
|
84 |
+
padding=padding,
|
85 |
+
),
|
86 |
+
)
|
87 |
+
|
88 |
+
self.convs.append(current)
|
89 |
+
self.fpn_interp_model = fpn_interp_model
|
90 |
+
assert fuse_type in ["sum", "avg"]
|
91 |
+
self.fuse_type = fuse_type
|
92 |
+
|
93 |
+
# levels to have top-down features in its outputs
|
94 |
+
# e.g. if fpn_top_down_levels is [2, 3], then only outputs of level 2 and 3
|
95 |
+
# have top-down propagation, while outputs of level 0 and level 1 have only
|
96 |
+
# lateral features from the same backbone level.
|
97 |
+
if fpn_top_down_levels is None:
|
98 |
+
# default is to have top-down features on all levels
|
99 |
+
fpn_top_down_levels = range(len(self.convs))
|
100 |
+
self.fpn_top_down_levels = list(fpn_top_down_levels)
|
101 |
+
|
102 |
+
def forward(self, xs: List[torch.Tensor]):
|
103 |
+
|
104 |
+
out = [None] * len(self.convs)
|
105 |
+
pos = [None] * len(self.convs)
|
106 |
+
assert len(xs) == len(self.convs)
|
107 |
+
# fpn forward pass
|
108 |
+
# see https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/fpn.py
|
109 |
+
prev_features = None
|
110 |
+
# forward in top-down order (from low to high resolution)
|
111 |
+
n = len(self.convs) - 1
|
112 |
+
for i in range(n, -1, -1):
|
113 |
+
x = xs[i]
|
114 |
+
lateral_features = self.convs[n - i](x)
|
115 |
+
if i in self.fpn_top_down_levels and prev_features is not None:
|
116 |
+
top_down_features = F.interpolate(
|
117 |
+
prev_features.to(dtype=torch.float32),
|
118 |
+
scale_factor=2.0,
|
119 |
+
mode=self.fpn_interp_model,
|
120 |
+
align_corners=(
|
121 |
+
None if self.fpn_interp_model == "nearest" else False
|
122 |
+
),
|
123 |
+
antialias=False,
|
124 |
+
)
|
125 |
+
prev_features = lateral_features + top_down_features
|
126 |
+
if self.fuse_type == "avg":
|
127 |
+
prev_features /= 2
|
128 |
+
else:
|
129 |
+
prev_features = lateral_features
|
130 |
+
x_out = prev_features
|
131 |
+
out[i] = x_out
|
132 |
+
pos[i] = self.position_encoding(x_out).to(x_out.dtype)
|
133 |
+
|
134 |
+
return out, pos
|
sam2/modeling/backbones/utils.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
"""Some utilities for backbones, in particular for windowing"""
|
8 |
+
|
9 |
+
from typing import Tuple
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
import torch.nn.functional as F
|
14 |
+
|
15 |
+
|
16 |
+
def window_partition(x, window_size):
|
17 |
+
"""
|
18 |
+
Partition into non-overlapping windows with padding if needed.
|
19 |
+
Args:
|
20 |
+
x (tensor): input tokens with [B, H, W, C].
|
21 |
+
window_size (int): window size.
|
22 |
+
Returns:
|
23 |
+
windows: windows after partition with [B * num_windows, window_size, window_size, C].
|
24 |
+
(Hp, Wp): padded height and width before partition
|
25 |
+
"""
|
26 |
+
B, H, W, C = x.shape
|
27 |
+
|
28 |
+
pad_h = (window_size - H % window_size) % window_size
|
29 |
+
pad_w = (window_size - W % window_size) % window_size
|
30 |
+
if pad_h > 0 or pad_w > 0:
|
31 |
+
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
32 |
+
Hp, Wp = H + pad_h, W + pad_w
|
33 |
+
|
34 |
+
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
|
35 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).reshape(-1, window_size, window_size, C)
|
36 |
+
return windows, (Hp, Wp)
|
37 |
+
|
38 |
+
|
39 |
+
def window_unpartition(windows, window_size, pad_hw, hw):
|
40 |
+
"""
|
41 |
+
Window unpartition into original sequences and removing padding.
|
42 |
+
Args:
|
43 |
+
x (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
44 |
+
window_size (int): window size.
|
45 |
+
pad_hw (Tuple): padded height and width (Hp, Wp).
|
46 |
+
hw (Tuple): original height and width (H, W) before padding.
|
47 |
+
Returns:
|
48 |
+
x: unpartitioned sequences with [B, H, W, C].
|
49 |
+
"""
|
50 |
+
Hp, Wp = pad_hw
|
51 |
+
H, W = hw
|
52 |
+
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
|
53 |
+
x = windows.reshape(
|
54 |
+
B, Hp // window_size, Wp // window_size, window_size, window_size, -1
|
55 |
+
)
|
56 |
+
x = x.permute(0, 1, 3, 2, 4, 5).reshape(B, Hp, Wp, -1)
|
57 |
+
|
58 |
+
if Hp > H or Wp > W:
|
59 |
+
x = x[:, :H, :W, :]
|
60 |
+
return x
|
61 |
+
|
62 |
+
|
63 |
+
class PatchEmbed(nn.Module):
|
64 |
+
"""
|
65 |
+
Image to Patch Embedding.
|
66 |
+
"""
|
67 |
+
|
68 |
+
def __init__(
|
69 |
+
self,
|
70 |
+
kernel_size: Tuple[int, ...] = (7, 7),
|
71 |
+
stride: Tuple[int, ...] = (4, 4),
|
72 |
+
padding: Tuple[int, ...] = (3, 3),
|
73 |
+
in_chans: int = 3,
|
74 |
+
embed_dim: int = 768,
|
75 |
+
):
|
76 |
+
"""
|
77 |
+
Args:
|
78 |
+
kernel_size (Tuple): kernel size of the projection layer.
|
79 |
+
stride (Tuple): stride of the projection layer.
|
80 |
+
padding (Tuple): padding size of the projection layer.
|
81 |
+
in_chans (int): Number of input image channels.
|
82 |
+
embed_dim (int): embed_dim (int): Patch embedding dimension.
|
83 |
+
"""
|
84 |
+
super().__init__()
|
85 |
+
self.proj = nn.Conv2d(
|
86 |
+
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
|
87 |
+
)
|
88 |
+
|
89 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
90 |
+
x = self.proj(x)
|
91 |
+
# B C H W -> B H W C
|
92 |
+
x = x.permute(0, 2, 3, 1)
|
93 |
+
return x
|
sam2/modeling/memory_attention.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
from typing import Optional
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from torch import nn, Tensor
|
11 |
+
|
12 |
+
from sam2.modeling.sam.transformer import RoPEAttention
|
13 |
+
|
14 |
+
from sam2.modeling.sam2_utils import get_activation_fn, get_clones
|
15 |
+
|
16 |
+
|
17 |
+
class MemoryAttentionLayer(nn.Module):
|
18 |
+
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
activation: str,
|
22 |
+
cross_attention: nn.Module,
|
23 |
+
d_model: int,
|
24 |
+
dim_feedforward: int,
|
25 |
+
dropout: float,
|
26 |
+
pos_enc_at_attn: bool,
|
27 |
+
pos_enc_at_cross_attn_keys: bool,
|
28 |
+
pos_enc_at_cross_attn_queries: bool,
|
29 |
+
self_attention: nn.Module,
|
30 |
+
):
|
31 |
+
super().__init__()
|
32 |
+
self.d_model = d_model
|
33 |
+
self.dim_feedforward = dim_feedforward
|
34 |
+
self.dropout_value = dropout
|
35 |
+
self.self_attn = self_attention
|
36 |
+
self.cross_attn_image = cross_attention
|
37 |
+
|
38 |
+
# Implementation of Feedforward model
|
39 |
+
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
40 |
+
self.dropout = nn.Dropout(dropout)
|
41 |
+
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
42 |
+
|
43 |
+
self.norm1 = nn.LayerNorm(d_model)
|
44 |
+
self.norm2 = nn.LayerNorm(d_model)
|
45 |
+
self.norm3 = nn.LayerNorm(d_model)
|
46 |
+
self.dropout1 = nn.Dropout(dropout)
|
47 |
+
self.dropout2 = nn.Dropout(dropout)
|
48 |
+
self.dropout3 = nn.Dropout(dropout)
|
49 |
+
|
50 |
+
self.activation_str = activation
|
51 |
+
self.activation = get_activation_fn(activation)
|
52 |
+
|
53 |
+
# Where to add pos enc
|
54 |
+
self.pos_enc_at_attn = pos_enc_at_attn
|
55 |
+
self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries
|
56 |
+
self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys
|
57 |
+
|
58 |
+
def _forward_sa(self, tgt, query_pos):
|
59 |
+
# Self-Attention
|
60 |
+
tgt2 = self.norm1(tgt)
|
61 |
+
q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2
|
62 |
+
tgt2 = self.self_attn(q, k, v=tgt2)
|
63 |
+
tgt = tgt + self.dropout1(tgt2)
|
64 |
+
return tgt
|
65 |
+
|
66 |
+
def _forward_ca(self, tgt, memory, query_pos, pos, num_k_exclude_rope=0):
|
67 |
+
kwds = {}
|
68 |
+
if num_k_exclude_rope > 0:
|
69 |
+
assert isinstance(self.cross_attn_image, RoPEAttention)
|
70 |
+
kwds = {"num_k_exclude_rope": num_k_exclude_rope}
|
71 |
+
|
72 |
+
# Cross-Attention
|
73 |
+
tgt2 = self.norm2(tgt)
|
74 |
+
tgt2 = self.cross_attn_image(
|
75 |
+
q=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2,
|
76 |
+
k=memory + pos if self.pos_enc_at_cross_attn_keys else memory,
|
77 |
+
v=memory,
|
78 |
+
**kwds,
|
79 |
+
)
|
80 |
+
tgt = tgt + self.dropout2(tgt2)
|
81 |
+
return tgt
|
82 |
+
|
83 |
+
def forward(
|
84 |
+
self,
|
85 |
+
tgt,
|
86 |
+
memory,
|
87 |
+
pos: Optional[Tensor] = None,
|
88 |
+
query_pos: Optional[Tensor] = None,
|
89 |
+
num_k_exclude_rope: int = 0,
|
90 |
+
) -> torch.Tensor:
|
91 |
+
|
92 |
+
# Self-Attn, Cross-Attn
|
93 |
+
tgt = self._forward_sa(tgt, query_pos)
|
94 |
+
tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope)
|
95 |
+
# MLP
|
96 |
+
tgt2 = self.norm3(tgt)
|
97 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
|
98 |
+
tgt = tgt + self.dropout3(tgt2)
|
99 |
+
return tgt
|
100 |
+
|
101 |
+
|
102 |
+
class MemoryAttention(nn.Module):
|
103 |
+
def __init__(
|
104 |
+
self,
|
105 |
+
d_model: int,
|
106 |
+
pos_enc_at_input: bool,
|
107 |
+
layer: nn.Module,
|
108 |
+
num_layers: int,
|
109 |
+
batch_first: bool = True, # Do layers expect batch first input?
|
110 |
+
):
|
111 |
+
super().__init__()
|
112 |
+
self.d_model = d_model
|
113 |
+
self.layers = get_clones(layer, num_layers)
|
114 |
+
self.num_layers = num_layers
|
115 |
+
self.norm = nn.LayerNorm(d_model)
|
116 |
+
self.pos_enc_at_input = pos_enc_at_input
|
117 |
+
self.batch_first = batch_first
|
118 |
+
|
119 |
+
def forward(
|
120 |
+
self,
|
121 |
+
curr: torch.Tensor, # self-attention inputs
|
122 |
+
memory: torch.Tensor, # cross-attention inputs
|
123 |
+
curr_pos: Optional[Tensor] = None, # pos_enc for self-attention inputs
|
124 |
+
memory_pos: Optional[Tensor] = None, # pos_enc for cross-attention inputs
|
125 |
+
num_obj_ptr_tokens: int = 0, # number of object pointer *tokens*
|
126 |
+
):
|
127 |
+
if isinstance(curr, list):
|
128 |
+
assert isinstance(curr_pos, list)
|
129 |
+
assert len(curr) == len(curr_pos) == 1
|
130 |
+
curr, curr_pos = (
|
131 |
+
curr[0],
|
132 |
+
curr_pos[0],
|
133 |
+
)
|
134 |
+
|
135 |
+
assert (
|
136 |
+
curr.shape[1] == memory.shape[1]
|
137 |
+
), "Batch size must be the same for curr and memory"
|
138 |
+
|
139 |
+
output = curr
|
140 |
+
if self.pos_enc_at_input and curr_pos is not None:
|
141 |
+
output = output + 0.1 * curr_pos
|
142 |
+
|
143 |
+
if self.batch_first:
|
144 |
+
# Convert to batch first
|
145 |
+
output = output.transpose(0, 1)
|
146 |
+
curr_pos = curr_pos.transpose(0, 1)
|
147 |
+
memory = memory.transpose(0, 1)
|
148 |
+
memory_pos = memory_pos.transpose(0, 1)
|
149 |
+
|
150 |
+
for layer in self.layers:
|
151 |
+
kwds = {}
|
152 |
+
if isinstance(layer.cross_attn_image, RoPEAttention):
|
153 |
+
kwds = {"num_k_exclude_rope": num_obj_ptr_tokens}
|
154 |
+
|
155 |
+
output = layer(
|
156 |
+
tgt=output,
|
157 |
+
memory=memory,
|
158 |
+
pos=memory_pos,
|
159 |
+
query_pos=curr_pos,
|
160 |
+
**kwds,
|
161 |
+
)
|
162 |
+
normed_output = self.norm(output)
|
163 |
+
|
164 |
+
if self.batch_first:
|
165 |
+
# Convert back to seq first
|
166 |
+
normed_output = normed_output.transpose(0, 1)
|
167 |
+
curr_pos = curr_pos.transpose(0, 1)
|
168 |
+
|
169 |
+
return normed_output
|
sam2/modeling/memory_encoder.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import math
|
8 |
+
from typing import Tuple
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
|
14 |
+
from sam2.modeling.sam2_utils import DropPath, get_clones, LayerNorm2d
|
15 |
+
|
16 |
+
|
17 |
+
class MaskDownSampler(nn.Module):
|
18 |
+
"""
|
19 |
+
Progressively downsample a mask by total_stride, each time by stride.
|
20 |
+
Note that LayerNorm is applied per *token*, like in ViT.
|
21 |
+
|
22 |
+
With each downsample (by a factor stride**2), channel capacity increases by the same factor.
|
23 |
+
In the end, we linearly project to embed_dim channels.
|
24 |
+
"""
|
25 |
+
|
26 |
+
def __init__(
|
27 |
+
self,
|
28 |
+
embed_dim=256,
|
29 |
+
kernel_size=4,
|
30 |
+
stride=4,
|
31 |
+
padding=0,
|
32 |
+
total_stride=16,
|
33 |
+
activation=nn.GELU,
|
34 |
+
):
|
35 |
+
super().__init__()
|
36 |
+
num_layers = int(math.log2(total_stride) // math.log2(stride))
|
37 |
+
assert stride**num_layers == total_stride
|
38 |
+
self.encoder = nn.Sequential()
|
39 |
+
mask_in_chans, mask_out_chans = 1, 1
|
40 |
+
for _ in range(num_layers):
|
41 |
+
mask_out_chans = mask_in_chans * (stride**2)
|
42 |
+
self.encoder.append(
|
43 |
+
nn.Conv2d(
|
44 |
+
mask_in_chans,
|
45 |
+
mask_out_chans,
|
46 |
+
kernel_size=kernel_size,
|
47 |
+
stride=stride,
|
48 |
+
padding=padding,
|
49 |
+
)
|
50 |
+
)
|
51 |
+
self.encoder.append(LayerNorm2d(mask_out_chans))
|
52 |
+
self.encoder.append(activation())
|
53 |
+
mask_in_chans = mask_out_chans
|
54 |
+
|
55 |
+
self.encoder.append(nn.Conv2d(mask_out_chans, embed_dim, kernel_size=1))
|
56 |
+
|
57 |
+
def forward(self, x):
|
58 |
+
return self.encoder(x)
|
59 |
+
|
60 |
+
|
61 |
+
# Lightly adapted from ConvNext (https://github.com/facebookresearch/ConvNeXt)
|
62 |
+
class CXBlock(nn.Module):
|
63 |
+
r"""ConvNeXt Block. There are two equivalent implementations:
|
64 |
+
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
|
65 |
+
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
|
66 |
+
We use (2) as we find it slightly faster in PyTorch
|
67 |
+
|
68 |
+
Args:
|
69 |
+
dim (int): Number of input channels.
|
70 |
+
drop_path (float): Stochastic depth rate. Default: 0.0
|
71 |
+
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
|
72 |
+
"""
|
73 |
+
|
74 |
+
def __init__(
|
75 |
+
self,
|
76 |
+
dim,
|
77 |
+
kernel_size=7,
|
78 |
+
padding=3,
|
79 |
+
drop_path=0.0,
|
80 |
+
layer_scale_init_value=1e-6,
|
81 |
+
use_dwconv=True,
|
82 |
+
):
|
83 |
+
super().__init__()
|
84 |
+
self.dwconv = nn.Conv2d(
|
85 |
+
dim,
|
86 |
+
dim,
|
87 |
+
kernel_size=kernel_size,
|
88 |
+
padding=padding,
|
89 |
+
groups=dim if use_dwconv else 1,
|
90 |
+
) # depthwise conv
|
91 |
+
self.norm = LayerNorm2d(dim, eps=1e-6)
|
92 |
+
self.pwconv1 = nn.Linear(
|
93 |
+
dim, 4 * dim
|
94 |
+
) # pointwise/1x1 convs, implemented with linear layers
|
95 |
+
self.act = nn.GELU()
|
96 |
+
self.pwconv2 = nn.Linear(4 * dim, dim)
|
97 |
+
self.gamma = (
|
98 |
+
nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
99 |
+
if layer_scale_init_value > 0
|
100 |
+
else None
|
101 |
+
)
|
102 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
103 |
+
|
104 |
+
def forward(self, x):
|
105 |
+
input = x
|
106 |
+
x = self.dwconv(x)
|
107 |
+
x = self.norm(x)
|
108 |
+
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
|
109 |
+
x = self.pwconv1(x)
|
110 |
+
x = self.act(x)
|
111 |
+
x = self.pwconv2(x)
|
112 |
+
if self.gamma is not None:
|
113 |
+
x = self.gamma * x
|
114 |
+
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
|
115 |
+
|
116 |
+
x = input + self.drop_path(x)
|
117 |
+
return x
|
118 |
+
|
119 |
+
|
120 |
+
class Fuser(nn.Module):
|
121 |
+
def __init__(self, layer, num_layers, dim=None, input_projection=False):
|
122 |
+
super().__init__()
|
123 |
+
self.proj = nn.Identity()
|
124 |
+
self.layers = get_clones(layer, num_layers)
|
125 |
+
|
126 |
+
if input_projection:
|
127 |
+
assert dim is not None
|
128 |
+
self.proj = nn.Conv2d(dim, dim, kernel_size=1)
|
129 |
+
|
130 |
+
def forward(self, x):
|
131 |
+
# normally x: (N, C, H, W)
|
132 |
+
x = self.proj(x)
|
133 |
+
for layer in self.layers:
|
134 |
+
x = layer(x)
|
135 |
+
return x
|
136 |
+
|
137 |
+
|
138 |
+
class MemoryEncoder(nn.Module):
|
139 |
+
def __init__(
|
140 |
+
self,
|
141 |
+
out_dim,
|
142 |
+
mask_downsampler,
|
143 |
+
fuser,
|
144 |
+
position_encoding,
|
145 |
+
in_dim=256, # in_dim of pix_feats
|
146 |
+
):
|
147 |
+
super().__init__()
|
148 |
+
|
149 |
+
self.mask_downsampler = mask_downsampler
|
150 |
+
|
151 |
+
self.pix_feat_proj = nn.Conv2d(in_dim, in_dim, kernel_size=1)
|
152 |
+
self.fuser = fuser
|
153 |
+
self.position_encoding = position_encoding
|
154 |
+
self.out_proj = nn.Identity()
|
155 |
+
if out_dim != in_dim:
|
156 |
+
self.out_proj = nn.Conv2d(in_dim, out_dim, kernel_size=1)
|
157 |
+
|
158 |
+
def forward(
|
159 |
+
self,
|
160 |
+
pix_feat: torch.Tensor,
|
161 |
+
masks: torch.Tensor,
|
162 |
+
skip_mask_sigmoid: bool = False,
|
163 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
164 |
+
## Process masks
|
165 |
+
# sigmoid, so that less domain shift from gt masks which are bool
|
166 |
+
if not skip_mask_sigmoid:
|
167 |
+
masks = F.sigmoid(masks)
|
168 |
+
masks = self.mask_downsampler(masks)
|
169 |
+
|
170 |
+
## Fuse pix_feats and downsampled masks
|
171 |
+
# in case the visual features are on CPU, cast them to CUDA
|
172 |
+
pix_feat = pix_feat.to(masks.device)
|
173 |
+
|
174 |
+
x = self.pix_feat_proj(pix_feat)
|
175 |
+
x = x + masks
|
176 |
+
x = self.fuser(x)
|
177 |
+
x = self.out_proj(x)
|
178 |
+
|
179 |
+
pos = self.position_encoding(x).to(x.dtype)
|
180 |
+
|
181 |
+
return {"vision_features": x, "vision_pos_enc": [pos]}
|
sam2/modeling/position_encoding.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import math
|
8 |
+
from typing import Any, Optional, Tuple
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
import torch
|
13 |
+
from torch import nn
|
14 |
+
|
15 |
+
|
16 |
+
class PositionEmbeddingSine(nn.Module):
|
17 |
+
"""
|
18 |
+
This is a more standard version of the position embedding, very similar to the one
|
19 |
+
used by the Attention Is All You Need paper, generalized to work on images.
|
20 |
+
"""
|
21 |
+
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
num_pos_feats,
|
25 |
+
temperature: int = 10000,
|
26 |
+
normalize: bool = True,
|
27 |
+
scale: Optional[float] = None,
|
28 |
+
# Following settings only relevant
|
29 |
+
# for warmping up cache for compilation
|
30 |
+
warmup_cache: bool = True,
|
31 |
+
image_size: int = 1024,
|
32 |
+
strides: Tuple[int] = (4, 8, 16, 32),
|
33 |
+
):
|
34 |
+
super().__init__()
|
35 |
+
assert num_pos_feats % 2 == 0, "Expecting even model width"
|
36 |
+
self.num_pos_feats = num_pos_feats // 2
|
37 |
+
self.temperature = temperature
|
38 |
+
self.normalize = normalize
|
39 |
+
if scale is not None and normalize is False:
|
40 |
+
raise ValueError("normalize should be True if scale is passed")
|
41 |
+
if scale is None:
|
42 |
+
scale = 2 * math.pi
|
43 |
+
self.scale = scale
|
44 |
+
|
45 |
+
self.cache = {}
|
46 |
+
if warmup_cache and torch.cuda.is_available():
|
47 |
+
# Warmup cache for cuda, to help with compilation
|
48 |
+
device = torch.device("cuda")
|
49 |
+
for stride in strides:
|
50 |
+
cache_key = (image_size // stride, image_size // stride)
|
51 |
+
self._pe(1, device, *cache_key)
|
52 |
+
|
53 |
+
def _encode_xy(self, x, y):
|
54 |
+
# The positions are expected to be normalized
|
55 |
+
assert len(x) == len(y) and x.ndim == y.ndim == 1
|
56 |
+
x_embed = x * self.scale
|
57 |
+
y_embed = y * self.scale
|
58 |
+
|
59 |
+
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
60 |
+
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
61 |
+
|
62 |
+
pos_x = x_embed[:, None] / dim_t
|
63 |
+
pos_y = y_embed[:, None] / dim_t
|
64 |
+
pos_x = torch.stack(
|
65 |
+
(pos_x[:, 0::2].sin(), pos_x[:, 1::2].cos()), dim=2
|
66 |
+
).flatten(1)
|
67 |
+
pos_y = torch.stack(
|
68 |
+
(pos_y[:, 0::2].sin(), pos_y[:, 1::2].cos()), dim=2
|
69 |
+
).flatten(1)
|
70 |
+
return pos_x, pos_y
|
71 |
+
|
72 |
+
@torch.no_grad()
|
73 |
+
def encode_boxes(self, x, y, w, h):
|
74 |
+
pos_x, pos_y = self._encode_xy(x, y)
|
75 |
+
pos = torch.cat((pos_y, pos_x, h[:, None], w[:, None]), dim=1)
|
76 |
+
return pos
|
77 |
+
|
78 |
+
encode = encode_boxes # Backwards compatibility
|
79 |
+
|
80 |
+
@torch.no_grad()
|
81 |
+
def encode_points(self, x, y, labels):
|
82 |
+
(bx, nx), (by, ny), (bl, nl) = x.shape, y.shape, labels.shape
|
83 |
+
assert bx == by and nx == ny and bx == bl and nx == nl
|
84 |
+
pos_x, pos_y = self._encode_xy(x.flatten(), y.flatten())
|
85 |
+
pos_x, pos_y = pos_x.reshape(bx, nx, -1), pos_y.reshape(by, ny, -1)
|
86 |
+
pos = torch.cat((pos_y, pos_x, labels[:, :, None]), dim=2)
|
87 |
+
return pos
|
88 |
+
|
89 |
+
@torch.no_grad()
|
90 |
+
def _pe(self, B, device, *cache_key):
|
91 |
+
H, W = cache_key
|
92 |
+
if cache_key in self.cache:
|
93 |
+
return self.cache[cache_key].to(device)[None].repeat(B, 1, 1, 1)
|
94 |
+
|
95 |
+
y_embed = (
|
96 |
+
torch.arange(1, H + 1, dtype=torch.float32, device=device)
|
97 |
+
.view(1, -1, 1)
|
98 |
+
.repeat(B, 1, W)
|
99 |
+
)
|
100 |
+
x_embed = (
|
101 |
+
torch.arange(1, W + 1, dtype=torch.float32, device=device)
|
102 |
+
.view(1, 1, -1)
|
103 |
+
.repeat(B, H, 1)
|
104 |
+
)
|
105 |
+
|
106 |
+
if self.normalize:
|
107 |
+
eps = 1e-6
|
108 |
+
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
109 |
+
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
110 |
+
|
111 |
+
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=device)
|
112 |
+
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
113 |
+
|
114 |
+
pos_x = x_embed[:, :, :, None] / dim_t
|
115 |
+
pos_y = y_embed[:, :, :, None] / dim_t
|
116 |
+
pos_x = torch.stack(
|
117 |
+
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
|
118 |
+
).flatten(3)
|
119 |
+
pos_y = torch.stack(
|
120 |
+
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
|
121 |
+
).flatten(3)
|
122 |
+
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
123 |
+
self.cache[cache_key] = pos[0]
|
124 |
+
return pos
|
125 |
+
|
126 |
+
@torch.no_grad()
|
127 |
+
def forward(self, x: torch.Tensor):
|
128 |
+
B = x.shape[0]
|
129 |
+
cache_key = (x.shape[-2], x.shape[-1])
|
130 |
+
return self._pe(B, x.device, *cache_key)
|
131 |
+
|
132 |
+
|
133 |
+
class PositionEmbeddingRandom(nn.Module):
|
134 |
+
"""
|
135 |
+
Positional encoding using random spatial frequencies.
|
136 |
+
"""
|
137 |
+
|
138 |
+
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
|
139 |
+
super().__init__()
|
140 |
+
if scale is None or scale <= 0.0:
|
141 |
+
scale = 1.0
|
142 |
+
self.register_buffer(
|
143 |
+
"positional_encoding_gaussian_matrix",
|
144 |
+
scale * torch.randn((2, num_pos_feats)),
|
145 |
+
)
|
146 |
+
|
147 |
+
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
|
148 |
+
"""Positionally encode points that are normalized to [0,1]."""
|
149 |
+
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
|
150 |
+
coords = 2 * coords - 1
|
151 |
+
coords = coords @ self.positional_encoding_gaussian_matrix
|
152 |
+
coords = 2 * np.pi * coords
|
153 |
+
# outputs d_1 x ... x d_n x C shape
|
154 |
+
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
|
155 |
+
|
156 |
+
def forward(self, size: Tuple[int, int]) -> torch.Tensor:
|
157 |
+
"""Generate positional encoding for a grid of the specified size."""
|
158 |
+
h, w = size
|
159 |
+
device: Any = self.positional_encoding_gaussian_matrix.device
|
160 |
+
grid = torch.ones((h, w), device=device, dtype=torch.float32)
|
161 |
+
y_embed = grid.cumsum(dim=0) - 0.5
|
162 |
+
x_embed = grid.cumsum(dim=1) - 0.5
|
163 |
+
y_embed = y_embed / h
|
164 |
+
x_embed = x_embed / w
|
165 |
+
|
166 |
+
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
|
167 |
+
return pe.permute(2, 0, 1) # C x H x W
|
168 |
+
|
169 |
+
def forward_with_coords(
|
170 |
+
self, coords_input: torch.Tensor, image_size: Tuple[int, int]
|
171 |
+
) -> torch.Tensor:
|
172 |
+
"""Positionally encode points that are not normalized to [0,1]."""
|
173 |
+
coords = coords_input.clone()
|
174 |
+
coords[:, :, 0] = coords[:, :, 0] / image_size[1]
|
175 |
+
coords[:, :, 1] = coords[:, :, 1] / image_size[0]
|
176 |
+
return self._pe_encoding(coords.to(torch.float)) # B x N x C
|
177 |
+
|
178 |
+
|
179 |
+
# Rotary Positional Encoding, adapted from:
|
180 |
+
# 1. https://github.com/meta-llama/codellama/blob/main/llama/model.py
|
181 |
+
# 2. https://github.com/naver-ai/rope-vit
|
182 |
+
# 3. https://github.com/lucidrains/rotary-embedding-torch
|
183 |
+
|
184 |
+
|
185 |
+
def init_t_xy(end_x: int, end_y: int):
|
186 |
+
t = torch.arange(end_x * end_y, dtype=torch.float32)
|
187 |
+
t_x = (t % end_x).float()
|
188 |
+
t_y = torch.div(t, end_x, rounding_mode="floor").float()
|
189 |
+
return t_x, t_y
|
190 |
+
|
191 |
+
|
192 |
+
def compute_axial_cis(dim: int, end_x: int, end_y: int, theta: float = 10000.0):
|
193 |
+
freqs_x = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim))
|
194 |
+
freqs_y = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim))
|
195 |
+
|
196 |
+
t_x, t_y = init_t_xy(end_x, end_y)
|
197 |
+
freqs_x = torch.outer(t_x, freqs_x)
|
198 |
+
freqs_y = torch.outer(t_y, freqs_y)
|
199 |
+
freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x)
|
200 |
+
freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y)
|
201 |
+
return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1)
|
202 |
+
|
203 |
+
|
204 |
+
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
|
205 |
+
ndim = x.ndim
|
206 |
+
assert 0 <= 1 < ndim
|
207 |
+
assert freqs_cis.shape == (x.shape[-2], x.shape[-1])
|
208 |
+
shape = [d if i >= ndim - 2 else 1 for i, d in enumerate(x.shape)]
|
209 |
+
return freqs_cis.view(*shape)
|
210 |
+
|
211 |
+
|
212 |
+
def apply_rotary_enc(
|
213 |
+
xq: torch.Tensor,
|
214 |
+
xk: torch.Tensor,
|
215 |
+
freqs_cis: torch.Tensor,
|
216 |
+
repeat_freqs_k: bool = False,
|
217 |
+
):
|
218 |
+
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
|
219 |
+
xk_ = (
|
220 |
+
torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
|
221 |
+
if xk.shape[-2] != 0
|
222 |
+
else None
|
223 |
+
)
|
224 |
+
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
|
225 |
+
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
|
226 |
+
if xk_ is None:
|
227 |
+
# no keys to rotate, due to dropout
|
228 |
+
return xq_out.type_as(xq).to(xq.device), xk
|
229 |
+
# repeat freqs along seq_len dim to match k seq_len
|
230 |
+
if repeat_freqs_k:
|
231 |
+
r = xk_.shape[-2] // xq_.shape[-2]
|
232 |
+
if freqs_cis.is_cuda:
|
233 |
+
freqs_cis = freqs_cis.repeat(*([1] * (freqs_cis.ndim - 2)), r, 1)
|
234 |
+
else:
|
235 |
+
# torch.repeat on complex numbers may not be supported on non-CUDA devices
|
236 |
+
# (freqs_cis has 4 dims and we repeat on dim 2) so we use expand + flatten
|
237 |
+
freqs_cis = freqs_cis.unsqueeze(2).expand(-1, -1, r, -1, -1).flatten(2, 3)
|
238 |
+
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
|
239 |
+
return xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device)
|
sam2/modeling/sam/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
sam2/modeling/sam/mask_decoder.py
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
from typing import List, Optional, Tuple, Type
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from torch import nn
|
11 |
+
|
12 |
+
from sam2.modeling.sam2_utils import LayerNorm2d, MLP
|
13 |
+
|
14 |
+
|
15 |
+
class MaskDecoder(nn.Module):
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
*,
|
19 |
+
transformer_dim: int,
|
20 |
+
transformer: nn.Module,
|
21 |
+
num_multimask_outputs: int = 3,
|
22 |
+
activation: Type[nn.Module] = nn.GELU,
|
23 |
+
iou_head_depth: int = 3,
|
24 |
+
iou_head_hidden_dim: int = 256,
|
25 |
+
use_high_res_features: bool = False,
|
26 |
+
iou_prediction_use_sigmoid=False,
|
27 |
+
dynamic_multimask_via_stability=False,
|
28 |
+
dynamic_multimask_stability_delta=0.05,
|
29 |
+
dynamic_multimask_stability_thresh=0.98,
|
30 |
+
pred_obj_scores: bool = False,
|
31 |
+
pred_obj_scores_mlp: bool = False,
|
32 |
+
use_multimask_token_for_obj_ptr: bool = False,
|
33 |
+
) -> None:
|
34 |
+
"""
|
35 |
+
Predicts masks given an image and prompt embeddings, using a
|
36 |
+
transformer architecture.
|
37 |
+
|
38 |
+
Arguments:
|
39 |
+
transformer_dim (int): the channel dimension of the transformer
|
40 |
+
transformer (nn.Module): the transformer used to predict masks
|
41 |
+
num_multimask_outputs (int): the number of masks to predict
|
42 |
+
when disambiguating masks
|
43 |
+
activation (nn.Module): the type of activation to use when
|
44 |
+
upscaling masks
|
45 |
+
iou_head_depth (int): the depth of the MLP used to predict
|
46 |
+
mask quality
|
47 |
+
iou_head_hidden_dim (int): the hidden dimension of the MLP
|
48 |
+
used to predict mask quality
|
49 |
+
"""
|
50 |
+
super().__init__()
|
51 |
+
self.transformer_dim = transformer_dim
|
52 |
+
self.transformer = transformer
|
53 |
+
|
54 |
+
self.num_multimask_outputs = num_multimask_outputs
|
55 |
+
|
56 |
+
self.iou_token = nn.Embedding(1, transformer_dim)
|
57 |
+
self.num_mask_tokens = num_multimask_outputs + 1
|
58 |
+
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
|
59 |
+
|
60 |
+
self.pred_obj_scores = pred_obj_scores
|
61 |
+
if self.pred_obj_scores:
|
62 |
+
self.obj_score_token = nn.Embedding(1, transformer_dim)
|
63 |
+
self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
|
64 |
+
|
65 |
+
self.output_upscaling = nn.Sequential(
|
66 |
+
nn.ConvTranspose2d(
|
67 |
+
transformer_dim, transformer_dim // 4, kernel_size=2, stride=2
|
68 |
+
),
|
69 |
+
LayerNorm2d(transformer_dim // 4),
|
70 |
+
activation(),
|
71 |
+
nn.ConvTranspose2d(
|
72 |
+
transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2
|
73 |
+
),
|
74 |
+
activation(),
|
75 |
+
)
|
76 |
+
self.use_high_res_features = use_high_res_features
|
77 |
+
if use_high_res_features:
|
78 |
+
self.conv_s0 = nn.Conv2d(
|
79 |
+
transformer_dim, transformer_dim // 8, kernel_size=1, stride=1
|
80 |
+
)
|
81 |
+
self.conv_s1 = nn.Conv2d(
|
82 |
+
transformer_dim, transformer_dim // 4, kernel_size=1, stride=1
|
83 |
+
)
|
84 |
+
|
85 |
+
self.output_hypernetworks_mlps = nn.ModuleList(
|
86 |
+
[
|
87 |
+
MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
|
88 |
+
for i in range(self.num_mask_tokens)
|
89 |
+
]
|
90 |
+
)
|
91 |
+
|
92 |
+
self.iou_prediction_head = MLP(
|
93 |
+
transformer_dim,
|
94 |
+
iou_head_hidden_dim,
|
95 |
+
self.num_mask_tokens,
|
96 |
+
iou_head_depth,
|
97 |
+
sigmoid_output=iou_prediction_use_sigmoid,
|
98 |
+
)
|
99 |
+
if self.pred_obj_scores:
|
100 |
+
self.pred_obj_score_head = nn.Linear(transformer_dim, 1)
|
101 |
+
if pred_obj_scores_mlp:
|
102 |
+
self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3)
|
103 |
+
|
104 |
+
# When outputting a single mask, optionally we can dynamically fall back to the best
|
105 |
+
# multimask output token if the single mask output token gives low stability scores.
|
106 |
+
self.dynamic_multimask_via_stability = dynamic_multimask_via_stability
|
107 |
+
self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta
|
108 |
+
self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh
|
109 |
+
|
110 |
+
def forward(
|
111 |
+
self,
|
112 |
+
image_embeddings: torch.Tensor,
|
113 |
+
image_pe: torch.Tensor,
|
114 |
+
sparse_prompt_embeddings: torch.Tensor,
|
115 |
+
dense_prompt_embeddings: torch.Tensor,
|
116 |
+
multimask_output: bool,
|
117 |
+
repeat_image: bool,
|
118 |
+
high_res_features: Optional[List[torch.Tensor]] = None,
|
119 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
120 |
+
"""
|
121 |
+
Predict masks given image and prompt embeddings.
|
122 |
+
|
123 |
+
Arguments:
|
124 |
+
image_embeddings (torch.Tensor): the embeddings from the image encoder
|
125 |
+
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
|
126 |
+
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
|
127 |
+
dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
|
128 |
+
multimask_output (bool): Whether to return multiple masks or a single
|
129 |
+
mask.
|
130 |
+
|
131 |
+
Returns:
|
132 |
+
torch.Tensor: batched predicted masks
|
133 |
+
torch.Tensor: batched predictions of mask quality
|
134 |
+
torch.Tensor: batched SAM token for mask output
|
135 |
+
"""
|
136 |
+
masks, iou_pred, mask_tokens_out, object_score_logits = self.predict_masks(
|
137 |
+
image_embeddings=image_embeddings,
|
138 |
+
image_pe=image_pe,
|
139 |
+
sparse_prompt_embeddings=sparse_prompt_embeddings,
|
140 |
+
dense_prompt_embeddings=dense_prompt_embeddings,
|
141 |
+
repeat_image=repeat_image,
|
142 |
+
high_res_features=high_res_features,
|
143 |
+
)
|
144 |
+
|
145 |
+
# Select the correct mask or masks for output
|
146 |
+
if multimask_output:
|
147 |
+
masks = masks[:, 1:, :, :]
|
148 |
+
iou_pred = iou_pred[:, 1:]
|
149 |
+
elif self.dynamic_multimask_via_stability and not self.training:
|
150 |
+
masks, iou_pred = self._dynamic_multimask_via_stability(masks, iou_pred)
|
151 |
+
else:
|
152 |
+
masks = masks[:, 0:1, :, :]
|
153 |
+
iou_pred = iou_pred[:, 0:1]
|
154 |
+
|
155 |
+
if multimask_output and self.use_multimask_token_for_obj_ptr:
|
156 |
+
sam_tokens_out = mask_tokens_out[:, 1:] # [b, 3, c] shape
|
157 |
+
else:
|
158 |
+
# Take the mask output token. Here we *always* use the token for single mask output.
|
159 |
+
# At test time, even if we track after 1-click (and using multimask_output=True),
|
160 |
+
# we still take the single mask token here. The rationale is that we always track
|
161 |
+
# after multiple clicks during training, so the past tokens seen during training
|
162 |
+
# are always the single mask token (and we'll let it be the object-memory token).
|
163 |
+
sam_tokens_out = mask_tokens_out[:, 0:1] # [b, 1, c] shape
|
164 |
+
|
165 |
+
# Prepare output
|
166 |
+
return masks, iou_pred, sam_tokens_out, object_score_logits
|
167 |
+
|
168 |
+
def predict_masks(
|
169 |
+
self,
|
170 |
+
image_embeddings: torch.Tensor,
|
171 |
+
image_pe: torch.Tensor,
|
172 |
+
sparse_prompt_embeddings: torch.Tensor,
|
173 |
+
dense_prompt_embeddings: torch.Tensor,
|
174 |
+
repeat_image: bool,
|
175 |
+
high_res_features: Optional[List[torch.Tensor]] = None,
|
176 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
177 |
+
"""Predicts masks. See 'forward' for more details."""
|
178 |
+
# Concatenate output tokens
|
179 |
+
s = 0
|
180 |
+
if self.pred_obj_scores:
|
181 |
+
output_tokens = torch.cat(
|
182 |
+
[
|
183 |
+
self.obj_score_token.weight,
|
184 |
+
self.iou_token.weight,
|
185 |
+
self.mask_tokens.weight,
|
186 |
+
],
|
187 |
+
dim=0,
|
188 |
+
)
|
189 |
+
s = 1
|
190 |
+
else:
|
191 |
+
output_tokens = torch.cat(
|
192 |
+
[self.iou_token.weight, self.mask_tokens.weight], dim=0
|
193 |
+
)
|
194 |
+
output_tokens = output_tokens.unsqueeze(0).expand(
|
195 |
+
sparse_prompt_embeddings.size(0), -1, -1
|
196 |
+
)
|
197 |
+
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
|
198 |
+
|
199 |
+
# Expand per-image data in batch direction to be per-mask
|
200 |
+
if repeat_image:
|
201 |
+
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
|
202 |
+
else:
|
203 |
+
assert image_embeddings.shape[0] == tokens.shape[0]
|
204 |
+
src = image_embeddings
|
205 |
+
src = src + dense_prompt_embeddings
|
206 |
+
assert (
|
207 |
+
image_pe.size(0) == 1
|
208 |
+
), "image_pe should have size 1 in batch dim (from `get_dense_pe()`)"
|
209 |
+
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
|
210 |
+
b, c, h, w = src.shape
|
211 |
+
|
212 |
+
# Run the transformer
|
213 |
+
hs, src = self.transformer(src, pos_src, tokens)
|
214 |
+
iou_token_out = hs[:, s, :]
|
215 |
+
mask_tokens_out = hs[:, s + 1 : (s + 1 + self.num_mask_tokens), :]
|
216 |
+
|
217 |
+
# Upscale mask embeddings and predict masks using the mask tokens
|
218 |
+
src = src.transpose(1, 2).view(b, c, h, w)
|
219 |
+
if not self.use_high_res_features:
|
220 |
+
upscaled_embedding = self.output_upscaling(src)
|
221 |
+
else:
|
222 |
+
dc1, ln1, act1, dc2, act2 = self.output_upscaling
|
223 |
+
feat_s0, feat_s1 = high_res_features
|
224 |
+
upscaled_embedding = act1(ln1(dc1(src) + feat_s1))
|
225 |
+
upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0)
|
226 |
+
|
227 |
+
hyper_in_list: List[torch.Tensor] = []
|
228 |
+
for i in range(self.num_mask_tokens):
|
229 |
+
hyper_in_list.append(
|
230 |
+
self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])
|
231 |
+
)
|
232 |
+
hyper_in = torch.stack(hyper_in_list, dim=1)
|
233 |
+
b, c, h, w = upscaled_embedding.shape
|
234 |
+
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
|
235 |
+
|
236 |
+
# Generate mask quality predictions
|
237 |
+
iou_pred = self.iou_prediction_head(iou_token_out)
|
238 |
+
if self.pred_obj_scores:
|
239 |
+
assert s == 1
|
240 |
+
object_score_logits = self.pred_obj_score_head(hs[:, 0, :])
|
241 |
+
else:
|
242 |
+
# Obj scores logits - default to 10.0, i.e. assuming the object is present, sigmoid(10)=1
|
243 |
+
object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1)
|
244 |
+
|
245 |
+
return masks, iou_pred, mask_tokens_out, object_score_logits
|
246 |
+
|
247 |
+
def _get_stability_scores(self, mask_logits):
|
248 |
+
"""
|
249 |
+
Compute stability scores of the mask logits based on the IoU between upper and
|
250 |
+
lower thresholds.
|
251 |
+
"""
|
252 |
+
mask_logits = mask_logits.flatten(-2)
|
253 |
+
stability_delta = self.dynamic_multimask_stability_delta
|
254 |
+
area_i = torch.sum(mask_logits > stability_delta, dim=-1).float()
|
255 |
+
area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float()
|
256 |
+
stability_scores = torch.where(area_u > 0, area_i / area_u, 1.0)
|
257 |
+
return stability_scores
|
258 |
+
|
259 |
+
def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores):
|
260 |
+
"""
|
261 |
+
When outputting a single mask, if the stability score from the current single-mask
|
262 |
+
output (based on output token 0) falls below a threshold, we instead select from
|
263 |
+
multi-mask outputs (based on output token 1~3) the mask with the highest predicted
|
264 |
+
IoU score. This is intended to ensure a valid mask for both clicking and tracking.
|
265 |
+
"""
|
266 |
+
# The best mask from multimask output tokens (1~3)
|
267 |
+
multimask_logits = all_mask_logits[:, 1:, :, :]
|
268 |
+
multimask_iou_scores = all_iou_scores[:, 1:]
|
269 |
+
best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1)
|
270 |
+
batch_inds = torch.arange(
|
271 |
+
multimask_iou_scores.size(0), device=all_iou_scores.device
|
272 |
+
)
|
273 |
+
best_multimask_logits = multimask_logits[batch_inds, best_scores_inds]
|
274 |
+
best_multimask_logits = best_multimask_logits.unsqueeze(1)
|
275 |
+
best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds]
|
276 |
+
best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1)
|
277 |
+
|
278 |
+
# The mask from singlemask output token 0 and its stability score
|
279 |
+
singlemask_logits = all_mask_logits[:, 0:1, :, :]
|
280 |
+
singlemask_iou_scores = all_iou_scores[:, 0:1]
|
281 |
+
stability_scores = self._get_stability_scores(singlemask_logits)
|
282 |
+
is_stable = stability_scores >= self.dynamic_multimask_stability_thresh
|
283 |
+
|
284 |
+
# Dynamically fall back to best multimask output upon low stability scores.
|
285 |
+
mask_logits_out = torch.where(
|
286 |
+
is_stable[..., None, None].expand_as(singlemask_logits),
|
287 |
+
singlemask_logits,
|
288 |
+
best_multimask_logits,
|
289 |
+
)
|
290 |
+
iou_scores_out = torch.where(
|
291 |
+
is_stable.expand_as(singlemask_iou_scores),
|
292 |
+
singlemask_iou_scores,
|
293 |
+
best_multimask_iou_scores,
|
294 |
+
)
|
295 |
+
return mask_logits_out, iou_scores_out
|
sam2/modeling/sam/prompt_encoder.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
from typing import Optional, Tuple, Type
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from torch import nn
|
11 |
+
|
12 |
+
from sam2.modeling.position_encoding import PositionEmbeddingRandom
|
13 |
+
|
14 |
+
from sam2.modeling.sam2_utils import LayerNorm2d
|
15 |
+
|
16 |
+
|
17 |
+
class PromptEncoder(nn.Module):
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
embed_dim: int,
|
21 |
+
image_embedding_size: Tuple[int, int],
|
22 |
+
input_image_size: Tuple[int, int],
|
23 |
+
mask_in_chans: int,
|
24 |
+
activation: Type[nn.Module] = nn.GELU,
|
25 |
+
) -> None:
|
26 |
+
"""
|
27 |
+
Encodes prompts for input to SAM's mask decoder.
|
28 |
+
|
29 |
+
Arguments:
|
30 |
+
embed_dim (int): The prompts' embedding dimension
|
31 |
+
image_embedding_size (tuple(int, int)): The spatial size of the
|
32 |
+
image embedding, as (H, W).
|
33 |
+
input_image_size (int): The padded size of the image as input
|
34 |
+
to the image encoder, as (H, W).
|
35 |
+
mask_in_chans (int): The number of hidden channels used for
|
36 |
+
encoding input masks.
|
37 |
+
activation (nn.Module): The activation to use when encoding
|
38 |
+
input masks.
|
39 |
+
"""
|
40 |
+
super().__init__()
|
41 |
+
self.embed_dim = embed_dim
|
42 |
+
self.input_image_size = input_image_size
|
43 |
+
self.image_embedding_size = image_embedding_size
|
44 |
+
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
|
45 |
+
|
46 |
+
self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
|
47 |
+
point_embeddings = [
|
48 |
+
nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)
|
49 |
+
]
|
50 |
+
self.point_embeddings = nn.ModuleList(point_embeddings)
|
51 |
+
self.not_a_point_embed = nn.Embedding(1, embed_dim)
|
52 |
+
|
53 |
+
self.mask_input_size = (
|
54 |
+
4 * image_embedding_size[0],
|
55 |
+
4 * image_embedding_size[1],
|
56 |
+
)
|
57 |
+
self.mask_downscaling = nn.Sequential(
|
58 |
+
nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
|
59 |
+
LayerNorm2d(mask_in_chans // 4),
|
60 |
+
activation(),
|
61 |
+
nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
|
62 |
+
LayerNorm2d(mask_in_chans),
|
63 |
+
activation(),
|
64 |
+
nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
|
65 |
+
)
|
66 |
+
self.no_mask_embed = nn.Embedding(1, embed_dim)
|
67 |
+
|
68 |
+
def get_dense_pe(self) -> torch.Tensor:
|
69 |
+
"""
|
70 |
+
Returns the positional encoding used to encode point prompts,
|
71 |
+
applied to a dense set of points the shape of the image encoding.
|
72 |
+
|
73 |
+
Returns:
|
74 |
+
torch.Tensor: Positional encoding with shape
|
75 |
+
1x(embed_dim)x(embedding_h)x(embedding_w)
|
76 |
+
"""
|
77 |
+
return self.pe_layer(self.image_embedding_size).unsqueeze(0)
|
78 |
+
|
79 |
+
def _embed_points(
|
80 |
+
self,
|
81 |
+
points: torch.Tensor,
|
82 |
+
labels: torch.Tensor,
|
83 |
+
pad: bool,
|
84 |
+
) -> torch.Tensor:
|
85 |
+
"""Embeds point prompts."""
|
86 |
+
points = points + 0.5 # Shift to center of pixel
|
87 |
+
if pad:
|
88 |
+
padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
|
89 |
+
padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
|
90 |
+
points = torch.cat([points, padding_point], dim=1)
|
91 |
+
labels = torch.cat([labels, padding_label], dim=1)
|
92 |
+
point_embedding = self.pe_layer.forward_with_coords(
|
93 |
+
points, self.input_image_size
|
94 |
+
)
|
95 |
+
|
96 |
+
point_embedding = torch.where(
|
97 |
+
(labels == -1).unsqueeze(-1),
|
98 |
+
torch.zeros_like(point_embedding) + self.not_a_point_embed.weight,
|
99 |
+
point_embedding,
|
100 |
+
)
|
101 |
+
point_embedding = torch.where(
|
102 |
+
(labels == 0).unsqueeze(-1),
|
103 |
+
point_embedding + self.point_embeddings[0].weight,
|
104 |
+
point_embedding,
|
105 |
+
)
|
106 |
+
point_embedding = torch.where(
|
107 |
+
(labels == 1).unsqueeze(-1),
|
108 |
+
point_embedding + self.point_embeddings[1].weight,
|
109 |
+
point_embedding,
|
110 |
+
)
|
111 |
+
point_embedding = torch.where(
|
112 |
+
(labels == 2).unsqueeze(-1),
|
113 |
+
point_embedding + self.point_embeddings[2].weight,
|
114 |
+
point_embedding,
|
115 |
+
)
|
116 |
+
point_embedding = torch.where(
|
117 |
+
(labels == 3).unsqueeze(-1),
|
118 |
+
point_embedding + self.point_embeddings[3].weight,
|
119 |
+
point_embedding,
|
120 |
+
)
|
121 |
+
return point_embedding
|
122 |
+
|
123 |
+
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
|
124 |
+
"""Embeds box prompts."""
|
125 |
+
boxes = boxes + 0.5 # Shift to center of pixel
|
126 |
+
coords = boxes.reshape(-1, 2, 2)
|
127 |
+
corner_embedding = self.pe_layer.forward_with_coords(
|
128 |
+
coords, self.input_image_size
|
129 |
+
)
|
130 |
+
corner_embedding[:, 0, :] += self.point_embeddings[2].weight
|
131 |
+
corner_embedding[:, 1, :] += self.point_embeddings[3].weight
|
132 |
+
return corner_embedding
|
133 |
+
|
134 |
+
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
|
135 |
+
"""Embeds mask inputs."""
|
136 |
+
mask_embedding = self.mask_downscaling(masks)
|
137 |
+
return mask_embedding
|
138 |
+
|
139 |
+
def _get_batch_size(
|
140 |
+
self,
|
141 |
+
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
142 |
+
boxes: Optional[torch.Tensor],
|
143 |
+
masks: Optional[torch.Tensor],
|
144 |
+
) -> int:
|
145 |
+
"""
|
146 |
+
Gets the batch size of the output given the batch size of the input prompts.
|
147 |
+
"""
|
148 |
+
if points is not None:
|
149 |
+
return points[0].shape[0]
|
150 |
+
elif boxes is not None:
|
151 |
+
return boxes.shape[0]
|
152 |
+
elif masks is not None:
|
153 |
+
return masks.shape[0]
|
154 |
+
else:
|
155 |
+
return 1
|
156 |
+
|
157 |
+
def _get_device(self) -> torch.device:
|
158 |
+
return self.point_embeddings[0].weight.device
|
159 |
+
|
160 |
+
def forward(
|
161 |
+
self,
|
162 |
+
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
163 |
+
boxes: Optional[torch.Tensor],
|
164 |
+
masks: Optional[torch.Tensor],
|
165 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
166 |
+
"""
|
167 |
+
Embeds different types of prompts, returning both sparse and dense
|
168 |
+
embeddings.
|
169 |
+
|
170 |
+
Arguments:
|
171 |
+
points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
|
172 |
+
and labels to embed.
|
173 |
+
boxes (torch.Tensor or none): boxes to embed
|
174 |
+
masks (torch.Tensor or none): masks to embed
|
175 |
+
|
176 |
+
Returns:
|
177 |
+
torch.Tensor: sparse embeddings for the points and boxes, with shape
|
178 |
+
BxNx(embed_dim), where N is determined by the number of input points
|
179 |
+
and boxes.
|
180 |
+
torch.Tensor: dense embeddings for the masks, in the shape
|
181 |
+
Bx(embed_dim)x(embed_H)x(embed_W)
|
182 |
+
"""
|
183 |
+
bs = self._get_batch_size(points, boxes, masks)
|
184 |
+
sparse_embeddings = torch.empty(
|
185 |
+
(bs, 0, self.embed_dim), device=self._get_device()
|
186 |
+
)
|
187 |
+
if points is not None:
|
188 |
+
coords, labels = points
|
189 |
+
point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
|
190 |
+
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
|
191 |
+
if boxes is not None:
|
192 |
+
box_embeddings = self._embed_boxes(boxes)
|
193 |
+
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
|
194 |
+
|
195 |
+
if masks is not None:
|
196 |
+
dense_embeddings = self._embed_masks(masks)
|
197 |
+
else:
|
198 |
+
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
|
199 |
+
bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
|
200 |
+
)
|
201 |
+
|
202 |
+
return sparse_embeddings, dense_embeddings
|
sam2/modeling/sam/transformer.py
ADDED
@@ -0,0 +1,311 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import math
|
8 |
+
from functools import partial
|
9 |
+
from typing import Tuple, Type
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torch.nn.functional as F
|
13 |
+
from torch import nn, Tensor
|
14 |
+
|
15 |
+
from sam2.modeling.position_encoding import apply_rotary_enc, compute_axial_cis
|
16 |
+
from sam2.modeling.sam2_utils import MLP
|
17 |
+
|
18 |
+
|
19 |
+
class TwoWayTransformer(nn.Module):
|
20 |
+
def __init__(
|
21 |
+
self,
|
22 |
+
depth: int,
|
23 |
+
embedding_dim: int,
|
24 |
+
num_heads: int,
|
25 |
+
mlp_dim: int,
|
26 |
+
activation: Type[nn.Module] = nn.ReLU,
|
27 |
+
attention_downsample_rate: int = 2,
|
28 |
+
) -> None:
|
29 |
+
"""
|
30 |
+
A transformer decoder that attends to an input image using
|
31 |
+
queries whose positional embedding is supplied.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
depth (int): number of layers in the transformer
|
35 |
+
embedding_dim (int): the channel dimension for the input embeddings
|
36 |
+
num_heads (int): the number of heads for multihead attention. Must
|
37 |
+
divide embedding_dim
|
38 |
+
mlp_dim (int): the channel dimension internal to the MLP block
|
39 |
+
activation (nn.Module): the activation to use in the MLP block
|
40 |
+
"""
|
41 |
+
super().__init__()
|
42 |
+
self.depth = depth
|
43 |
+
self.embedding_dim = embedding_dim
|
44 |
+
self.num_heads = num_heads
|
45 |
+
self.mlp_dim = mlp_dim
|
46 |
+
self.layers = nn.ModuleList()
|
47 |
+
|
48 |
+
for i in range(depth):
|
49 |
+
self.layers.append(
|
50 |
+
TwoWayAttentionBlock(
|
51 |
+
embedding_dim=embedding_dim,
|
52 |
+
num_heads=num_heads,
|
53 |
+
mlp_dim=mlp_dim,
|
54 |
+
activation=activation,
|
55 |
+
attention_downsample_rate=attention_downsample_rate,
|
56 |
+
skip_first_layer_pe=(i == 0),
|
57 |
+
)
|
58 |
+
)
|
59 |
+
|
60 |
+
self.final_attn_token_to_image = Attention(
|
61 |
+
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
62 |
+
)
|
63 |
+
self.norm_final_attn = nn.LayerNorm(embedding_dim)
|
64 |
+
|
65 |
+
def forward(
|
66 |
+
self,
|
67 |
+
image_embedding: Tensor,
|
68 |
+
image_pe: Tensor,
|
69 |
+
point_embedding: Tensor,
|
70 |
+
) -> Tuple[Tensor, Tensor]:
|
71 |
+
"""
|
72 |
+
Args:
|
73 |
+
image_embedding (torch.Tensor): image to attend to. Should be shape
|
74 |
+
B x embedding_dim x h x w for any h and w.
|
75 |
+
image_pe (torch.Tensor): the positional encoding to add to the image. Must
|
76 |
+
have the same shape as image_embedding.
|
77 |
+
point_embedding (torch.Tensor): the embedding to add to the query points.
|
78 |
+
Must have shape B x N_points x embedding_dim for any N_points.
|
79 |
+
|
80 |
+
Returns:
|
81 |
+
torch.Tensor: the processed point_embedding
|
82 |
+
torch.Tensor: the processed image_embedding
|
83 |
+
"""
|
84 |
+
# BxCxHxW -> BxHWxC == B x N_image_tokens x C
|
85 |
+
bs, c, h, w = image_embedding.shape
|
86 |
+
image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
|
87 |
+
image_pe = image_pe.flatten(2).permute(0, 2, 1)
|
88 |
+
|
89 |
+
# Prepare queries
|
90 |
+
queries = point_embedding
|
91 |
+
keys = image_embedding
|
92 |
+
|
93 |
+
# Apply transformer blocks and final layernorm
|
94 |
+
for layer in self.layers:
|
95 |
+
queries, keys = layer(
|
96 |
+
queries=queries,
|
97 |
+
keys=keys,
|
98 |
+
query_pe=point_embedding,
|
99 |
+
key_pe=image_pe,
|
100 |
+
)
|
101 |
+
|
102 |
+
# Apply the final attention layer from the points to the image
|
103 |
+
q = queries + point_embedding
|
104 |
+
k = keys + image_pe
|
105 |
+
attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
|
106 |
+
queries = queries + attn_out
|
107 |
+
queries = self.norm_final_attn(queries)
|
108 |
+
|
109 |
+
return queries, keys
|
110 |
+
|
111 |
+
|
112 |
+
class TwoWayAttentionBlock(nn.Module):
|
113 |
+
def __init__(
|
114 |
+
self,
|
115 |
+
embedding_dim: int,
|
116 |
+
num_heads: int,
|
117 |
+
mlp_dim: int = 2048,
|
118 |
+
activation: Type[nn.Module] = nn.ReLU,
|
119 |
+
attention_downsample_rate: int = 2,
|
120 |
+
skip_first_layer_pe: bool = False,
|
121 |
+
) -> None:
|
122 |
+
"""
|
123 |
+
A transformer block with four layers: (1) self-attention of sparse
|
124 |
+
inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
|
125 |
+
block on sparse inputs, and (4) cross attention of dense inputs to sparse
|
126 |
+
inputs.
|
127 |
+
|
128 |
+
Arguments:
|
129 |
+
embedding_dim (int): the channel dimension of the embeddings
|
130 |
+
num_heads (int): the number of heads in the attention layers
|
131 |
+
mlp_dim (int): the hidden dimension of the mlp block
|
132 |
+
activation (nn.Module): the activation of the mlp block
|
133 |
+
skip_first_layer_pe (bool): skip the PE on the first layer
|
134 |
+
"""
|
135 |
+
super().__init__()
|
136 |
+
self.self_attn = Attention(embedding_dim, num_heads)
|
137 |
+
self.norm1 = nn.LayerNorm(embedding_dim)
|
138 |
+
|
139 |
+
self.cross_attn_token_to_image = Attention(
|
140 |
+
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
141 |
+
)
|
142 |
+
self.norm2 = nn.LayerNorm(embedding_dim)
|
143 |
+
|
144 |
+
self.mlp = MLP(
|
145 |
+
embedding_dim, mlp_dim, embedding_dim, num_layers=2, activation=activation
|
146 |
+
)
|
147 |
+
self.norm3 = nn.LayerNorm(embedding_dim)
|
148 |
+
|
149 |
+
self.norm4 = nn.LayerNorm(embedding_dim)
|
150 |
+
self.cross_attn_image_to_token = Attention(
|
151 |
+
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
152 |
+
)
|
153 |
+
|
154 |
+
self.skip_first_layer_pe = skip_first_layer_pe
|
155 |
+
|
156 |
+
def forward(
|
157 |
+
self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
|
158 |
+
) -> Tuple[Tensor, Tensor]:
|
159 |
+
# Self attention block
|
160 |
+
if self.skip_first_layer_pe:
|
161 |
+
queries = self.self_attn(q=queries, k=queries, v=queries)
|
162 |
+
else:
|
163 |
+
q = queries + query_pe
|
164 |
+
attn_out = self.self_attn(q=q, k=q, v=queries)
|
165 |
+
queries = queries + attn_out
|
166 |
+
queries = self.norm1(queries)
|
167 |
+
|
168 |
+
# Cross attention block, tokens attending to image embedding
|
169 |
+
q = queries + query_pe
|
170 |
+
k = keys + key_pe
|
171 |
+
attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
|
172 |
+
queries = queries + attn_out
|
173 |
+
queries = self.norm2(queries)
|
174 |
+
|
175 |
+
# MLP block
|
176 |
+
mlp_out = self.mlp(queries)
|
177 |
+
queries = queries + mlp_out
|
178 |
+
queries = self.norm3(queries)
|
179 |
+
|
180 |
+
# Cross attention block, image embedding attending to tokens
|
181 |
+
q = queries + query_pe
|
182 |
+
k = keys + key_pe
|
183 |
+
attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
|
184 |
+
keys = keys + attn_out
|
185 |
+
keys = self.norm4(keys)
|
186 |
+
|
187 |
+
return queries, keys
|
188 |
+
|
189 |
+
|
190 |
+
class Attention(nn.Module):
|
191 |
+
"""
|
192 |
+
An attention layer that allows for downscaling the size of the embedding
|
193 |
+
after projection to queries, keys, and values.
|
194 |
+
"""
|
195 |
+
|
196 |
+
def __init__(
|
197 |
+
self,
|
198 |
+
embedding_dim: int,
|
199 |
+
num_heads: int,
|
200 |
+
downsample_rate: int = 1,
|
201 |
+
dropout: float = 0.0,
|
202 |
+
kv_in_dim: int = None,
|
203 |
+
) -> None:
|
204 |
+
super().__init__()
|
205 |
+
self.embedding_dim = embedding_dim
|
206 |
+
self.kv_in_dim = kv_in_dim if kv_in_dim is not None else embedding_dim
|
207 |
+
self.internal_dim = embedding_dim // downsample_rate
|
208 |
+
self.num_heads = num_heads
|
209 |
+
assert (
|
210 |
+
self.internal_dim % num_heads == 0
|
211 |
+
), "num_heads must divide embedding_dim."
|
212 |
+
|
213 |
+
self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
|
214 |
+
self.k_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
|
215 |
+
self.v_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
|
216 |
+
self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
|
217 |
+
|
218 |
+
self.dropout_p = dropout
|
219 |
+
|
220 |
+
def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
|
221 |
+
b, n, c = x.shape
|
222 |
+
x = x.reshape(b, n, num_heads, c // num_heads)
|
223 |
+
return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
|
224 |
+
|
225 |
+
def _recombine_heads(self, x: Tensor) -> Tensor:
|
226 |
+
b, n_heads, n_tokens, c_per_head = x.shape
|
227 |
+
x = x.transpose(1, 2)
|
228 |
+
return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
|
229 |
+
|
230 |
+
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
|
231 |
+
# Input projections
|
232 |
+
q = self.q_proj(q)
|
233 |
+
k = self.k_proj(k)
|
234 |
+
v = self.v_proj(v)
|
235 |
+
|
236 |
+
# Separate into heads
|
237 |
+
q = self._separate_heads(q, self.num_heads)
|
238 |
+
k = self._separate_heads(k, self.num_heads)
|
239 |
+
v = self._separate_heads(v, self.num_heads)
|
240 |
+
|
241 |
+
dropout_p = self.dropout_p if self.training else 0.0
|
242 |
+
# Attention
|
243 |
+
out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
|
244 |
+
|
245 |
+
out = self._recombine_heads(out)
|
246 |
+
out = self.out_proj(out)
|
247 |
+
|
248 |
+
return out
|
249 |
+
|
250 |
+
|
251 |
+
class RoPEAttention(Attention):
|
252 |
+
"""Attention with rotary position encoding."""
|
253 |
+
|
254 |
+
def __init__(
|
255 |
+
self,
|
256 |
+
*args,
|
257 |
+
rope_theta=10000.0,
|
258 |
+
# whether to repeat q rope to match k length
|
259 |
+
# this is needed for cross-attention to memories
|
260 |
+
rope_k_repeat=False,
|
261 |
+
feat_sizes=(64, 64), # [w, h] for stride 16 feats at 1024 resolution
|
262 |
+
**kwargs,
|
263 |
+
):
|
264 |
+
super().__init__(*args, **kwargs)
|
265 |
+
|
266 |
+
self.compute_cis = partial(
|
267 |
+
compute_axial_cis, dim=self.internal_dim // self.num_heads, theta=rope_theta
|
268 |
+
)
|
269 |
+
freqs_cis = self.compute_cis(end_x=feat_sizes[0], end_y=feat_sizes[1])
|
270 |
+
self.freqs_cis = (
|
271 |
+
freqs_cis.to("cuda") if torch.cuda.is_available() else freqs_cis
|
272 |
+
)
|
273 |
+
self.rope_k_repeat = rope_k_repeat
|
274 |
+
|
275 |
+
def forward(
|
276 |
+
self, q: Tensor, k: Tensor, v: Tensor, num_k_exclude_rope: int = 0
|
277 |
+
) -> Tensor:
|
278 |
+
# Input projections
|
279 |
+
q = self.q_proj(q)
|
280 |
+
k = self.k_proj(k)
|
281 |
+
v = self.v_proj(v)
|
282 |
+
|
283 |
+
# Separate into heads
|
284 |
+
q = self._separate_heads(q, self.num_heads)
|
285 |
+
k = self._separate_heads(k, self.num_heads)
|
286 |
+
v = self._separate_heads(v, self.num_heads)
|
287 |
+
|
288 |
+
# Apply rotary position encoding
|
289 |
+
w = h = math.sqrt(q.shape[-2])
|
290 |
+
self.freqs_cis = self.freqs_cis.to(q.device)
|
291 |
+
if self.freqs_cis.shape[0] != q.shape[-2]:
|
292 |
+
self.freqs_cis = self.compute_cis(end_x=w, end_y=h).to(q.device)
|
293 |
+
if q.shape[-2] != k.shape[-2]:
|
294 |
+
assert self.rope_k_repeat
|
295 |
+
|
296 |
+
num_k_rope = k.size(-2) - num_k_exclude_rope
|
297 |
+
q, k[:, :, :num_k_rope] = apply_rotary_enc(
|
298 |
+
q,
|
299 |
+
k[:, :, :num_k_rope],
|
300 |
+
freqs_cis=self.freqs_cis,
|
301 |
+
repeat_freqs_k=self.rope_k_repeat,
|
302 |
+
)
|
303 |
+
|
304 |
+
dropout_p = self.dropout_p if self.training else 0.0
|
305 |
+
# Attention
|
306 |
+
out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
|
307 |
+
|
308 |
+
out = self._recombine_heads(out)
|
309 |
+
out = self.out_proj(out)
|
310 |
+
|
311 |
+
return out
|
sam2/modeling/sam2_base.py
ADDED
@@ -0,0 +1,909 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.distributed
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
from torch.nn.init import trunc_normal_
|
12 |
+
|
13 |
+
from sam2.modeling.sam.mask_decoder import MaskDecoder
|
14 |
+
from sam2.modeling.sam.prompt_encoder import PromptEncoder
|
15 |
+
from sam2.modeling.sam.transformer import TwoWayTransformer
|
16 |
+
from sam2.modeling.sam2_utils import get_1d_sine_pe, MLP, select_closest_cond_frames
|
17 |
+
|
18 |
+
# a large negative value as a placeholder score for missing objects
|
19 |
+
NO_OBJ_SCORE = -1024.0
|
20 |
+
|
21 |
+
|
22 |
+
class SAM2Base(torch.nn.Module):
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
image_encoder,
|
26 |
+
memory_attention,
|
27 |
+
memory_encoder,
|
28 |
+
num_maskmem=7, # default 1 input frame + 6 previous frames
|
29 |
+
image_size=512,
|
30 |
+
backbone_stride=16, # stride of the image backbone output
|
31 |
+
sigmoid_scale_for_mem_enc=1.0, # scale factor for mask sigmoid prob
|
32 |
+
sigmoid_bias_for_mem_enc=0.0, # bias factor for mask sigmoid prob
|
33 |
+
# During evaluation, whether to binarize the sigmoid mask logits on interacted frames with clicks
|
34 |
+
binarize_mask_from_pts_for_mem_enc=False,
|
35 |
+
use_mask_input_as_output_without_sam=False, # on frames with mask input, whether to directly output the input mask without using a SAM prompt encoder + mask decoder
|
36 |
+
# The maximum number of conditioning frames to participate in the memory attention (-1 means no limit; if there are more conditioning frames than this limit,
|
37 |
+
# we only cross-attend to the temporally closest `max_cond_frames_in_attn` conditioning frames in the encoder when tracking each frame). This gives the model
|
38 |
+
# a temporal locality when handling a large number of annotated frames (since closer frames should be more important) and also avoids GPU OOM.
|
39 |
+
max_cond_frames_in_attn=-1,
|
40 |
+
# on the first frame, whether to directly add the no-memory embedding to the image feature
|
41 |
+
# (instead of using the transformer encoder)
|
42 |
+
directly_add_no_mem_embed=False,
|
43 |
+
# whether to use high-resolution feature maps in the SAM mask decoder
|
44 |
+
use_high_res_features_in_sam=False,
|
45 |
+
# whether to output multiple (3) masks for the first click on initial conditioning frames
|
46 |
+
multimask_output_in_sam=False,
|
47 |
+
# the minimum and maximum number of clicks to use multimask_output_in_sam (only relevant when `multimask_output_in_sam=True`;
|
48 |
+
# default is 1 for both, meaning that only the first click gives multimask output; also note that a box counts as two points)
|
49 |
+
multimask_min_pt_num=1,
|
50 |
+
multimask_max_pt_num=1,
|
51 |
+
# whether to also use multimask output for tracking (not just for the first click on initial conditioning frames; only relevant when `multimask_output_in_sam=True`)
|
52 |
+
multimask_output_for_tracking=False,
|
53 |
+
# Whether to use multimask tokens for obj ptr; Only relevant when both
|
54 |
+
# use_obj_ptrs_in_encoder=True and multimask_output_for_tracking=True
|
55 |
+
use_multimask_token_for_obj_ptr: bool = False,
|
56 |
+
# whether to use sigmoid to restrict ious prediction to [0-1]
|
57 |
+
iou_prediction_use_sigmoid=False,
|
58 |
+
# The memory bank's temporal stride during evaluation (i.e. the `r` parameter in XMem and Cutie; XMem and Cutie use r=5).
|
59 |
+
# For r>1, the (self.num_maskmem - 1) non-conditioning memory frames consist of
|
60 |
+
# (self.num_maskmem - 2) nearest frames from every r-th frames, plus the last frame.
|
61 |
+
memory_temporal_stride_for_eval=1,
|
62 |
+
# whether to apply non-overlapping constraints on the object masks in the memory encoder during evaluation (to avoid/alleviate superposing masks)
|
63 |
+
non_overlap_masks_for_mem_enc=False,
|
64 |
+
# whether to cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
65 |
+
use_obj_ptrs_in_encoder=False,
|
66 |
+
# the maximum number of object pointers from other frames in encoder cross attention (only relevant when `use_obj_ptrs_in_encoder=True`)
|
67 |
+
max_obj_ptrs_in_encoder=16,
|
68 |
+
# whether to add temporal positional encoding to the object pointers in the encoder (only relevant when `use_obj_ptrs_in_encoder=True`)
|
69 |
+
add_tpos_enc_to_obj_ptrs=True,
|
70 |
+
# whether to add an extra linear projection layer for the temporal positional encoding in the object pointers to avoid potential interference
|
71 |
+
# with spatial positional encoding (only relevant when both `use_obj_ptrs_in_encoder=True` and `add_tpos_enc_to_obj_ptrs=True`)
|
72 |
+
proj_tpos_enc_in_obj_ptrs=False,
|
73 |
+
# whether to use signed distance (instead of unsigned absolute distance) in the temporal positional encoding in the object pointers
|
74 |
+
# (only relevant when both `use_obj_ptrs_in_encoder=True` and `add_tpos_enc_to_obj_ptrs=True`)
|
75 |
+
use_signed_tpos_enc_to_obj_ptrs=False,
|
76 |
+
# whether to only attend to object pointers in the past (before the current frame) in the encoder during evaluation
|
77 |
+
# (only relevant when `use_obj_ptrs_in_encoder=True`; this might avoid pointer information too far in the future to distract the initial tracking)
|
78 |
+
only_obj_ptrs_in_the_past_for_eval=False,
|
79 |
+
# Whether to predict if there is an object in the frame
|
80 |
+
pred_obj_scores: bool = False,
|
81 |
+
# Whether to use an MLP to predict object scores
|
82 |
+
pred_obj_scores_mlp: bool = False,
|
83 |
+
# Only relevant if pred_obj_scores=True and use_obj_ptrs_in_encoder=True;
|
84 |
+
# Whether to have a fixed no obj pointer when there is no object present
|
85 |
+
# or to use it as an additive embedding with obj_ptr produced by decoder
|
86 |
+
fixed_no_obj_ptr: bool = False,
|
87 |
+
# Soft no object, i.e. mix in no_obj_ptr softly,
|
88 |
+
# hope to make recovery easier if there is a mistake and mitigate accumulation of errors
|
89 |
+
soft_no_obj_ptr: bool = False,
|
90 |
+
use_mlp_for_obj_ptr_proj: bool = False,
|
91 |
+
# add no obj embedding to spatial frames
|
92 |
+
no_obj_embed_spatial: bool = False,
|
93 |
+
# extra arguments used to construct the SAM mask decoder; if not None, it should be a dict of kwargs to be passed into `MaskDecoder` class.
|
94 |
+
sam_mask_decoder_extra_args=None,
|
95 |
+
compile_image_encoder: bool = False,
|
96 |
+
):
|
97 |
+
super().__init__()
|
98 |
+
|
99 |
+
# Part 1: the image backbone
|
100 |
+
self.image_encoder = image_encoder
|
101 |
+
# Use level 0, 1, 2 for high-res setting, or just level 2 for the default setting
|
102 |
+
self.use_high_res_features_in_sam = use_high_res_features_in_sam
|
103 |
+
self.num_feature_levels = 3 if use_high_res_features_in_sam else 1
|
104 |
+
self.use_obj_ptrs_in_encoder = use_obj_ptrs_in_encoder
|
105 |
+
self.max_obj_ptrs_in_encoder = max_obj_ptrs_in_encoder
|
106 |
+
if use_obj_ptrs_in_encoder:
|
107 |
+
# A conv layer to downsample the mask prompt to stride 4 (the same stride as
|
108 |
+
# low-res SAM mask logits) and to change its scales from 0~1 to SAM logit scale,
|
109 |
+
# so that it can be fed into the SAM mask decoder to generate a pointer.
|
110 |
+
self.mask_downsample = torch.nn.Conv2d(1, 1, kernel_size=4, stride=4)
|
111 |
+
self.add_tpos_enc_to_obj_ptrs = add_tpos_enc_to_obj_ptrs
|
112 |
+
if proj_tpos_enc_in_obj_ptrs:
|
113 |
+
assert add_tpos_enc_to_obj_ptrs # these options need to be used together
|
114 |
+
self.proj_tpos_enc_in_obj_ptrs = proj_tpos_enc_in_obj_ptrs
|
115 |
+
self.use_signed_tpos_enc_to_obj_ptrs = use_signed_tpos_enc_to_obj_ptrs
|
116 |
+
self.only_obj_ptrs_in_the_past_for_eval = only_obj_ptrs_in_the_past_for_eval
|
117 |
+
|
118 |
+
# Part 2: memory attention to condition current frame's visual features
|
119 |
+
# with memories (and obj ptrs) from past frames
|
120 |
+
self.memory_attention = memory_attention
|
121 |
+
self.hidden_dim = image_encoder.neck.d_model
|
122 |
+
|
123 |
+
# Part 3: memory encoder for the previous frame's outputs
|
124 |
+
self.memory_encoder = memory_encoder
|
125 |
+
self.mem_dim = self.hidden_dim
|
126 |
+
if hasattr(self.memory_encoder, "out_proj") and hasattr(
|
127 |
+
self.memory_encoder.out_proj, "weight"
|
128 |
+
):
|
129 |
+
# if there is compression of memories along channel dim
|
130 |
+
self.mem_dim = self.memory_encoder.out_proj.weight.shape[0]
|
131 |
+
self.num_maskmem = num_maskmem # Number of memories accessible
|
132 |
+
# Temporal encoding of the memories
|
133 |
+
self.maskmem_tpos_enc = torch.nn.Parameter(
|
134 |
+
torch.zeros(num_maskmem, 1, 1, self.mem_dim)
|
135 |
+
)
|
136 |
+
trunc_normal_(self.maskmem_tpos_enc, std=0.02)
|
137 |
+
# a single token to indicate no memory embedding from previous frames
|
138 |
+
self.no_mem_embed = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
|
139 |
+
self.no_mem_pos_enc = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
|
140 |
+
trunc_normal_(self.no_mem_embed, std=0.02)
|
141 |
+
trunc_normal_(self.no_mem_pos_enc, std=0.02)
|
142 |
+
self.directly_add_no_mem_embed = directly_add_no_mem_embed
|
143 |
+
# Apply sigmoid to the output raw mask logits (to turn them from
|
144 |
+
# range (-inf, +inf) to range (0, 1)) before feeding them into the memory encoder
|
145 |
+
self.sigmoid_scale_for_mem_enc = sigmoid_scale_for_mem_enc
|
146 |
+
self.sigmoid_bias_for_mem_enc = sigmoid_bias_for_mem_enc
|
147 |
+
self.binarize_mask_from_pts_for_mem_enc = binarize_mask_from_pts_for_mem_enc
|
148 |
+
self.non_overlap_masks_for_mem_enc = non_overlap_masks_for_mem_enc
|
149 |
+
self.memory_temporal_stride_for_eval = memory_temporal_stride_for_eval
|
150 |
+
# On frames with mask input, whether to directly output the input mask without
|
151 |
+
# using a SAM prompt encoder + mask decoder
|
152 |
+
self.use_mask_input_as_output_without_sam = use_mask_input_as_output_without_sam
|
153 |
+
self.multimask_output_in_sam = multimask_output_in_sam
|
154 |
+
self.multimask_min_pt_num = multimask_min_pt_num
|
155 |
+
self.multimask_max_pt_num = multimask_max_pt_num
|
156 |
+
self.multimask_output_for_tracking = multimask_output_for_tracking
|
157 |
+
self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
|
158 |
+
self.iou_prediction_use_sigmoid = iou_prediction_use_sigmoid
|
159 |
+
|
160 |
+
# Part 4: SAM-style prompt encoder (for both mask and point inputs)
|
161 |
+
# and SAM-style mask decoder for the final mask output
|
162 |
+
self.image_size = image_size
|
163 |
+
self.backbone_stride = backbone_stride
|
164 |
+
self.sam_mask_decoder_extra_args = sam_mask_decoder_extra_args
|
165 |
+
self.pred_obj_scores = pred_obj_scores
|
166 |
+
self.pred_obj_scores_mlp = pred_obj_scores_mlp
|
167 |
+
self.fixed_no_obj_ptr = fixed_no_obj_ptr
|
168 |
+
self.soft_no_obj_ptr = soft_no_obj_ptr
|
169 |
+
if self.fixed_no_obj_ptr:
|
170 |
+
assert self.pred_obj_scores
|
171 |
+
assert self.use_obj_ptrs_in_encoder
|
172 |
+
if self.pred_obj_scores and self.use_obj_ptrs_in_encoder:
|
173 |
+
self.no_obj_ptr = torch.nn.Parameter(torch.zeros(1, self.hidden_dim))
|
174 |
+
trunc_normal_(self.no_obj_ptr, std=0.02)
|
175 |
+
self.use_mlp_for_obj_ptr_proj = use_mlp_for_obj_ptr_proj
|
176 |
+
self.no_obj_embed_spatial = None
|
177 |
+
if no_obj_embed_spatial:
|
178 |
+
self.no_obj_embed_spatial = torch.nn.Parameter(torch.zeros(1, self.mem_dim))
|
179 |
+
trunc_normal_(self.no_obj_embed_spatial, std=0.02)
|
180 |
+
|
181 |
+
self._build_sam_heads()
|
182 |
+
self.max_cond_frames_in_attn = max_cond_frames_in_attn
|
183 |
+
|
184 |
+
# Model compilation
|
185 |
+
if compile_image_encoder:
|
186 |
+
# Compile the forward function (not the full module) to allow loading checkpoints.
|
187 |
+
print(
|
188 |
+
"Image encoder compilation is enabled. First forward pass will be slow."
|
189 |
+
)
|
190 |
+
self.image_encoder.forward = torch.compile(
|
191 |
+
self.image_encoder.forward,
|
192 |
+
mode="max-autotune",
|
193 |
+
fullgraph=True,
|
194 |
+
dynamic=False,
|
195 |
+
)
|
196 |
+
|
197 |
+
@property
|
198 |
+
def device(self):
|
199 |
+
return next(self.parameters()).device
|
200 |
+
|
201 |
+
def forward(self, *args, **kwargs):
|
202 |
+
raise NotImplementedError(
|
203 |
+
"Please use the corresponding methods in SAM2VideoPredictor for inference or SAM2Train for training/fine-tuning"
|
204 |
+
"See notebooks/video_predictor_example.ipynb for an inference example."
|
205 |
+
)
|
206 |
+
|
207 |
+
def _build_sam_heads(self):
|
208 |
+
"""Build SAM-style prompt encoder and mask decoder."""
|
209 |
+
self.sam_prompt_embed_dim = self.hidden_dim
|
210 |
+
self.sam_image_embedding_size = self.image_size // self.backbone_stride
|
211 |
+
|
212 |
+
# build PromptEncoder and MaskDecoder from SAM
|
213 |
+
# (their hyperparameters like `mask_in_chans=16` are from SAM code)
|
214 |
+
self.sam_prompt_encoder = PromptEncoder(
|
215 |
+
embed_dim=self.sam_prompt_embed_dim,
|
216 |
+
image_embedding_size=(
|
217 |
+
self.sam_image_embedding_size,
|
218 |
+
self.sam_image_embedding_size,
|
219 |
+
),
|
220 |
+
input_image_size=(self.image_size, self.image_size),
|
221 |
+
mask_in_chans=16,
|
222 |
+
)
|
223 |
+
self.sam_mask_decoder = MaskDecoder(
|
224 |
+
num_multimask_outputs=3,
|
225 |
+
transformer=TwoWayTransformer(
|
226 |
+
depth=2,
|
227 |
+
embedding_dim=self.sam_prompt_embed_dim,
|
228 |
+
mlp_dim=2048,
|
229 |
+
num_heads=8,
|
230 |
+
),
|
231 |
+
transformer_dim=self.sam_prompt_embed_dim,
|
232 |
+
iou_head_depth=3,
|
233 |
+
iou_head_hidden_dim=256,
|
234 |
+
use_high_res_features=self.use_high_res_features_in_sam,
|
235 |
+
iou_prediction_use_sigmoid=self.iou_prediction_use_sigmoid,
|
236 |
+
pred_obj_scores=self.pred_obj_scores,
|
237 |
+
pred_obj_scores_mlp=self.pred_obj_scores_mlp,
|
238 |
+
use_multimask_token_for_obj_ptr=self.use_multimask_token_for_obj_ptr,
|
239 |
+
**(self.sam_mask_decoder_extra_args or {}),
|
240 |
+
)
|
241 |
+
if self.use_obj_ptrs_in_encoder:
|
242 |
+
# a linear projection on SAM output tokens to turn them into object pointers
|
243 |
+
self.obj_ptr_proj = torch.nn.Linear(self.hidden_dim, self.hidden_dim)
|
244 |
+
if self.use_mlp_for_obj_ptr_proj:
|
245 |
+
self.obj_ptr_proj = MLP(
|
246 |
+
self.hidden_dim, self.hidden_dim, self.hidden_dim, 3
|
247 |
+
)
|
248 |
+
else:
|
249 |
+
self.obj_ptr_proj = torch.nn.Identity()
|
250 |
+
if self.proj_tpos_enc_in_obj_ptrs:
|
251 |
+
# a linear projection on temporal positional encoding in object pointers to
|
252 |
+
# avoid potential interference with spatial positional encoding
|
253 |
+
self.obj_ptr_tpos_proj = torch.nn.Linear(self.hidden_dim, self.mem_dim)
|
254 |
+
else:
|
255 |
+
self.obj_ptr_tpos_proj = torch.nn.Identity()
|
256 |
+
|
257 |
+
def _forward_sam_heads(
|
258 |
+
self,
|
259 |
+
backbone_features,
|
260 |
+
point_inputs=None,
|
261 |
+
mask_inputs=None,
|
262 |
+
high_res_features=None,
|
263 |
+
multimask_output=False,
|
264 |
+
):
|
265 |
+
"""
|
266 |
+
Forward SAM prompt encoders and mask heads.
|
267 |
+
|
268 |
+
Inputs:
|
269 |
+
- backbone_features: image features of [B, C, H, W] shape
|
270 |
+
- point_inputs: a dictionary with "point_coords" and "point_labels", where
|
271 |
+
1) "point_coords" has [B, P, 2] shape and float32 dtype and contains the
|
272 |
+
absolute pixel-unit coordinate in (x, y) format of the P input points
|
273 |
+
2) "point_labels" has shape [B, P] and int32 dtype, where 1 means
|
274 |
+
positive clicks, 0 means negative clicks, and -1 means padding
|
275 |
+
- mask_inputs: a mask of [B, 1, H*16, W*16] shape, float or bool, with the
|
276 |
+
same spatial size as the image.
|
277 |
+
- high_res_features: either 1) None or 2) or a list of length 2 containing
|
278 |
+
two feature maps of [B, C, 4*H, 4*W] and [B, C, 2*H, 2*W] shapes respectively,
|
279 |
+
which will be used as high-resolution feature maps for SAM decoder.
|
280 |
+
- multimask_output: if it's True, we output 3 candidate masks and their 3
|
281 |
+
corresponding IoU estimates, and if it's False, we output only 1 mask and
|
282 |
+
its corresponding IoU estimate.
|
283 |
+
|
284 |
+
Outputs:
|
285 |
+
- low_res_multimasks: [B, M, H*4, W*4] shape (where M = 3 if
|
286 |
+
`multimask_output=True` and M = 1 if `multimask_output=False`), the SAM
|
287 |
+
output mask logits (before sigmoid) for the low-resolution masks, with 4x
|
288 |
+
the resolution (1/4 stride) of the input backbone_features.
|
289 |
+
- high_res_multimasks: [B, M, H*16, W*16] shape (where M = 3
|
290 |
+
if `multimask_output=True` and M = 1 if `multimask_output=False`),
|
291 |
+
upsampled from the low-resolution masks, with shape size as the image
|
292 |
+
(stride is 1 pixel).
|
293 |
+
- ious, [B, M] shape, where (where M = 3 if `multimask_output=True` and M = 1
|
294 |
+
if `multimask_output=False`), the estimated IoU of each output mask.
|
295 |
+
- low_res_masks: [B, 1, H*4, W*4] shape, the best mask in `low_res_multimasks`.
|
296 |
+
If `multimask_output=True`, it's the mask with the highest IoU estimate.
|
297 |
+
If `multimask_output=False`, it's the same as `low_res_multimasks`.
|
298 |
+
- high_res_masks: [B, 1, H*16, W*16] shape, the best mask in `high_res_multimasks`.
|
299 |
+
If `multimask_output=True`, it's the mask with the highest IoU estimate.
|
300 |
+
If `multimask_output=False`, it's the same as `high_res_multimasks`.
|
301 |
+
- obj_ptr: [B, C] shape, the object pointer vector for the output mask, extracted
|
302 |
+
based on the output token from the SAM mask decoder.
|
303 |
+
"""
|
304 |
+
B = backbone_features.size(0)
|
305 |
+
device = backbone_features.device
|
306 |
+
assert backbone_features.size(1) == self.sam_prompt_embed_dim
|
307 |
+
assert backbone_features.size(2) == self.sam_image_embedding_size
|
308 |
+
assert backbone_features.size(3) == self.sam_image_embedding_size
|
309 |
+
|
310 |
+
# a) Handle point prompts
|
311 |
+
if point_inputs is not None:
|
312 |
+
sam_point_coords = point_inputs["point_coords"]
|
313 |
+
sam_point_labels = point_inputs["point_labels"]
|
314 |
+
assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B
|
315 |
+
else:
|
316 |
+
# If no points are provide, pad with an empty point (with label -1)
|
317 |
+
sam_point_coords = torch.zeros(B, 1, 2, device=device)
|
318 |
+
sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device)
|
319 |
+
|
320 |
+
# b) Handle mask prompts
|
321 |
+
if mask_inputs is not None:
|
322 |
+
# If mask_inputs is provided, downsize it into low-res mask input if needed
|
323 |
+
# and feed it as a dense mask prompt into the SAM mask encoder
|
324 |
+
assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1)
|
325 |
+
if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size:
|
326 |
+
sam_mask_prompt = F.interpolate(
|
327 |
+
mask_inputs.float(),
|
328 |
+
size=self.sam_prompt_encoder.mask_input_size,
|
329 |
+
align_corners=False,
|
330 |
+
mode="bilinear",
|
331 |
+
antialias=True, # use antialias for downsampling
|
332 |
+
)
|
333 |
+
else:
|
334 |
+
sam_mask_prompt = mask_inputs
|
335 |
+
else:
|
336 |
+
# Otherwise, simply feed None (and SAM's prompt encoder will add
|
337 |
+
# a learned `no_mask_embed` to indicate no mask input in this case).
|
338 |
+
sam_mask_prompt = None
|
339 |
+
|
340 |
+
sparse_embeddings, dense_embeddings = self.sam_prompt_encoder(
|
341 |
+
points=(sam_point_coords, sam_point_labels),
|
342 |
+
boxes=None,
|
343 |
+
masks=sam_mask_prompt,
|
344 |
+
)
|
345 |
+
(
|
346 |
+
low_res_multimasks,
|
347 |
+
ious,
|
348 |
+
sam_output_tokens,
|
349 |
+
object_score_logits,
|
350 |
+
) = self.sam_mask_decoder(
|
351 |
+
image_embeddings=backbone_features,
|
352 |
+
image_pe=self.sam_prompt_encoder.get_dense_pe(),
|
353 |
+
sparse_prompt_embeddings=sparse_embeddings,
|
354 |
+
dense_prompt_embeddings=dense_embeddings,
|
355 |
+
multimask_output=multimask_output,
|
356 |
+
repeat_image=False, # the image is already batched
|
357 |
+
high_res_features=high_res_features,
|
358 |
+
)
|
359 |
+
if self.pred_obj_scores:
|
360 |
+
is_obj_appearing = object_score_logits > 0
|
361 |
+
|
362 |
+
# Mask used for spatial memories is always a *hard* choice between obj and no obj,
|
363 |
+
# consistent with the actual mask prediction
|
364 |
+
low_res_multimasks = torch.where(
|
365 |
+
is_obj_appearing[:, None, None],
|
366 |
+
low_res_multimasks,
|
367 |
+
NO_OBJ_SCORE,
|
368 |
+
)
|
369 |
+
|
370 |
+
# convert masks from possibly bfloat16 (or float16) to float32
|
371 |
+
# (older PyTorch versions before 2.1 don't support `interpolate` on bf16)
|
372 |
+
low_res_multimasks = low_res_multimasks.float()
|
373 |
+
high_res_multimasks = F.interpolate(
|
374 |
+
low_res_multimasks,
|
375 |
+
size=(self.image_size, self.image_size),
|
376 |
+
mode="bilinear",
|
377 |
+
align_corners=False,
|
378 |
+
)
|
379 |
+
|
380 |
+
sam_output_token = sam_output_tokens[:, 0]
|
381 |
+
if multimask_output:
|
382 |
+
# take the best mask prediction (with the highest IoU estimation)
|
383 |
+
best_iou_inds = torch.argmax(ious, dim=-1)
|
384 |
+
batch_inds = torch.arange(B, device=device)
|
385 |
+
low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
|
386 |
+
high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
|
387 |
+
if sam_output_tokens.size(1) > 1:
|
388 |
+
sam_output_token = sam_output_tokens[batch_inds, best_iou_inds]
|
389 |
+
else:
|
390 |
+
low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks
|
391 |
+
|
392 |
+
# Extract object pointer from the SAM output token (with occlusion handling)
|
393 |
+
obj_ptr = self.obj_ptr_proj(sam_output_token)
|
394 |
+
if self.pred_obj_scores:
|
395 |
+
# Allow *soft* no obj ptr, unlike for masks
|
396 |
+
if self.soft_no_obj_ptr:
|
397 |
+
lambda_is_obj_appearing = object_score_logits.sigmoid()
|
398 |
+
else:
|
399 |
+
lambda_is_obj_appearing = is_obj_appearing.float()
|
400 |
+
|
401 |
+
if self.fixed_no_obj_ptr:
|
402 |
+
obj_ptr = lambda_is_obj_appearing * obj_ptr
|
403 |
+
obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
|
404 |
+
|
405 |
+
return (
|
406 |
+
low_res_multimasks,
|
407 |
+
high_res_multimasks,
|
408 |
+
ious,
|
409 |
+
low_res_masks,
|
410 |
+
high_res_masks,
|
411 |
+
obj_ptr,
|
412 |
+
object_score_logits,
|
413 |
+
)
|
414 |
+
|
415 |
+
def _use_mask_as_output(self, backbone_features, high_res_features, mask_inputs):
|
416 |
+
"""
|
417 |
+
Directly turn binary `mask_inputs` into a output mask logits without using SAM.
|
418 |
+
(same input and output shapes as in _forward_sam_heads above).
|
419 |
+
"""
|
420 |
+
# Use -10/+10 as logits for neg/pos pixels (very close to 0/1 in prob after sigmoid).
|
421 |
+
out_scale, out_bias = 20.0, -10.0 # sigmoid(-10.0)=4.5398e-05
|
422 |
+
mask_inputs_float = mask_inputs.float()
|
423 |
+
high_res_masks = mask_inputs_float * out_scale + out_bias
|
424 |
+
low_res_masks = F.interpolate(
|
425 |
+
high_res_masks,
|
426 |
+
size=(high_res_masks.size(-2) // 4, high_res_masks.size(-1) // 4),
|
427 |
+
align_corners=False,
|
428 |
+
mode="bilinear",
|
429 |
+
antialias=True, # use antialias for downsampling
|
430 |
+
)
|
431 |
+
# a dummy IoU prediction of all 1's under mask input
|
432 |
+
ious = mask_inputs.new_ones(mask_inputs.size(0), 1).float()
|
433 |
+
if not self.use_obj_ptrs_in_encoder:
|
434 |
+
# all zeros as a dummy object pointer (of shape [B, C])
|
435 |
+
obj_ptr = torch.zeros(
|
436 |
+
mask_inputs.size(0), self.hidden_dim, device=mask_inputs.device
|
437 |
+
)
|
438 |
+
else:
|
439 |
+
# produce an object pointer using the SAM decoder from the mask input
|
440 |
+
_, _, _, _, _, obj_ptr, _ = self._forward_sam_heads(
|
441 |
+
backbone_features=backbone_features,
|
442 |
+
mask_inputs=self.mask_downsample(mask_inputs_float),
|
443 |
+
high_res_features=high_res_features,
|
444 |
+
)
|
445 |
+
# In this method, we are treating mask_input as output, e.g. using it directly to create spatial mem;
|
446 |
+
# Below, we follow the same design axiom to use mask_input to decide if obj appears or not instead of relying
|
447 |
+
# on the object_scores from the SAM decoder.
|
448 |
+
is_obj_appearing = torch.any(mask_inputs.flatten(1).float() > 0.0, dim=1)
|
449 |
+
is_obj_appearing = is_obj_appearing[..., None]
|
450 |
+
lambda_is_obj_appearing = is_obj_appearing.float()
|
451 |
+
object_score_logits = out_scale * lambda_is_obj_appearing + out_bias
|
452 |
+
if self.pred_obj_scores:
|
453 |
+
if self.fixed_no_obj_ptr:
|
454 |
+
obj_ptr = lambda_is_obj_appearing * obj_ptr
|
455 |
+
obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
|
456 |
+
|
457 |
+
return (
|
458 |
+
low_res_masks,
|
459 |
+
high_res_masks,
|
460 |
+
ious,
|
461 |
+
low_res_masks,
|
462 |
+
high_res_masks,
|
463 |
+
obj_ptr,
|
464 |
+
object_score_logits,
|
465 |
+
)
|
466 |
+
|
467 |
+
def forward_image(self, img_batch: torch.Tensor):
|
468 |
+
"""Get the image feature on the input batch."""
|
469 |
+
backbone_out = self.image_encoder(img_batch)
|
470 |
+
if self.use_high_res_features_in_sam:
|
471 |
+
# precompute projected level 0 and level 1 features in SAM decoder
|
472 |
+
# to avoid running it again on every SAM click
|
473 |
+
backbone_out["backbone_fpn"][0] = self.sam_mask_decoder.conv_s0(
|
474 |
+
backbone_out["backbone_fpn"][0]
|
475 |
+
)
|
476 |
+
backbone_out["backbone_fpn"][1] = self.sam_mask_decoder.conv_s1(
|
477 |
+
backbone_out["backbone_fpn"][1]
|
478 |
+
)
|
479 |
+
return backbone_out
|
480 |
+
|
481 |
+
def _prepare_backbone_features(self, backbone_out):
|
482 |
+
"""Prepare and flatten visual features."""
|
483 |
+
backbone_out = backbone_out.copy()
|
484 |
+
assert len(backbone_out["backbone_fpn"]) == len(backbone_out["vision_pos_enc"])
|
485 |
+
assert len(backbone_out["backbone_fpn"]) >= self.num_feature_levels
|
486 |
+
|
487 |
+
feature_maps = backbone_out["backbone_fpn"][-self.num_feature_levels :]
|
488 |
+
vision_pos_embeds = backbone_out["vision_pos_enc"][-self.num_feature_levels :]
|
489 |
+
|
490 |
+
feat_sizes = [(x.shape[-2], x.shape[-1]) for x in vision_pos_embeds]
|
491 |
+
# flatten NxCxHxW to HWxNxC
|
492 |
+
vision_feats = [x.flatten(2).permute(2, 0, 1) for x in feature_maps]
|
493 |
+
vision_pos_embeds = [x.flatten(2).permute(2, 0, 1) for x in vision_pos_embeds]
|
494 |
+
|
495 |
+
return backbone_out, vision_feats, vision_pos_embeds, feat_sizes
|
496 |
+
|
497 |
+
def _prepare_memory_conditioned_features(
|
498 |
+
self,
|
499 |
+
frame_idx,
|
500 |
+
is_init_cond_frame,
|
501 |
+
current_vision_feats,
|
502 |
+
current_vision_pos_embeds,
|
503 |
+
feat_sizes,
|
504 |
+
output_dict,
|
505 |
+
num_frames,
|
506 |
+
track_in_reverse=False, # tracking in reverse time order (for demo usage)
|
507 |
+
):
|
508 |
+
"""Fuse the current frame's visual feature map with previous memory."""
|
509 |
+
B = current_vision_feats[-1].size(1) # batch size on this frame
|
510 |
+
C = self.hidden_dim
|
511 |
+
H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size
|
512 |
+
device = current_vision_feats[-1].device
|
513 |
+
# The case of `self.num_maskmem == 0` below is primarily used for reproducing SAM on images.
|
514 |
+
# In this case, we skip the fusion with any memory.
|
515 |
+
if self.num_maskmem == 0: # Disable memory and skip fusion
|
516 |
+
pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
|
517 |
+
return pix_feat
|
518 |
+
|
519 |
+
num_obj_ptr_tokens = 0
|
520 |
+
tpos_sign_mul = -1 if track_in_reverse else 1
|
521 |
+
# Step 1: condition the visual features of the current frame on previous memories
|
522 |
+
if not is_init_cond_frame:
|
523 |
+
# Retrieve the memories encoded with the maskmem backbone
|
524 |
+
to_cat_memory, to_cat_memory_pos_embed = [], []
|
525 |
+
# Add conditioning frames's output first (all cond frames have t_pos=0 for
|
526 |
+
# when getting temporal positional embedding below)
|
527 |
+
assert len(output_dict["cond_frame_outputs"]) > 0
|
528 |
+
# Select a maximum number of temporally closest cond frames for cross attention
|
529 |
+
cond_outputs = output_dict["cond_frame_outputs"]
|
530 |
+
selected_cond_outputs, unselected_cond_outputs = select_closest_cond_frames(
|
531 |
+
frame_idx, cond_outputs, self.max_cond_frames_in_attn
|
532 |
+
)
|
533 |
+
t_pos_and_prevs = [(0, out) for out in selected_cond_outputs.values()]
|
534 |
+
# Add last (self.num_maskmem - 1) frames before current frame for non-conditioning memory
|
535 |
+
# the earliest one has t_pos=1 and the latest one has t_pos=self.num_maskmem-1
|
536 |
+
# We also allow taking the memory frame non-consecutively (with stride>1), in which case
|
537 |
+
# we take (self.num_maskmem - 2) frames among every stride-th frames plus the last frame.
|
538 |
+
stride = 1 if self.training else self.memory_temporal_stride_for_eval
|
539 |
+
for t_pos in range(1, self.num_maskmem):
|
540 |
+
t_rel = self.num_maskmem - t_pos # how many frames before current frame
|
541 |
+
if t_rel == 1:
|
542 |
+
# for t_rel == 1, we take the last frame (regardless of r)
|
543 |
+
if not track_in_reverse:
|
544 |
+
# the frame immediately before this frame (i.e. frame_idx - 1)
|
545 |
+
prev_frame_idx = frame_idx - t_rel
|
546 |
+
else:
|
547 |
+
# the frame immediately after this frame (i.e. frame_idx + 1)
|
548 |
+
prev_frame_idx = frame_idx + t_rel
|
549 |
+
else:
|
550 |
+
# for t_rel >= 2, we take the memory frame from every r-th frames
|
551 |
+
if not track_in_reverse:
|
552 |
+
# first find the nearest frame among every r-th frames before this frame
|
553 |
+
# for r=1, this would be (frame_idx - 2)
|
554 |
+
prev_frame_idx = ((frame_idx - 2) // stride) * stride
|
555 |
+
# then seek further among every r-th frames
|
556 |
+
prev_frame_idx = prev_frame_idx - (t_rel - 2) * stride
|
557 |
+
else:
|
558 |
+
# first find the nearest frame among every r-th frames after this frame
|
559 |
+
# for r=1, this would be (frame_idx + 2)
|
560 |
+
prev_frame_idx = -(-(frame_idx + 2) // stride) * stride
|
561 |
+
# then seek further among every r-th frames
|
562 |
+
prev_frame_idx = prev_frame_idx + (t_rel - 2) * stride
|
563 |
+
out = output_dict["non_cond_frame_outputs"].get(prev_frame_idx, None)
|
564 |
+
if out is None:
|
565 |
+
# If an unselected conditioning frame is among the last (self.num_maskmem - 1)
|
566 |
+
# frames, we still attend to it as if it's a non-conditioning frame.
|
567 |
+
out = unselected_cond_outputs.get(prev_frame_idx, None)
|
568 |
+
t_pos_and_prevs.append((t_pos, out))
|
569 |
+
|
570 |
+
for t_pos, prev in t_pos_and_prevs:
|
571 |
+
if prev is None:
|
572 |
+
continue # skip padding frames
|
573 |
+
# "maskmem_features" might have been offloaded to CPU in demo use cases,
|
574 |
+
# so we load it back to GPU (it's a no-op if it's already on GPU).
|
575 |
+
feats = prev["maskmem_features"].to(device, non_blocking=True)
|
576 |
+
to_cat_memory.append(feats.flatten(2).permute(2, 0, 1))
|
577 |
+
# Spatial positional encoding (it might have been offloaded to CPU in eval)
|
578 |
+
maskmem_enc = prev["maskmem_pos_enc"][-1].to(device)
|
579 |
+
maskmem_enc = maskmem_enc.flatten(2).permute(2, 0, 1)
|
580 |
+
# Temporal positional encoding
|
581 |
+
maskmem_enc = (
|
582 |
+
maskmem_enc + self.maskmem_tpos_enc[self.num_maskmem - t_pos - 1]
|
583 |
+
)
|
584 |
+
to_cat_memory_pos_embed.append(maskmem_enc)
|
585 |
+
|
586 |
+
# Construct the list of past object pointers
|
587 |
+
if self.use_obj_ptrs_in_encoder:
|
588 |
+
max_obj_ptrs_in_encoder = min(num_frames, self.max_obj_ptrs_in_encoder)
|
589 |
+
# First add those object pointers from selected conditioning frames
|
590 |
+
# (optionally, only include object pointers in the past during evaluation)
|
591 |
+
if not self.training and self.only_obj_ptrs_in_the_past_for_eval:
|
592 |
+
ptr_cond_outputs = {
|
593 |
+
t: out
|
594 |
+
for t, out in selected_cond_outputs.items()
|
595 |
+
if (t >= frame_idx if track_in_reverse else t <= frame_idx)
|
596 |
+
}
|
597 |
+
else:
|
598 |
+
ptr_cond_outputs = selected_cond_outputs
|
599 |
+
pos_and_ptrs = [
|
600 |
+
# Temporal pos encoding contains how far away each pointer is from current frame
|
601 |
+
(
|
602 |
+
(
|
603 |
+
(frame_idx - t) * tpos_sign_mul
|
604 |
+
if self.use_signed_tpos_enc_to_obj_ptrs
|
605 |
+
else abs(frame_idx - t)
|
606 |
+
),
|
607 |
+
out["obj_ptr"],
|
608 |
+
)
|
609 |
+
for t, out in ptr_cond_outputs.items()
|
610 |
+
]
|
611 |
+
# Add up to (max_obj_ptrs_in_encoder - 1) non-conditioning frames before current frame
|
612 |
+
for t_diff in range(1, max_obj_ptrs_in_encoder):
|
613 |
+
t = frame_idx + t_diff if track_in_reverse else frame_idx - t_diff
|
614 |
+
if t < 0 or (num_frames is not None and t >= num_frames):
|
615 |
+
break
|
616 |
+
out = output_dict["non_cond_frame_outputs"].get(
|
617 |
+
t, unselected_cond_outputs.get(t, None)
|
618 |
+
)
|
619 |
+
if out is not None:
|
620 |
+
pos_and_ptrs.append((t_diff, out["obj_ptr"]))
|
621 |
+
# If we have at least one object pointer, add them to the across attention
|
622 |
+
if len(pos_and_ptrs) > 0:
|
623 |
+
pos_list, ptrs_list = zip(*pos_and_ptrs)
|
624 |
+
# stack object pointers along dim=0 into [ptr_seq_len, B, C] shape
|
625 |
+
obj_ptrs = torch.stack(ptrs_list, dim=0)
|
626 |
+
# a temporal positional embedding based on how far each object pointer is from
|
627 |
+
# the current frame (sine embedding normalized by the max pointer num).
|
628 |
+
if self.add_tpos_enc_to_obj_ptrs:
|
629 |
+
t_diff_max = max_obj_ptrs_in_encoder - 1
|
630 |
+
tpos_dim = C if self.proj_tpos_enc_in_obj_ptrs else self.mem_dim
|
631 |
+
obj_pos = torch.tensor(pos_list).to(
|
632 |
+
device=device, non_blocking=True
|
633 |
+
)
|
634 |
+
obj_pos = get_1d_sine_pe(obj_pos / t_diff_max, dim=tpos_dim)
|
635 |
+
obj_pos = self.obj_ptr_tpos_proj(obj_pos)
|
636 |
+
obj_pos = obj_pos.unsqueeze(1).expand(-1, B, self.mem_dim)
|
637 |
+
else:
|
638 |
+
obj_pos = obj_ptrs.new_zeros(len(pos_list), B, self.mem_dim)
|
639 |
+
if self.mem_dim < C:
|
640 |
+
# split a pointer into (C // self.mem_dim) tokens for self.mem_dim < C
|
641 |
+
obj_ptrs = obj_ptrs.reshape(
|
642 |
+
-1, B, C // self.mem_dim, self.mem_dim
|
643 |
+
)
|
644 |
+
obj_ptrs = obj_ptrs.permute(0, 2, 1, 3).flatten(0, 1)
|
645 |
+
obj_pos = obj_pos.repeat_interleave(C // self.mem_dim, dim=0)
|
646 |
+
to_cat_memory.append(obj_ptrs)
|
647 |
+
to_cat_memory_pos_embed.append(obj_pos)
|
648 |
+
num_obj_ptr_tokens = obj_ptrs.shape[0]
|
649 |
+
else:
|
650 |
+
num_obj_ptr_tokens = 0
|
651 |
+
else:
|
652 |
+
# for initial conditioning frames, encode them without using any previous memory
|
653 |
+
if self.directly_add_no_mem_embed:
|
654 |
+
# directly add no-mem embedding (instead of using the transformer encoder)
|
655 |
+
pix_feat_with_mem = current_vision_feats[-1] + self.no_mem_embed
|
656 |
+
pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
|
657 |
+
return pix_feat_with_mem
|
658 |
+
|
659 |
+
# Use a dummy token on the first frame (to avoid empty memory input to tranformer encoder)
|
660 |
+
to_cat_memory = [self.no_mem_embed.expand(1, B, self.mem_dim)]
|
661 |
+
to_cat_memory_pos_embed = [self.no_mem_pos_enc.expand(1, B, self.mem_dim)]
|
662 |
+
|
663 |
+
# Step 2: Concatenate the memories and forward through the transformer encoder
|
664 |
+
memory = torch.cat(to_cat_memory, dim=0)
|
665 |
+
memory_pos_embed = torch.cat(to_cat_memory_pos_embed, dim=0)
|
666 |
+
|
667 |
+
pix_feat_with_mem = self.memory_attention(
|
668 |
+
curr=current_vision_feats,
|
669 |
+
curr_pos=current_vision_pos_embeds,
|
670 |
+
memory=memory,
|
671 |
+
memory_pos=memory_pos_embed,
|
672 |
+
num_obj_ptr_tokens=num_obj_ptr_tokens,
|
673 |
+
)
|
674 |
+
# reshape the output (HW)BC => BCHW
|
675 |
+
pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
|
676 |
+
return pix_feat_with_mem
|
677 |
+
|
678 |
+
def _encode_new_memory(
|
679 |
+
self,
|
680 |
+
current_vision_feats,
|
681 |
+
feat_sizes,
|
682 |
+
pred_masks_high_res,
|
683 |
+
object_score_logits,
|
684 |
+
is_mask_from_pts,
|
685 |
+
):
|
686 |
+
"""Encode the current image and its prediction into a memory feature."""
|
687 |
+
B = current_vision_feats[-1].size(1) # batch size on this frame
|
688 |
+
C = self.hidden_dim
|
689 |
+
H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size
|
690 |
+
# top-level feature, (HW)BC => BCHW
|
691 |
+
pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
|
692 |
+
if self.non_overlap_masks_for_mem_enc and not self.training:
|
693 |
+
# optionally, apply non-overlapping constraints to the masks (it's applied
|
694 |
+
# in the batch dimension and should only be used during eval, where all
|
695 |
+
# the objects come from the same video under batch size 1).
|
696 |
+
pred_masks_high_res = self._apply_non_overlapping_constraints(
|
697 |
+
pred_masks_high_res
|
698 |
+
)
|
699 |
+
# scale the raw mask logits with a temperature before applying sigmoid
|
700 |
+
binarize = self.binarize_mask_from_pts_for_mem_enc and is_mask_from_pts
|
701 |
+
if binarize and not self.training:
|
702 |
+
mask_for_mem = (pred_masks_high_res > 0).float()
|
703 |
+
else:
|
704 |
+
# apply sigmoid on the raw mask logits to turn them into range (0, 1)
|
705 |
+
mask_for_mem = torch.sigmoid(pred_masks_high_res)
|
706 |
+
# apply scale and bias terms to the sigmoid probabilities
|
707 |
+
if self.sigmoid_scale_for_mem_enc != 1.0:
|
708 |
+
mask_for_mem = mask_for_mem * self.sigmoid_scale_for_mem_enc
|
709 |
+
if self.sigmoid_bias_for_mem_enc != 0.0:
|
710 |
+
mask_for_mem = mask_for_mem + self.sigmoid_bias_for_mem_enc
|
711 |
+
maskmem_out = self.memory_encoder(
|
712 |
+
pix_feat, mask_for_mem, skip_mask_sigmoid=True # sigmoid already applied
|
713 |
+
)
|
714 |
+
maskmem_features = maskmem_out["vision_features"]
|
715 |
+
maskmem_pos_enc = maskmem_out["vision_pos_enc"]
|
716 |
+
# add a no-object embedding to the spatial memory to indicate that the frame
|
717 |
+
# is predicted to be occluded (i.e. no object is appearing in the frame)
|
718 |
+
if self.no_obj_embed_spatial is not None:
|
719 |
+
is_obj_appearing = (object_score_logits > 0).float()
|
720 |
+
maskmem_features += (
|
721 |
+
1 - is_obj_appearing[..., None, None]
|
722 |
+
) * self.no_obj_embed_spatial[..., None, None].expand(
|
723 |
+
*maskmem_features.shape
|
724 |
+
)
|
725 |
+
|
726 |
+
return maskmem_features, maskmem_pos_enc
|
727 |
+
|
728 |
+
def _track_step(
|
729 |
+
self,
|
730 |
+
frame_idx,
|
731 |
+
is_init_cond_frame,
|
732 |
+
current_vision_feats,
|
733 |
+
current_vision_pos_embeds,
|
734 |
+
feat_sizes,
|
735 |
+
point_inputs,
|
736 |
+
mask_inputs,
|
737 |
+
output_dict,
|
738 |
+
num_frames,
|
739 |
+
track_in_reverse,
|
740 |
+
prev_sam_mask_logits,
|
741 |
+
):
|
742 |
+
current_out = {"point_inputs": point_inputs, "mask_inputs": mask_inputs}
|
743 |
+
# High-resolution feature maps for the SAM head, reshape (HW)BC => BCHW
|
744 |
+
if len(current_vision_feats) > 1:
|
745 |
+
high_res_features = [
|
746 |
+
x.permute(1, 2, 0).view(x.size(1), x.size(2), *s)
|
747 |
+
for x, s in zip(current_vision_feats[:-1], feat_sizes[:-1])
|
748 |
+
]
|
749 |
+
else:
|
750 |
+
high_res_features = None
|
751 |
+
if mask_inputs is not None and self.use_mask_input_as_output_without_sam:
|
752 |
+
# When use_mask_input_as_output_without_sam=True, we directly output the mask input
|
753 |
+
# (see it as a GT mask) without using a SAM prompt encoder + mask decoder.
|
754 |
+
pix_feat = current_vision_feats[-1].permute(1, 2, 0)
|
755 |
+
pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1])
|
756 |
+
sam_outputs = self._use_mask_as_output(
|
757 |
+
pix_feat, high_res_features, mask_inputs
|
758 |
+
)
|
759 |
+
else:
|
760 |
+
# fused the visual feature with previous memory features in the memory bank
|
761 |
+
pix_feat = self._prepare_memory_conditioned_features(
|
762 |
+
frame_idx=frame_idx,
|
763 |
+
is_init_cond_frame=is_init_cond_frame,
|
764 |
+
current_vision_feats=current_vision_feats[-1:],
|
765 |
+
current_vision_pos_embeds=current_vision_pos_embeds[-1:],
|
766 |
+
feat_sizes=feat_sizes[-1:],
|
767 |
+
output_dict=output_dict,
|
768 |
+
num_frames=num_frames,
|
769 |
+
track_in_reverse=track_in_reverse,
|
770 |
+
)
|
771 |
+
# apply SAM-style segmentation head
|
772 |
+
# here we might feed previously predicted low-res SAM mask logits into the SAM mask decoder,
|
773 |
+
# e.g. in demo where such logits come from earlier interaction instead of correction sampling
|
774 |
+
# (in this case, any `mask_inputs` shouldn't reach here as they are sent to _use_mask_as_output instead)
|
775 |
+
if prev_sam_mask_logits is not None:
|
776 |
+
assert point_inputs is not None and mask_inputs is None
|
777 |
+
mask_inputs = prev_sam_mask_logits
|
778 |
+
multimask_output = self._use_multimask(is_init_cond_frame, point_inputs)
|
779 |
+
sam_outputs = self._forward_sam_heads(
|
780 |
+
backbone_features=pix_feat,
|
781 |
+
point_inputs=point_inputs,
|
782 |
+
mask_inputs=mask_inputs,
|
783 |
+
high_res_features=high_res_features,
|
784 |
+
multimask_output=multimask_output,
|
785 |
+
)
|
786 |
+
|
787 |
+
return current_out, sam_outputs, high_res_features, pix_feat
|
788 |
+
|
789 |
+
def _encode_memory_in_output(
|
790 |
+
self,
|
791 |
+
current_vision_feats,
|
792 |
+
feat_sizes,
|
793 |
+
point_inputs,
|
794 |
+
run_mem_encoder,
|
795 |
+
high_res_masks,
|
796 |
+
object_score_logits,
|
797 |
+
current_out,
|
798 |
+
):
|
799 |
+
if run_mem_encoder and self.num_maskmem > 0:
|
800 |
+
high_res_masks_for_mem_enc = high_res_masks
|
801 |
+
maskmem_features, maskmem_pos_enc = self._encode_new_memory(
|
802 |
+
current_vision_feats=current_vision_feats,
|
803 |
+
feat_sizes=feat_sizes,
|
804 |
+
pred_masks_high_res=high_res_masks_for_mem_enc,
|
805 |
+
object_score_logits=object_score_logits,
|
806 |
+
is_mask_from_pts=(point_inputs is not None),
|
807 |
+
)
|
808 |
+
current_out["maskmem_features"] = maskmem_features
|
809 |
+
current_out["maskmem_pos_enc"] = maskmem_pos_enc
|
810 |
+
else:
|
811 |
+
current_out["maskmem_features"] = None
|
812 |
+
current_out["maskmem_pos_enc"] = None
|
813 |
+
|
814 |
+
def track_step(
|
815 |
+
self,
|
816 |
+
frame_idx,
|
817 |
+
is_init_cond_frame,
|
818 |
+
current_vision_feats,
|
819 |
+
current_vision_pos_embeds,
|
820 |
+
feat_sizes,
|
821 |
+
point_inputs,
|
822 |
+
mask_inputs,
|
823 |
+
output_dict,
|
824 |
+
num_frames,
|
825 |
+
track_in_reverse=False, # tracking in reverse time order (for demo usage)
|
826 |
+
# Whether to run the memory encoder on the predicted masks. Sometimes we might want
|
827 |
+
# to skip the memory encoder with `run_mem_encoder=False`. For example,
|
828 |
+
# in demo we might call `track_step` multiple times for each user click,
|
829 |
+
# and only encode the memory when the user finalizes their clicks. And in ablation
|
830 |
+
# settings like SAM training on static images, we don't need the memory encoder.
|
831 |
+
run_mem_encoder=True,
|
832 |
+
# The previously predicted SAM mask logits (which can be fed together with new clicks in demo).
|
833 |
+
prev_sam_mask_logits=None,
|
834 |
+
):
|
835 |
+
current_out, sam_outputs, _, _ = self._track_step(
|
836 |
+
frame_idx,
|
837 |
+
is_init_cond_frame,
|
838 |
+
current_vision_feats,
|
839 |
+
current_vision_pos_embeds,
|
840 |
+
feat_sizes,
|
841 |
+
point_inputs,
|
842 |
+
mask_inputs,
|
843 |
+
output_dict,
|
844 |
+
num_frames,
|
845 |
+
track_in_reverse,
|
846 |
+
prev_sam_mask_logits,
|
847 |
+
)
|
848 |
+
|
849 |
+
(
|
850 |
+
_,
|
851 |
+
_,
|
852 |
+
_,
|
853 |
+
low_res_masks,
|
854 |
+
high_res_masks,
|
855 |
+
obj_ptr,
|
856 |
+
object_score_logits,
|
857 |
+
) = sam_outputs
|
858 |
+
|
859 |
+
current_out["pred_masks"] = low_res_masks
|
860 |
+
current_out["pred_masks_high_res"] = high_res_masks
|
861 |
+
current_out["obj_ptr"] = obj_ptr
|
862 |
+
if not self.training:
|
863 |
+
# Only add this in inference (to avoid unused param in activation checkpointing;
|
864 |
+
# it's mainly used in the demo to encode spatial memories w/ consolidated masks)
|
865 |
+
current_out["object_score_logits"] = object_score_logits
|
866 |
+
|
867 |
+
# Finally run the memory encoder on the predicted mask to encode
|
868 |
+
# it into a new memory feature (that can be used in future frames)
|
869 |
+
self._encode_memory_in_output(
|
870 |
+
current_vision_feats,
|
871 |
+
feat_sizes,
|
872 |
+
point_inputs,
|
873 |
+
run_mem_encoder,
|
874 |
+
high_res_masks,
|
875 |
+
object_score_logits,
|
876 |
+
current_out,
|
877 |
+
)
|
878 |
+
|
879 |
+
return current_out
|
880 |
+
|
881 |
+
def _use_multimask(self, is_init_cond_frame, point_inputs):
|
882 |
+
"""Whether to use multimask output in the SAM head."""
|
883 |
+
num_pts = 0 if point_inputs is None else point_inputs["point_labels"].size(1)
|
884 |
+
multimask_output = (
|
885 |
+
self.multimask_output_in_sam
|
886 |
+
and (is_init_cond_frame or self.multimask_output_for_tracking)
|
887 |
+
and (self.multimask_min_pt_num <= num_pts <= self.multimask_max_pt_num)
|
888 |
+
)
|
889 |
+
return multimask_output
|
890 |
+
|
891 |
+
def _apply_non_overlapping_constraints(self, pred_masks):
|
892 |
+
"""
|
893 |
+
Apply non-overlapping constraints to the object scores in pred_masks. Here we
|
894 |
+
keep only the highest scoring object at each spatial location in pred_masks.
|
895 |
+
"""
|
896 |
+
batch_size = pred_masks.size(0)
|
897 |
+
if batch_size == 1:
|
898 |
+
return pred_masks
|
899 |
+
|
900 |
+
device = pred_masks.device
|
901 |
+
# "max_obj_inds": object index of the object with the highest score at each location
|
902 |
+
max_obj_inds = torch.argmax(pred_masks, dim=0, keepdim=True)
|
903 |
+
# "batch_obj_inds": object index of each object slice (along dim 0) in `pred_masks`
|
904 |
+
batch_obj_inds = torch.arange(batch_size, device=device)[:, None, None, None]
|
905 |
+
keep = max_obj_inds == batch_obj_inds
|
906 |
+
# suppress overlapping regions' scores below -10.0 so that the foreground regions
|
907 |
+
# don't overlap (here sigmoid(-10.0)=4.5398e-05)
|
908 |
+
pred_masks = torch.where(keep, pred_masks, torch.clamp(pred_masks, max=-10.0))
|
909 |
+
return pred_masks
|
sam2/modeling/sam2_utils.py
ADDED
@@ -0,0 +1,323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
|
8 |
+
import copy
|
9 |
+
from typing import Tuple
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
import torch.nn.functional as F
|
15 |
+
|
16 |
+
from sam2.utils.misc import mask_to_box
|
17 |
+
|
18 |
+
|
19 |
+
def select_closest_cond_frames(frame_idx, cond_frame_outputs, max_cond_frame_num):
|
20 |
+
"""
|
21 |
+
Select up to `max_cond_frame_num` conditioning frames from `cond_frame_outputs`
|
22 |
+
that are temporally closest to the current frame at `frame_idx`. Here, we take
|
23 |
+
- a) the closest conditioning frame before `frame_idx` (if any);
|
24 |
+
- b) the closest conditioning frame after `frame_idx` (if any);
|
25 |
+
- c) any other temporally closest conditioning frames until reaching a total
|
26 |
+
of `max_cond_frame_num` conditioning frames.
|
27 |
+
|
28 |
+
Outputs:
|
29 |
+
- selected_outputs: selected items (keys & values) from `cond_frame_outputs`.
|
30 |
+
- unselected_outputs: items (keys & values) not selected in `cond_frame_outputs`.
|
31 |
+
"""
|
32 |
+
if max_cond_frame_num == -1 or len(cond_frame_outputs) <= max_cond_frame_num:
|
33 |
+
selected_outputs = cond_frame_outputs
|
34 |
+
unselected_outputs = {}
|
35 |
+
else:
|
36 |
+
assert max_cond_frame_num >= 2, "we should allow using 2+ conditioning frames"
|
37 |
+
selected_outputs = {}
|
38 |
+
|
39 |
+
# the closest conditioning frame before `frame_idx` (if any)
|
40 |
+
idx_before = max((t for t in cond_frame_outputs if t < frame_idx), default=None)
|
41 |
+
if idx_before is not None:
|
42 |
+
selected_outputs[idx_before] = cond_frame_outputs[idx_before]
|
43 |
+
|
44 |
+
# the closest conditioning frame after `frame_idx` (if any)
|
45 |
+
idx_after = min((t for t in cond_frame_outputs if t >= frame_idx), default=None)
|
46 |
+
if idx_after is not None:
|
47 |
+
selected_outputs[idx_after] = cond_frame_outputs[idx_after]
|
48 |
+
|
49 |
+
# add other temporally closest conditioning frames until reaching a total
|
50 |
+
# of `max_cond_frame_num` conditioning frames.
|
51 |
+
num_remain = max_cond_frame_num - len(selected_outputs)
|
52 |
+
inds_remain = sorted(
|
53 |
+
(t for t in cond_frame_outputs if t not in selected_outputs),
|
54 |
+
key=lambda x: abs(x - frame_idx),
|
55 |
+
)[:num_remain]
|
56 |
+
selected_outputs.update((t, cond_frame_outputs[t]) for t in inds_remain)
|
57 |
+
unselected_outputs = {
|
58 |
+
t: v for t, v in cond_frame_outputs.items() if t not in selected_outputs
|
59 |
+
}
|
60 |
+
|
61 |
+
return selected_outputs, unselected_outputs
|
62 |
+
|
63 |
+
|
64 |
+
def get_1d_sine_pe(pos_inds, dim, temperature=10000):
|
65 |
+
"""
|
66 |
+
Get 1D sine positional embedding as in the original Transformer paper.
|
67 |
+
"""
|
68 |
+
pe_dim = dim // 2
|
69 |
+
dim_t = torch.arange(pe_dim, dtype=torch.float32, device=pos_inds.device)
|
70 |
+
dim_t = temperature ** (2 * (dim_t // 2) / pe_dim)
|
71 |
+
|
72 |
+
pos_embed = pos_inds.unsqueeze(-1) / dim_t
|
73 |
+
pos_embed = torch.cat([pos_embed.sin(), pos_embed.cos()], dim=-1)
|
74 |
+
return pos_embed
|
75 |
+
|
76 |
+
|
77 |
+
def get_activation_fn(activation):
|
78 |
+
"""Return an activation function given a string"""
|
79 |
+
if activation == "relu":
|
80 |
+
return F.relu
|
81 |
+
if activation == "gelu":
|
82 |
+
return F.gelu
|
83 |
+
if activation == "glu":
|
84 |
+
return F.glu
|
85 |
+
raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
|
86 |
+
|
87 |
+
|
88 |
+
def get_clones(module, N):
|
89 |
+
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
90 |
+
|
91 |
+
|
92 |
+
class DropPath(nn.Module):
|
93 |
+
# adapted from https://github.com/huggingface/pytorch-image-models/blob/main/timm/layers/drop.py
|
94 |
+
def __init__(self, drop_prob=0.0, scale_by_keep=True):
|
95 |
+
super(DropPath, self).__init__()
|
96 |
+
self.drop_prob = drop_prob
|
97 |
+
self.scale_by_keep = scale_by_keep
|
98 |
+
|
99 |
+
def forward(self, x):
|
100 |
+
if self.drop_prob == 0.0 or not self.training:
|
101 |
+
return x
|
102 |
+
keep_prob = 1 - self.drop_prob
|
103 |
+
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
|
104 |
+
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
105 |
+
if keep_prob > 0.0 and self.scale_by_keep:
|
106 |
+
random_tensor.div_(keep_prob)
|
107 |
+
return x * random_tensor
|
108 |
+
|
109 |
+
|
110 |
+
# Lightly adapted from
|
111 |
+
# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
|
112 |
+
class MLP(nn.Module):
|
113 |
+
def __init__(
|
114 |
+
self,
|
115 |
+
input_dim: int,
|
116 |
+
hidden_dim: int,
|
117 |
+
output_dim: int,
|
118 |
+
num_layers: int,
|
119 |
+
activation: nn.Module = nn.ReLU,
|
120 |
+
sigmoid_output: bool = False,
|
121 |
+
) -> None:
|
122 |
+
super().__init__()
|
123 |
+
self.num_layers = num_layers
|
124 |
+
h = [hidden_dim] * (num_layers - 1)
|
125 |
+
self.layers = nn.ModuleList(
|
126 |
+
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
|
127 |
+
)
|
128 |
+
self.sigmoid_output = sigmoid_output
|
129 |
+
self.act = activation()
|
130 |
+
|
131 |
+
def forward(self, x):
|
132 |
+
for i, layer in enumerate(self.layers):
|
133 |
+
x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x)
|
134 |
+
if self.sigmoid_output:
|
135 |
+
x = F.sigmoid(x)
|
136 |
+
return x
|
137 |
+
|
138 |
+
|
139 |
+
# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
|
140 |
+
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
|
141 |
+
class LayerNorm2d(nn.Module):
|
142 |
+
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
|
143 |
+
super().__init__()
|
144 |
+
self.weight = nn.Parameter(torch.ones(num_channels))
|
145 |
+
self.bias = nn.Parameter(torch.zeros(num_channels))
|
146 |
+
self.eps = eps
|
147 |
+
|
148 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
149 |
+
u = x.mean(1, keepdim=True)
|
150 |
+
s = (x - u).pow(2).mean(1, keepdim=True)
|
151 |
+
x = (x - u) / torch.sqrt(s + self.eps)
|
152 |
+
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
153 |
+
return x
|
154 |
+
|
155 |
+
|
156 |
+
def sample_box_points(
|
157 |
+
masks: torch.Tensor,
|
158 |
+
noise: float = 0.1, # SAM default
|
159 |
+
noise_bound: int = 20, # SAM default
|
160 |
+
top_left_label: int = 2,
|
161 |
+
bottom_right_label: int = 3,
|
162 |
+
) -> Tuple[np.array, np.array]:
|
163 |
+
"""
|
164 |
+
Sample a noised version of the top left and bottom right corners of a given `bbox`
|
165 |
+
|
166 |
+
Inputs:
|
167 |
+
- masks: [B, 1, H,W] boxes, dtype=torch.Tensor
|
168 |
+
- noise: noise as a fraction of box width and height, dtype=float
|
169 |
+
- noise_bound: maximum amount of noise (in pure pixesl), dtype=int
|
170 |
+
|
171 |
+
Returns:
|
172 |
+
- box_coords: [B, num_pt, 2], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.float
|
173 |
+
- box_labels: [B, num_pt], label 2 is reserverd for top left and 3 for bottom right corners, dtype=torch.int32
|
174 |
+
"""
|
175 |
+
device = masks.device
|
176 |
+
box_coords = mask_to_box(masks)
|
177 |
+
B, _, H, W = masks.shape
|
178 |
+
box_labels = torch.tensor(
|
179 |
+
[top_left_label, bottom_right_label], dtype=torch.int, device=device
|
180 |
+
).repeat(B)
|
181 |
+
if noise > 0.0:
|
182 |
+
if not isinstance(noise_bound, torch.Tensor):
|
183 |
+
noise_bound = torch.tensor(noise_bound, device=device)
|
184 |
+
bbox_w = box_coords[..., 2] - box_coords[..., 0]
|
185 |
+
bbox_h = box_coords[..., 3] - box_coords[..., 1]
|
186 |
+
max_dx = torch.min(bbox_w * noise, noise_bound)
|
187 |
+
max_dy = torch.min(bbox_h * noise, noise_bound)
|
188 |
+
box_noise = 2 * torch.rand(B, 1, 4, device=device) - 1
|
189 |
+
box_noise = box_noise * torch.stack((max_dx, max_dy, max_dx, max_dy), dim=-1)
|
190 |
+
|
191 |
+
box_coords = box_coords + box_noise
|
192 |
+
img_bounds = (
|
193 |
+
torch.tensor([W, H, W, H], device=device) - 1
|
194 |
+
) # uncentered pixel coords
|
195 |
+
box_coords.clamp_(torch.zeros_like(img_bounds), img_bounds) # In place clamping
|
196 |
+
|
197 |
+
box_coords = box_coords.reshape(-1, 2, 2) # always 2 points
|
198 |
+
box_labels = box_labels.reshape(-1, 2)
|
199 |
+
return box_coords, box_labels
|
200 |
+
|
201 |
+
|
202 |
+
def sample_random_points_from_errors(gt_masks, pred_masks, num_pt=1):
|
203 |
+
"""
|
204 |
+
Sample `num_pt` random points (along with their labels) independently from the error regions.
|
205 |
+
|
206 |
+
Inputs:
|
207 |
+
- gt_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool
|
208 |
+
- pred_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool or None
|
209 |
+
- num_pt: int, number of points to sample independently for each of the B error maps
|
210 |
+
|
211 |
+
Outputs:
|
212 |
+
- points: [B, num_pt, 2], dtype=torch.float, contains (x, y) coordinates of each sampled point
|
213 |
+
- labels: [B, num_pt], dtype=torch.int32, where 1 means positive clicks and 0 means
|
214 |
+
negative clicks
|
215 |
+
"""
|
216 |
+
if pred_masks is None: # if pred_masks is not provided, treat it as empty
|
217 |
+
pred_masks = torch.zeros_like(gt_masks)
|
218 |
+
assert gt_masks.dtype == torch.bool and gt_masks.size(1) == 1
|
219 |
+
assert pred_masks.dtype == torch.bool and pred_masks.shape == gt_masks.shape
|
220 |
+
assert num_pt >= 0
|
221 |
+
|
222 |
+
B, _, H_im, W_im = gt_masks.shape
|
223 |
+
device = gt_masks.device
|
224 |
+
|
225 |
+
# false positive region, a new point sampled in this region should have
|
226 |
+
# negative label to correct the FP error
|
227 |
+
fp_masks = ~gt_masks & pred_masks
|
228 |
+
# false negative region, a new point sampled in this region should have
|
229 |
+
# positive label to correct the FN error
|
230 |
+
fn_masks = gt_masks & ~pred_masks
|
231 |
+
# whether the prediction completely match the ground-truth on each mask
|
232 |
+
all_correct = torch.all((gt_masks == pred_masks).flatten(2), dim=2)
|
233 |
+
all_correct = all_correct[..., None, None]
|
234 |
+
|
235 |
+
# channel 0 is FP map, while channel 1 is FN map
|
236 |
+
pts_noise = torch.rand(B, num_pt, H_im, W_im, 2, device=device)
|
237 |
+
# sample a negative new click from FP region or a positive new click
|
238 |
+
# from FN region, depend on where the maximum falls,
|
239 |
+
# and in case the predictions are all correct (no FP or FN), we just
|
240 |
+
# sample a negative click from the background region
|
241 |
+
pts_noise[..., 0] *= fp_masks | (all_correct & ~gt_masks)
|
242 |
+
pts_noise[..., 1] *= fn_masks
|
243 |
+
pts_idx = pts_noise.flatten(2).argmax(dim=2)
|
244 |
+
labels = (pts_idx % 2).to(torch.int32)
|
245 |
+
pts_idx = pts_idx // 2
|
246 |
+
pts_x = pts_idx % W_im
|
247 |
+
pts_y = pts_idx // W_im
|
248 |
+
points = torch.stack([pts_x, pts_y], dim=2).to(torch.float)
|
249 |
+
return points, labels
|
250 |
+
|
251 |
+
|
252 |
+
def sample_one_point_from_error_center(gt_masks, pred_masks, padding=True):
|
253 |
+
"""
|
254 |
+
Sample 1 random point (along with its label) from the center of each error region,
|
255 |
+
that is, the point with the largest distance to the boundary of each error region.
|
256 |
+
This is the RITM sampling method from https://github.com/saic-vul/ritm_interactive_segmentation/blob/master/isegm/inference/clicker.py
|
257 |
+
|
258 |
+
Inputs:
|
259 |
+
- gt_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool
|
260 |
+
- pred_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool or None
|
261 |
+
- padding: if True, pad with boundary of 1 px for distance transform
|
262 |
+
|
263 |
+
Outputs:
|
264 |
+
- points: [B, 1, 2], dtype=torch.float, contains (x, y) coordinates of each sampled point
|
265 |
+
- labels: [B, 1], dtype=torch.int32, where 1 means positive clicks and 0 means negative clicks
|
266 |
+
"""
|
267 |
+
import cv2
|
268 |
+
|
269 |
+
if pred_masks is None:
|
270 |
+
pred_masks = torch.zeros_like(gt_masks)
|
271 |
+
assert gt_masks.dtype == torch.bool and gt_masks.size(1) == 1
|
272 |
+
assert pred_masks.dtype == torch.bool and pred_masks.shape == gt_masks.shape
|
273 |
+
|
274 |
+
B, _, _, W_im = gt_masks.shape
|
275 |
+
device = gt_masks.device
|
276 |
+
|
277 |
+
# false positive region, a new point sampled in this region should have
|
278 |
+
# negative label to correct the FP error
|
279 |
+
fp_masks = ~gt_masks & pred_masks
|
280 |
+
# false negative region, a new point sampled in this region should have
|
281 |
+
# positive label to correct the FN error
|
282 |
+
fn_masks = gt_masks & ~pred_masks
|
283 |
+
|
284 |
+
fp_masks = fp_masks.cpu().numpy()
|
285 |
+
fn_masks = fn_masks.cpu().numpy()
|
286 |
+
points = torch.zeros(B, 1, 2, dtype=torch.float)
|
287 |
+
labels = torch.ones(B, 1, dtype=torch.int32)
|
288 |
+
for b in range(B):
|
289 |
+
fn_mask = fn_masks[b, 0]
|
290 |
+
fp_mask = fp_masks[b, 0]
|
291 |
+
if padding:
|
292 |
+
fn_mask = np.pad(fn_mask, ((1, 1), (1, 1)), "constant")
|
293 |
+
fp_mask = np.pad(fp_mask, ((1, 1), (1, 1)), "constant")
|
294 |
+
# compute the distance of each point in FN/FP region to its boundary
|
295 |
+
fn_mask_dt = cv2.distanceTransform(fn_mask.astype(np.uint8), cv2.DIST_L2, 0)
|
296 |
+
fp_mask_dt = cv2.distanceTransform(fp_mask.astype(np.uint8), cv2.DIST_L2, 0)
|
297 |
+
if padding:
|
298 |
+
fn_mask_dt = fn_mask_dt[1:-1, 1:-1]
|
299 |
+
fp_mask_dt = fp_mask_dt[1:-1, 1:-1]
|
300 |
+
|
301 |
+
# take the point in FN/FP region with the largest distance to its boundary
|
302 |
+
fn_mask_dt_flat = fn_mask_dt.reshape(-1)
|
303 |
+
fp_mask_dt_flat = fp_mask_dt.reshape(-1)
|
304 |
+
fn_argmax = np.argmax(fn_mask_dt_flat)
|
305 |
+
fp_argmax = np.argmax(fp_mask_dt_flat)
|
306 |
+
is_positive = fn_mask_dt_flat[fn_argmax] > fp_mask_dt_flat[fp_argmax]
|
307 |
+
pt_idx = fn_argmax if is_positive else fp_argmax
|
308 |
+
points[b, 0, 0] = pt_idx % W_im # x
|
309 |
+
points[b, 0, 1] = pt_idx // W_im # y
|
310 |
+
labels[b, 0] = int(is_positive)
|
311 |
+
|
312 |
+
points = points.to(device)
|
313 |
+
labels = labels.to(device)
|
314 |
+
return points, labels
|
315 |
+
|
316 |
+
|
317 |
+
def get_next_point(gt_masks, pred_masks, method):
|
318 |
+
if method == "uniform":
|
319 |
+
return sample_random_points_from_errors(gt_masks, pred_masks)
|
320 |
+
elif method == "center":
|
321 |
+
return sample_one_point_from_error_center(gt_masks, pred_masks)
|
322 |
+
else:
|
323 |
+
raise ValueError(f"unknown sampling method {method}")
|
sam2/sam2.1_hiera_l.yaml
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# Model
|
4 |
+
model:
|
5 |
+
_target_: sam2.modeling.sam2_base.SAM2Base
|
6 |
+
image_encoder:
|
7 |
+
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
8 |
+
scalp: 1
|
9 |
+
trunk:
|
10 |
+
_target_: sam2.modeling.backbones.hieradet.Hiera
|
11 |
+
embed_dim: 144
|
12 |
+
num_heads: 2
|
13 |
+
stages: [2, 6, 36, 4]
|
14 |
+
global_att_blocks: [23, 33, 43]
|
15 |
+
window_pos_embed_bkg_spatial_size: [7, 7]
|
16 |
+
window_spec: [8, 4, 16, 8]
|
17 |
+
neck:
|
18 |
+
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
|
19 |
+
position_encoding:
|
20 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
21 |
+
num_pos_feats: 256
|
22 |
+
normalize: true
|
23 |
+
scale: null
|
24 |
+
temperature: 10000
|
25 |
+
d_model: 256
|
26 |
+
backbone_channel_list: [1152, 576, 288, 144]
|
27 |
+
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
28 |
+
fpn_interp_model: nearest
|
29 |
+
|
30 |
+
memory_attention:
|
31 |
+
_target_: sam2.modeling.memory_attention.MemoryAttention
|
32 |
+
d_model: 256
|
33 |
+
pos_enc_at_input: true
|
34 |
+
layer:
|
35 |
+
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
36 |
+
activation: relu
|
37 |
+
dim_feedforward: 2048
|
38 |
+
dropout: 0.1
|
39 |
+
pos_enc_at_attn: false
|
40 |
+
self_attention:
|
41 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
42 |
+
rope_theta: 10000.0
|
43 |
+
feat_sizes: [64, 64]
|
44 |
+
embedding_dim: 256
|
45 |
+
num_heads: 1
|
46 |
+
downsample_rate: 1
|
47 |
+
dropout: 0.1
|
48 |
+
d_model: 256
|
49 |
+
pos_enc_at_cross_attn_keys: true
|
50 |
+
pos_enc_at_cross_attn_queries: false
|
51 |
+
cross_attention:
|
52 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
53 |
+
rope_theta: 10000.0
|
54 |
+
feat_sizes: [64, 64]
|
55 |
+
rope_k_repeat: True
|
56 |
+
embedding_dim: 256
|
57 |
+
num_heads: 1
|
58 |
+
downsample_rate: 1
|
59 |
+
dropout: 0.1
|
60 |
+
kv_in_dim: 64
|
61 |
+
num_layers: 4
|
62 |
+
|
63 |
+
memory_encoder:
|
64 |
+
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
65 |
+
out_dim: 64
|
66 |
+
position_encoding:
|
67 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
68 |
+
num_pos_feats: 64
|
69 |
+
normalize: true
|
70 |
+
scale: null
|
71 |
+
temperature: 10000
|
72 |
+
mask_downsampler:
|
73 |
+
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
74 |
+
kernel_size: 3
|
75 |
+
stride: 2
|
76 |
+
padding: 1
|
77 |
+
fuser:
|
78 |
+
_target_: sam2.modeling.memory_encoder.Fuser
|
79 |
+
layer:
|
80 |
+
_target_: sam2.modeling.memory_encoder.CXBlock
|
81 |
+
dim: 256
|
82 |
+
kernel_size: 7
|
83 |
+
padding: 3
|
84 |
+
layer_scale_init_value: 1e-6
|
85 |
+
use_dwconv: True # depth-wise convs
|
86 |
+
num_layers: 2
|
87 |
+
|
88 |
+
num_maskmem: 7
|
89 |
+
image_size: 1024
|
90 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
91 |
+
sigmoid_scale_for_mem_enc: 20.0
|
92 |
+
sigmoid_bias_for_mem_enc: -10.0
|
93 |
+
use_mask_input_as_output_without_sam: true
|
94 |
+
# Memory
|
95 |
+
directly_add_no_mem_embed: true
|
96 |
+
no_obj_embed_spatial: true
|
97 |
+
# use high-resolution feature map in the SAM mask decoder
|
98 |
+
use_high_res_features_in_sam: true
|
99 |
+
# output 3 masks on the first click on initial conditioning frames
|
100 |
+
multimask_output_in_sam: true
|
101 |
+
# SAM heads
|
102 |
+
iou_prediction_use_sigmoid: True
|
103 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
104 |
+
use_obj_ptrs_in_encoder: true
|
105 |
+
add_tpos_enc_to_obj_ptrs: true
|
106 |
+
proj_tpos_enc_in_obj_ptrs: true
|
107 |
+
use_signed_tpos_enc_to_obj_ptrs: true
|
108 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
109 |
+
# object occlusion prediction
|
110 |
+
pred_obj_scores: true
|
111 |
+
pred_obj_scores_mlp: true
|
112 |
+
fixed_no_obj_ptr: true
|
113 |
+
# multimask tracking settings
|
114 |
+
multimask_output_for_tracking: true
|
115 |
+
use_multimask_token_for_obj_ptr: true
|
116 |
+
multimask_min_pt_num: 0
|
117 |
+
multimask_max_pt_num: 1
|
118 |
+
use_mlp_for_obj_ptr_proj: true
|
119 |
+
# Compilation flag
|
120 |
+
compile_image_encoder: False
|
sam2/sam2_image_predictor.py
ADDED
@@ -0,0 +1,466 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import logging
|
8 |
+
|
9 |
+
from typing import List, Optional, Tuple, Union
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
from PIL.Image import Image
|
14 |
+
|
15 |
+
from sam2.modeling.sam2_base import SAM2Base
|
16 |
+
|
17 |
+
from sam2.utils.transforms import SAM2Transforms
|
18 |
+
|
19 |
+
|
20 |
+
class SAM2ImagePredictor:
|
21 |
+
def __init__(
|
22 |
+
self,
|
23 |
+
sam_model: SAM2Base,
|
24 |
+
mask_threshold=0.0,
|
25 |
+
max_hole_area=0.0,
|
26 |
+
max_sprinkle_area=0.0,
|
27 |
+
**kwargs,
|
28 |
+
) -> None:
|
29 |
+
"""
|
30 |
+
Uses SAM-2 to calculate the image embedding for an image, and then
|
31 |
+
allow repeated, efficient mask prediction given prompts.
|
32 |
+
|
33 |
+
Arguments:
|
34 |
+
sam_model (Sam-2): The model to use for mask prediction.
|
35 |
+
mask_threshold (float): The threshold to use when converting mask logits
|
36 |
+
to binary masks. Masks are thresholded at 0 by default.
|
37 |
+
max_hole_area (int): If max_hole_area > 0, we fill small holes in up to
|
38 |
+
the maximum area of max_hole_area in low_res_masks.
|
39 |
+
max_sprinkle_area (int): If max_sprinkle_area > 0, we remove small sprinkles up to
|
40 |
+
the maximum area of max_sprinkle_area in low_res_masks.
|
41 |
+
"""
|
42 |
+
super().__init__()
|
43 |
+
self.model = sam_model
|
44 |
+
self._transforms = SAM2Transforms(
|
45 |
+
resolution=self.model.image_size,
|
46 |
+
mask_threshold=mask_threshold,
|
47 |
+
max_hole_area=max_hole_area,
|
48 |
+
max_sprinkle_area=max_sprinkle_area,
|
49 |
+
)
|
50 |
+
|
51 |
+
# Predictor state
|
52 |
+
self._is_image_set = False
|
53 |
+
self._features = None
|
54 |
+
self._orig_hw = None
|
55 |
+
# Whether the predictor is set for single image or a batch of images
|
56 |
+
self._is_batch = False
|
57 |
+
|
58 |
+
# Predictor config
|
59 |
+
self.mask_threshold = mask_threshold
|
60 |
+
|
61 |
+
# Spatial dim for backbone feature maps
|
62 |
+
self._bb_feat_sizes = [
|
63 |
+
(256, 256),
|
64 |
+
(128, 128),
|
65 |
+
(64, 64),
|
66 |
+
]
|
67 |
+
|
68 |
+
@classmethod
|
69 |
+
def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2ImagePredictor":
|
70 |
+
"""
|
71 |
+
Load a pretrained model from the Hugging Face hub.
|
72 |
+
|
73 |
+
Arguments:
|
74 |
+
model_id (str): The Hugging Face repository ID.
|
75 |
+
**kwargs: Additional arguments to pass to the model constructor.
|
76 |
+
|
77 |
+
Returns:
|
78 |
+
(SAM2ImagePredictor): The loaded model.
|
79 |
+
"""
|
80 |
+
from sam2.build_sam import build_sam2_hf
|
81 |
+
|
82 |
+
sam_model = build_sam2_hf(model_id, **kwargs)
|
83 |
+
return cls(sam_model, **kwargs)
|
84 |
+
|
85 |
+
@torch.no_grad()
|
86 |
+
def set_image(
|
87 |
+
self,
|
88 |
+
image: Union[np.ndarray, Image],
|
89 |
+
) -> None:
|
90 |
+
"""
|
91 |
+
Calculates the image embeddings for the provided image, allowing
|
92 |
+
masks to be predicted with the 'predict' method.
|
93 |
+
|
94 |
+
Arguments:
|
95 |
+
image (np.ndarray or PIL Image): The input image to embed in RGB format. The image should be in HWC format if np.ndarray, or WHC format if PIL Image
|
96 |
+
with pixel values in [0, 255].
|
97 |
+
image_format (str): The color format of the image, in ['RGB', 'BGR'].
|
98 |
+
"""
|
99 |
+
self.reset_predictor()
|
100 |
+
# Transform the image to the form expected by the model
|
101 |
+
if isinstance(image, np.ndarray):
|
102 |
+
logging.info("For numpy array image, we assume (HxWxC) format")
|
103 |
+
self._orig_hw = [image.shape[:2]]
|
104 |
+
elif isinstance(image, Image):
|
105 |
+
w, h = image.size
|
106 |
+
self._orig_hw = [(h, w)]
|
107 |
+
else:
|
108 |
+
raise NotImplementedError("Image format not supported")
|
109 |
+
|
110 |
+
input_image = self._transforms(image)
|
111 |
+
input_image = input_image[None, ...].to(self.device)
|
112 |
+
|
113 |
+
assert (
|
114 |
+
len(input_image.shape) == 4 and input_image.shape[1] == 3
|
115 |
+
), f"input_image must be of size 1x3xHxW, got {input_image.shape}"
|
116 |
+
logging.info("Computing image embeddings for the provided image...")
|
117 |
+
backbone_out = self.model.forward_image(input_image)
|
118 |
+
_, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out)
|
119 |
+
# Add no_mem_embed, which is added to the lowest rest feat. map during training on videos
|
120 |
+
if self.model.directly_add_no_mem_embed:
|
121 |
+
vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed
|
122 |
+
|
123 |
+
feats = [
|
124 |
+
feat.permute(1, 2, 0).view(1, -1, *feat_size)
|
125 |
+
for feat, feat_size in zip(vision_feats[::-1], self._bb_feat_sizes[::-1])
|
126 |
+
][::-1]
|
127 |
+
self._features = {"image_embed": feats[-1], "high_res_feats": feats[:-1]}
|
128 |
+
self._is_image_set = True
|
129 |
+
logging.info("Image embeddings computed.")
|
130 |
+
|
131 |
+
@torch.no_grad()
|
132 |
+
def set_image_batch(
|
133 |
+
self,
|
134 |
+
image_list: List[Union[np.ndarray]],
|
135 |
+
) -> None:
|
136 |
+
"""
|
137 |
+
Calculates the image embeddings for the provided image batch, allowing
|
138 |
+
masks to be predicted with the 'predict_batch' method.
|
139 |
+
|
140 |
+
Arguments:
|
141 |
+
image_list (List[np.ndarray]): The input images to embed in RGB format. The image should be in HWC format if np.ndarray
|
142 |
+
with pixel values in [0, 255].
|
143 |
+
"""
|
144 |
+
self.reset_predictor()
|
145 |
+
assert isinstance(image_list, list)
|
146 |
+
self._orig_hw = []
|
147 |
+
for image in image_list:
|
148 |
+
assert isinstance(
|
149 |
+
image, np.ndarray
|
150 |
+
), "Images are expected to be an np.ndarray in RGB format, and of shape HWC"
|
151 |
+
self._orig_hw.append(image.shape[:2])
|
152 |
+
# Transform the image to the form expected by the model
|
153 |
+
img_batch = self._transforms.forward_batch(image_list)
|
154 |
+
img_batch = img_batch.to(self.device)
|
155 |
+
batch_size = img_batch.shape[0]
|
156 |
+
assert (
|
157 |
+
len(img_batch.shape) == 4 and img_batch.shape[1] == 3
|
158 |
+
), f"img_batch must be of size Bx3xHxW, got {img_batch.shape}"
|
159 |
+
logging.info("Computing image embeddings for the provided images...")
|
160 |
+
backbone_out = self.model.forward_image(img_batch)
|
161 |
+
_, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out)
|
162 |
+
# Add no_mem_embed, which is added to the lowest rest feat. map during training on videos
|
163 |
+
if self.model.directly_add_no_mem_embed:
|
164 |
+
vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed
|
165 |
+
|
166 |
+
feats = [
|
167 |
+
feat.permute(1, 2, 0).view(batch_size, -1, *feat_size)
|
168 |
+
for feat, feat_size in zip(vision_feats[::-1], self._bb_feat_sizes[::-1])
|
169 |
+
][::-1]
|
170 |
+
self._features = {"image_embed": feats[-1], "high_res_feats": feats[:-1]}
|
171 |
+
self._is_image_set = True
|
172 |
+
self._is_batch = True
|
173 |
+
logging.info("Image embeddings computed.")
|
174 |
+
|
175 |
+
def predict_batch(
|
176 |
+
self,
|
177 |
+
point_coords_batch: List[np.ndarray] = None,
|
178 |
+
point_labels_batch: List[np.ndarray] = None,
|
179 |
+
box_batch: List[np.ndarray] = None,
|
180 |
+
mask_input_batch: List[np.ndarray] = None,
|
181 |
+
multimask_output: bool = True,
|
182 |
+
return_logits: bool = False,
|
183 |
+
normalize_coords=True,
|
184 |
+
) -> Tuple[List[np.ndarray], List[np.ndarray], List[np.ndarray]]:
|
185 |
+
"""This function is very similar to predict(...), however it is used for batched mode, when the model is expected to generate predictions on multiple images.
|
186 |
+
It returns a tuple of lists of masks, ious, and low_res_masks_logits.
|
187 |
+
"""
|
188 |
+
assert self._is_batch, "This function should only be used when in batched mode"
|
189 |
+
if not self._is_image_set:
|
190 |
+
raise RuntimeError(
|
191 |
+
"An image must be set with .set_image_batch(...) before mask prediction."
|
192 |
+
)
|
193 |
+
num_images = len(self._features["image_embed"])
|
194 |
+
all_masks = []
|
195 |
+
all_ious = []
|
196 |
+
all_low_res_masks = []
|
197 |
+
for img_idx in range(num_images):
|
198 |
+
# Transform input prompts
|
199 |
+
point_coords = (
|
200 |
+
point_coords_batch[img_idx] if point_coords_batch is not None else None
|
201 |
+
)
|
202 |
+
point_labels = (
|
203 |
+
point_labels_batch[img_idx] if point_labels_batch is not None else None
|
204 |
+
)
|
205 |
+
box = box_batch[img_idx] if box_batch is not None else None
|
206 |
+
mask_input = (
|
207 |
+
mask_input_batch[img_idx] if mask_input_batch is not None else None
|
208 |
+
)
|
209 |
+
mask_input, unnorm_coords, labels, unnorm_box = self._prep_prompts(
|
210 |
+
point_coords,
|
211 |
+
point_labels,
|
212 |
+
box,
|
213 |
+
mask_input,
|
214 |
+
normalize_coords,
|
215 |
+
img_idx=img_idx,
|
216 |
+
)
|
217 |
+
masks, iou_predictions, low_res_masks = self._predict(
|
218 |
+
unnorm_coords,
|
219 |
+
labels,
|
220 |
+
unnorm_box,
|
221 |
+
mask_input,
|
222 |
+
multimask_output,
|
223 |
+
return_logits=return_logits,
|
224 |
+
img_idx=img_idx,
|
225 |
+
)
|
226 |
+
masks_np = masks.squeeze(0).float().detach().cpu().numpy()
|
227 |
+
iou_predictions_np = (
|
228 |
+
iou_predictions.squeeze(0).float().detach().cpu().numpy()
|
229 |
+
)
|
230 |
+
low_res_masks_np = low_res_masks.squeeze(0).float().detach().cpu().numpy()
|
231 |
+
all_masks.append(masks_np)
|
232 |
+
all_ious.append(iou_predictions_np)
|
233 |
+
all_low_res_masks.append(low_res_masks_np)
|
234 |
+
|
235 |
+
return all_masks, all_ious, all_low_res_masks
|
236 |
+
|
237 |
+
def predict(
|
238 |
+
self,
|
239 |
+
point_coords: Optional[np.ndarray] = None,
|
240 |
+
point_labels: Optional[np.ndarray] = None,
|
241 |
+
box: Optional[np.ndarray] = None,
|
242 |
+
mask_input: Optional[np.ndarray] = None,
|
243 |
+
multimask_output: bool = True,
|
244 |
+
return_logits: bool = False,
|
245 |
+
normalize_coords=True,
|
246 |
+
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
247 |
+
"""
|
248 |
+
Predict masks for the given input prompts, using the currently set image.
|
249 |
+
|
250 |
+
Arguments:
|
251 |
+
point_coords (np.ndarray or None): A Nx2 array of point prompts to the
|
252 |
+
model. Each point is in (X,Y) in pixels.
|
253 |
+
point_labels (np.ndarray or None): A length N array of labels for the
|
254 |
+
point prompts. 1 indicates a foreground point and 0 indicates a
|
255 |
+
background point.
|
256 |
+
box (np.ndarray or None): A length 4 array given a box prompt to the
|
257 |
+
model, in XYXY format.
|
258 |
+
mask_input (np.ndarray): A low resolution mask input to the model, typically
|
259 |
+
coming from a previous prediction iteration. Has form 1xHxW, where
|
260 |
+
for SAM, H=W=256.
|
261 |
+
multimask_output (bool): If true, the model will return three masks.
|
262 |
+
For ambiguous input prompts (such as a single click), this will often
|
263 |
+
produce better masks than a single prediction. If only a single
|
264 |
+
mask is needed, the model's predicted quality score can be used
|
265 |
+
to select the best mask. For non-ambiguous prompts, such as multiple
|
266 |
+
input prompts, multimask_output=False can give better results.
|
267 |
+
return_logits (bool): If true, returns un-thresholded masks logits
|
268 |
+
instead of a binary mask.
|
269 |
+
normalize_coords (bool): If true, the point coordinates will be normalized to the range [0,1] and point_coords is expected to be wrt. image dimensions.
|
270 |
+
|
271 |
+
Returns:
|
272 |
+
(np.ndarray): The output masks in CxHxW format, where C is the
|
273 |
+
number of masks, and (H, W) is the original image size.
|
274 |
+
(np.ndarray): An array of length C containing the model's
|
275 |
+
predictions for the quality of each mask.
|
276 |
+
(np.ndarray): An array of shape CxHxW, where C is the number
|
277 |
+
of masks and H=W=256. These low resolution logits can be passed to
|
278 |
+
a subsequent iteration as mask input.
|
279 |
+
"""
|
280 |
+
if not self._is_image_set:
|
281 |
+
raise RuntimeError(
|
282 |
+
"An image must be set with .set_image(...) before mask prediction."
|
283 |
+
)
|
284 |
+
|
285 |
+
# Transform input prompts
|
286 |
+
|
287 |
+
mask_input, unnorm_coords, labels, unnorm_box = self._prep_prompts(
|
288 |
+
point_coords, point_labels, box, mask_input, normalize_coords
|
289 |
+
)
|
290 |
+
|
291 |
+
masks, iou_predictions, low_res_masks = self._predict(
|
292 |
+
unnorm_coords,
|
293 |
+
labels,
|
294 |
+
unnorm_box,
|
295 |
+
mask_input,
|
296 |
+
multimask_output,
|
297 |
+
return_logits=return_logits,
|
298 |
+
)
|
299 |
+
|
300 |
+
masks_np = masks.squeeze(0).float().detach().cpu().numpy()
|
301 |
+
iou_predictions_np = iou_predictions.squeeze(0).float().detach().cpu().numpy()
|
302 |
+
low_res_masks_np = low_res_masks.squeeze(0).float().detach().cpu().numpy()
|
303 |
+
return masks_np, iou_predictions_np, low_res_masks_np
|
304 |
+
|
305 |
+
def _prep_prompts(
|
306 |
+
self, point_coords, point_labels, box, mask_logits, normalize_coords, img_idx=-1
|
307 |
+
):
|
308 |
+
|
309 |
+
unnorm_coords, labels, unnorm_box, mask_input = None, None, None, None
|
310 |
+
if point_coords is not None:
|
311 |
+
assert (
|
312 |
+
point_labels is not None
|
313 |
+
), "point_labels must be supplied if point_coords is supplied."
|
314 |
+
point_coords = torch.as_tensor(
|
315 |
+
point_coords, dtype=torch.float, device=self.device
|
316 |
+
)
|
317 |
+
unnorm_coords = self._transforms.transform_coords(
|
318 |
+
point_coords, normalize=normalize_coords, orig_hw=self._orig_hw[img_idx]
|
319 |
+
)
|
320 |
+
labels = torch.as_tensor(point_labels, dtype=torch.int, device=self.device)
|
321 |
+
if len(unnorm_coords.shape) == 2:
|
322 |
+
unnorm_coords, labels = unnorm_coords[None, ...], labels[None, ...]
|
323 |
+
if box is not None:
|
324 |
+
box = torch.as_tensor(box, dtype=torch.float, device=self.device)
|
325 |
+
unnorm_box = self._transforms.transform_boxes(
|
326 |
+
box, normalize=normalize_coords, orig_hw=self._orig_hw[img_idx]
|
327 |
+
) # Bx2x2
|
328 |
+
if mask_logits is not None:
|
329 |
+
mask_input = torch.as_tensor(
|
330 |
+
mask_logits, dtype=torch.float, device=self.device
|
331 |
+
)
|
332 |
+
if len(mask_input.shape) == 3:
|
333 |
+
mask_input = mask_input[None, :, :, :]
|
334 |
+
return mask_input, unnorm_coords, labels, unnorm_box
|
335 |
+
|
336 |
+
@torch.no_grad()
|
337 |
+
def _predict(
|
338 |
+
self,
|
339 |
+
point_coords: Optional[torch.Tensor],
|
340 |
+
point_labels: Optional[torch.Tensor],
|
341 |
+
boxes: Optional[torch.Tensor] = None,
|
342 |
+
mask_input: Optional[torch.Tensor] = None,
|
343 |
+
multimask_output: bool = True,
|
344 |
+
return_logits: bool = False,
|
345 |
+
img_idx: int = -1,
|
346 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
347 |
+
"""
|
348 |
+
Predict masks for the given input prompts, using the currently set image.
|
349 |
+
Input prompts are batched torch tensors and are expected to already be
|
350 |
+
transformed to the input frame using SAM2Transforms.
|
351 |
+
|
352 |
+
Arguments:
|
353 |
+
point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the
|
354 |
+
model. Each point is in (X,Y) in pixels.
|
355 |
+
point_labels (torch.Tensor or None): A BxN array of labels for the
|
356 |
+
point prompts. 1 indicates a foreground point and 0 indicates a
|
357 |
+
background point.
|
358 |
+
boxes (np.ndarray or None): A Bx4 array given a box prompt to the
|
359 |
+
model, in XYXY format.
|
360 |
+
mask_input (np.ndarray): A low resolution mask input to the model, typically
|
361 |
+
coming from a previous prediction iteration. Has form Bx1xHxW, where
|
362 |
+
for SAM, H=W=256. Masks returned by a previous iteration of the
|
363 |
+
predict method do not need further transformation.
|
364 |
+
multimask_output (bool): If true, the model will return three masks.
|
365 |
+
For ambiguous input prompts (such as a single click), this will often
|
366 |
+
produce better masks than a single prediction. If only a single
|
367 |
+
mask is needed, the model's predicted quality score can be used
|
368 |
+
to select the best mask. For non-ambiguous prompts, such as multiple
|
369 |
+
input prompts, multimask_output=False can give better results.
|
370 |
+
return_logits (bool): If true, returns un-thresholded masks logits
|
371 |
+
instead of a binary mask.
|
372 |
+
|
373 |
+
Returns:
|
374 |
+
(torch.Tensor): The output masks in BxCxHxW format, where C is the
|
375 |
+
number of masks, and (H, W) is the original image size.
|
376 |
+
(torch.Tensor): An array of shape BxC containing the model's
|
377 |
+
predictions for the quality of each mask.
|
378 |
+
(torch.Tensor): An array of shape BxCxHxW, where C is the number
|
379 |
+
of masks and H=W=256. These low res logits can be passed to
|
380 |
+
a subsequent iteration as mask input.
|
381 |
+
"""
|
382 |
+
if not self._is_image_set:
|
383 |
+
raise RuntimeError(
|
384 |
+
"An image must be set with .set_image(...) before mask prediction."
|
385 |
+
)
|
386 |
+
|
387 |
+
if point_coords is not None:
|
388 |
+
concat_points = (point_coords, point_labels)
|
389 |
+
else:
|
390 |
+
concat_points = None
|
391 |
+
|
392 |
+
# Embed prompts
|
393 |
+
if boxes is not None:
|
394 |
+
box_coords = boxes.reshape(-1, 2, 2)
|
395 |
+
box_labels = torch.tensor([[2, 3]], dtype=torch.int, device=boxes.device)
|
396 |
+
box_labels = box_labels.repeat(boxes.size(0), 1)
|
397 |
+
# we merge "boxes" and "points" into a single "concat_points" input (where
|
398 |
+
# boxes are added at the beginning) to sam_prompt_encoder
|
399 |
+
if concat_points is not None:
|
400 |
+
concat_coords = torch.cat([box_coords, concat_points[0]], dim=1)
|
401 |
+
concat_labels = torch.cat([box_labels, concat_points[1]], dim=1)
|
402 |
+
concat_points = (concat_coords, concat_labels)
|
403 |
+
else:
|
404 |
+
concat_points = (box_coords, box_labels)
|
405 |
+
|
406 |
+
sparse_embeddings, dense_embeddings = self.model.sam_prompt_encoder(
|
407 |
+
points=concat_points,
|
408 |
+
boxes=None,
|
409 |
+
masks=mask_input,
|
410 |
+
)
|
411 |
+
|
412 |
+
# Predict masks
|
413 |
+
batched_mode = (
|
414 |
+
concat_points is not None and concat_points[0].shape[0] > 1
|
415 |
+
) # multi object prediction
|
416 |
+
high_res_features = [
|
417 |
+
feat_level[img_idx].unsqueeze(0)
|
418 |
+
for feat_level in self._features["high_res_feats"]
|
419 |
+
]
|
420 |
+
low_res_masks, iou_predictions, _, _ = self.model.sam_mask_decoder(
|
421 |
+
image_embeddings=self._features["image_embed"][img_idx].unsqueeze(0),
|
422 |
+
image_pe=self.model.sam_prompt_encoder.get_dense_pe(),
|
423 |
+
sparse_prompt_embeddings=sparse_embeddings,
|
424 |
+
dense_prompt_embeddings=dense_embeddings,
|
425 |
+
multimask_output=multimask_output,
|
426 |
+
repeat_image=batched_mode,
|
427 |
+
high_res_features=high_res_features,
|
428 |
+
)
|
429 |
+
|
430 |
+
# Upscale the masks to the original image resolution
|
431 |
+
masks = self._transforms.postprocess_masks(
|
432 |
+
low_res_masks, self._orig_hw[img_idx]
|
433 |
+
)
|
434 |
+
low_res_masks = torch.clamp(low_res_masks, -32.0, 32.0)
|
435 |
+
if not return_logits:
|
436 |
+
masks = masks > self.mask_threshold
|
437 |
+
|
438 |
+
return masks, iou_predictions, low_res_masks
|
439 |
+
|
440 |
+
def get_image_embedding(self) -> torch.Tensor:
|
441 |
+
"""
|
442 |
+
Returns the image embeddings for the currently set image, with
|
443 |
+
shape 1xCxHxW, where C is the embedding dimension and (H,W) are
|
444 |
+
the embedding spatial dimension of SAM (typically C=256, H=W=64).
|
445 |
+
"""
|
446 |
+
if not self._is_image_set:
|
447 |
+
raise RuntimeError(
|
448 |
+
"An image must be set with .set_image(...) to generate an embedding."
|
449 |
+
)
|
450 |
+
assert (
|
451 |
+
self._features is not None
|
452 |
+
), "Features must exist if an image has been set."
|
453 |
+
return self._features["image_embed"]
|
454 |
+
|
455 |
+
@property
|
456 |
+
def device(self) -> torch.device:
|
457 |
+
return self.model.device
|
458 |
+
|
459 |
+
def reset_predictor(self) -> None:
|
460 |
+
"""
|
461 |
+
Resets the image embeddings and other state variables.
|
462 |
+
"""
|
463 |
+
self._is_image_set = False
|
464 |
+
self._features = None
|
465 |
+
self._orig_hw = None
|
466 |
+
self._is_batch = False
|
sam2/sam2_video_predictor.py
ADDED
@@ -0,0 +1,1223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import warnings
|
8 |
+
from collections import OrderedDict
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn.functional as F
|
12 |
+
|
13 |
+
from tqdm import tqdm
|
14 |
+
|
15 |
+
from sam2.modeling.sam2_base import NO_OBJ_SCORE, SAM2Base
|
16 |
+
from sam2.utils.misc import concat_points, fill_holes_in_mask_scores, load_video_frames
|
17 |
+
|
18 |
+
|
19 |
+
class SAM2VideoPredictor(SAM2Base):
|
20 |
+
"""The predictor class to handle user interactions and manage inference states."""
|
21 |
+
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
fill_hole_area=0,
|
25 |
+
# whether to apply non-overlapping constraints on the output object masks
|
26 |
+
non_overlap_masks=False,
|
27 |
+
# whether to clear non-conditioning memory of the surrounding frames (which may contain outdated information) after adding correction clicks;
|
28 |
+
# note that this would only apply to *single-object tracking* unless `clear_non_cond_mem_for_multi_obj` is also set to True)
|
29 |
+
clear_non_cond_mem_around_input=False,
|
30 |
+
# if `add_all_frames_to_correct_as_cond` is True, we also append to the conditioning frame list any frame that receives a later correction click
|
31 |
+
# if `add_all_frames_to_correct_as_cond` is False, we conditioning frame list to only use those initial conditioning frames
|
32 |
+
add_all_frames_to_correct_as_cond=False,
|
33 |
+
**kwargs,
|
34 |
+
):
|
35 |
+
super().__init__(**kwargs)
|
36 |
+
self.fill_hole_area = fill_hole_area
|
37 |
+
self.non_overlap_masks = non_overlap_masks
|
38 |
+
self.clear_non_cond_mem_around_input = clear_non_cond_mem_around_input
|
39 |
+
self.add_all_frames_to_correct_as_cond = add_all_frames_to_correct_as_cond
|
40 |
+
|
41 |
+
@torch.inference_mode()
|
42 |
+
def init_state(
|
43 |
+
self,
|
44 |
+
video_path,
|
45 |
+
offload_video_to_cpu=False,
|
46 |
+
offload_state_to_cpu=False,
|
47 |
+
async_loading_frames=False,
|
48 |
+
):
|
49 |
+
"""Initialize an inference state."""
|
50 |
+
compute_device = self.device # device of the model
|
51 |
+
images, video_height, video_width = load_video_frames(
|
52 |
+
video_path=video_path,
|
53 |
+
image_size=self.image_size,
|
54 |
+
offload_video_to_cpu=offload_video_to_cpu,
|
55 |
+
async_loading_frames=async_loading_frames,
|
56 |
+
compute_device=compute_device,
|
57 |
+
)
|
58 |
+
inference_state = {}
|
59 |
+
inference_state["images"] = images
|
60 |
+
inference_state["num_frames"] = len(images)
|
61 |
+
# whether to offload the video frames to CPU memory
|
62 |
+
# turning on this option saves the GPU memory with only a very small overhead
|
63 |
+
inference_state["offload_video_to_cpu"] = offload_video_to_cpu
|
64 |
+
# whether to offload the inference state to CPU memory
|
65 |
+
# turning on this option saves the GPU memory at the cost of a lower tracking fps
|
66 |
+
# (e.g. in a test case of 768x768 model, fps dropped from 27 to 24 when tracking one object
|
67 |
+
# and from 24 to 21 when tracking two objects)
|
68 |
+
inference_state["offload_state_to_cpu"] = offload_state_to_cpu
|
69 |
+
# the original video height and width, used for resizing final output scores
|
70 |
+
inference_state["video_height"] = video_height
|
71 |
+
inference_state["video_width"] = video_width
|
72 |
+
inference_state["device"] = compute_device
|
73 |
+
if offload_state_to_cpu:
|
74 |
+
inference_state["storage_device"] = torch.device("cpu")
|
75 |
+
else:
|
76 |
+
inference_state["storage_device"] = compute_device
|
77 |
+
# inputs on each frame
|
78 |
+
inference_state["point_inputs_per_obj"] = {}
|
79 |
+
inference_state["mask_inputs_per_obj"] = {}
|
80 |
+
# visual features on a small number of recently visited frames for quick interactions
|
81 |
+
inference_state["cached_features"] = {}
|
82 |
+
# values that don't change across frames (so we only need to hold one copy of them)
|
83 |
+
inference_state["constants"] = {}
|
84 |
+
# mapping between client-side object id and model-side object index
|
85 |
+
inference_state["obj_id_to_idx"] = OrderedDict()
|
86 |
+
inference_state["obj_idx_to_id"] = OrderedDict()
|
87 |
+
inference_state["obj_ids"] = []
|
88 |
+
# Slice (view) of each object tracking results, sharing the same memory with "output_dict"
|
89 |
+
inference_state["output_dict_per_obj"] = {}
|
90 |
+
# A temporary storage to hold new outputs when user interact with a frame
|
91 |
+
# to add clicks or mask (it's merged into "output_dict" before propagation starts)
|
92 |
+
inference_state["temp_output_dict_per_obj"] = {}
|
93 |
+
# Frames that already holds consolidated outputs from click or mask inputs
|
94 |
+
# (we directly use their consolidated outputs during tracking)
|
95 |
+
# metadata for each tracking frame (e.g. which direction it's tracked)
|
96 |
+
inference_state["frames_tracked_per_obj"] = {}
|
97 |
+
# Warm up the visual backbone and cache the image feature on frame 0
|
98 |
+
self._get_image_feature(inference_state, frame_idx=0, batch_size=1)
|
99 |
+
return inference_state
|
100 |
+
|
101 |
+
@classmethod
|
102 |
+
def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2VideoPredictor":
|
103 |
+
"""
|
104 |
+
Load a pretrained model from the Hugging Face hub.
|
105 |
+
|
106 |
+
Arguments:
|
107 |
+
model_id (str): The Hugging Face repository ID.
|
108 |
+
**kwargs: Additional arguments to pass to the model constructor.
|
109 |
+
|
110 |
+
Returns:
|
111 |
+
(SAM2VideoPredictor): The loaded model.
|
112 |
+
"""
|
113 |
+
from sam2.build_sam import build_sam2_video_predictor_hf
|
114 |
+
|
115 |
+
sam_model = build_sam2_video_predictor_hf(model_id, **kwargs)
|
116 |
+
return sam_model
|
117 |
+
|
118 |
+
def _obj_id_to_idx(self, inference_state, obj_id):
|
119 |
+
"""Map client-side object id to model-side object index."""
|
120 |
+
obj_idx = inference_state["obj_id_to_idx"].get(obj_id, None)
|
121 |
+
if obj_idx is not None:
|
122 |
+
return obj_idx
|
123 |
+
|
124 |
+
# We always allow adding new objects (including after tracking starts).
|
125 |
+
allow_new_object = True
|
126 |
+
if allow_new_object:
|
127 |
+
# get the next object slot
|
128 |
+
obj_idx = len(inference_state["obj_id_to_idx"])
|
129 |
+
inference_state["obj_id_to_idx"][obj_id] = obj_idx
|
130 |
+
inference_state["obj_idx_to_id"][obj_idx] = obj_id
|
131 |
+
inference_state["obj_ids"] = list(inference_state["obj_id_to_idx"])
|
132 |
+
# set up input and output structures for this object
|
133 |
+
inference_state["point_inputs_per_obj"][obj_idx] = {}
|
134 |
+
inference_state["mask_inputs_per_obj"][obj_idx] = {}
|
135 |
+
inference_state["output_dict_per_obj"][obj_idx] = {
|
136 |
+
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
137 |
+
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
138 |
+
}
|
139 |
+
inference_state["temp_output_dict_per_obj"][obj_idx] = {
|
140 |
+
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
141 |
+
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
142 |
+
}
|
143 |
+
inference_state["frames_tracked_per_obj"][obj_idx] = {}
|
144 |
+
return obj_idx
|
145 |
+
else:
|
146 |
+
raise RuntimeError(
|
147 |
+
f"Cannot add new object id {obj_id} after tracking starts. "
|
148 |
+
f"All existing object ids: {inference_state['obj_ids']}. "
|
149 |
+
f"Please call 'reset_state' to restart from scratch."
|
150 |
+
)
|
151 |
+
|
152 |
+
def _obj_idx_to_id(self, inference_state, obj_idx):
|
153 |
+
"""Map model-side object index to client-side object id."""
|
154 |
+
return inference_state["obj_idx_to_id"][obj_idx]
|
155 |
+
|
156 |
+
def _get_obj_num(self, inference_state):
|
157 |
+
"""Get the total number of unique object ids received so far in this session."""
|
158 |
+
return len(inference_state["obj_idx_to_id"])
|
159 |
+
|
160 |
+
@torch.inference_mode()
|
161 |
+
def add_new_points_or_box(
|
162 |
+
self,
|
163 |
+
inference_state,
|
164 |
+
frame_idx,
|
165 |
+
obj_id,
|
166 |
+
points=None,
|
167 |
+
labels=None,
|
168 |
+
clear_old_points=True,
|
169 |
+
normalize_coords=True,
|
170 |
+
box=None,
|
171 |
+
):
|
172 |
+
"""Add new points to a frame."""
|
173 |
+
obj_idx = self._obj_id_to_idx(inference_state, obj_id)
|
174 |
+
point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx]
|
175 |
+
mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx]
|
176 |
+
|
177 |
+
if (points is not None) != (labels is not None):
|
178 |
+
raise ValueError("points and labels must be provided together")
|
179 |
+
if points is None and box is None:
|
180 |
+
raise ValueError("at least one of points or box must be provided as input")
|
181 |
+
|
182 |
+
if points is None:
|
183 |
+
points = torch.zeros(0, 2, dtype=torch.float32)
|
184 |
+
elif not isinstance(points, torch.Tensor):
|
185 |
+
points = torch.tensor(points, dtype=torch.float32)
|
186 |
+
if labels is None:
|
187 |
+
labels = torch.zeros(0, dtype=torch.int32)
|
188 |
+
elif not isinstance(labels, torch.Tensor):
|
189 |
+
labels = torch.tensor(labels, dtype=torch.int32)
|
190 |
+
if points.dim() == 2:
|
191 |
+
points = points.unsqueeze(0) # add batch dimension
|
192 |
+
if labels.dim() == 1:
|
193 |
+
labels = labels.unsqueeze(0) # add batch dimension
|
194 |
+
|
195 |
+
# If `box` is provided, we add it as the first two points with labels 2 and 3
|
196 |
+
# along with the user-provided points (consistent with how SAM 2 is trained).
|
197 |
+
if box is not None:
|
198 |
+
if not clear_old_points:
|
199 |
+
raise ValueError(
|
200 |
+
"cannot add box without clearing old points, since "
|
201 |
+
"box prompt must be provided before any point prompt "
|
202 |
+
"(please use clear_old_points=True instead)"
|
203 |
+
)
|
204 |
+
if not isinstance(box, torch.Tensor):
|
205 |
+
box = torch.tensor(box, dtype=torch.float32, device=points.device)
|
206 |
+
box_coords = box.reshape(1, 2, 2)
|
207 |
+
box_labels = torch.tensor([2, 3], dtype=torch.int32, device=labels.device)
|
208 |
+
box_labels = box_labels.reshape(1, 2)
|
209 |
+
points = torch.cat([box_coords, points], dim=1)
|
210 |
+
labels = torch.cat([box_labels, labels], dim=1)
|
211 |
+
|
212 |
+
if normalize_coords:
|
213 |
+
video_H = inference_state["video_height"]
|
214 |
+
video_W = inference_state["video_width"]
|
215 |
+
points = points / torch.tensor([video_W, video_H]).to(points.device)
|
216 |
+
# scale the (normalized) coordinates by the model's internal image size
|
217 |
+
points = points * self.image_size
|
218 |
+
points = points.to(inference_state["device"])
|
219 |
+
labels = labels.to(inference_state["device"])
|
220 |
+
|
221 |
+
if not clear_old_points:
|
222 |
+
point_inputs = point_inputs_per_frame.get(frame_idx, None)
|
223 |
+
else:
|
224 |
+
point_inputs = None
|
225 |
+
point_inputs = concat_points(point_inputs, points, labels)
|
226 |
+
|
227 |
+
point_inputs_per_frame[frame_idx] = point_inputs
|
228 |
+
mask_inputs_per_frame.pop(frame_idx, None)
|
229 |
+
# If this frame hasn't been tracked before, we treat it as an initial conditioning
|
230 |
+
# frame, meaning that the inputs points are to generate segments on this frame without
|
231 |
+
# using any memory from other frames, like in SAM. Otherwise (if it has been tracked),
|
232 |
+
# the input points will be used to correct the already tracked masks.
|
233 |
+
obj_frames_tracked = inference_state["frames_tracked_per_obj"][obj_idx]
|
234 |
+
is_init_cond_frame = frame_idx not in obj_frames_tracked
|
235 |
+
# whether to track in reverse time order
|
236 |
+
if is_init_cond_frame:
|
237 |
+
reverse = False
|
238 |
+
else:
|
239 |
+
reverse = obj_frames_tracked[frame_idx]["reverse"]
|
240 |
+
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
241 |
+
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
|
242 |
+
# Add a frame to conditioning output if it's an initial conditioning frame or
|
243 |
+
# if the model sees all frames receiving clicks/mask as conditioning frames.
|
244 |
+
is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond
|
245 |
+
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
|
246 |
+
|
247 |
+
# Get any previously predicted mask logits on this object and feed it along with
|
248 |
+
# the new clicks into the SAM mask decoder.
|
249 |
+
prev_sam_mask_logits = None
|
250 |
+
# lookup temporary output dict first, which contains the most recent output
|
251 |
+
# (if not found, then lookup conditioning and non-conditioning frame output)
|
252 |
+
prev_out = obj_temp_output_dict[storage_key].get(frame_idx)
|
253 |
+
if prev_out is None:
|
254 |
+
prev_out = obj_output_dict["cond_frame_outputs"].get(frame_idx)
|
255 |
+
if prev_out is None:
|
256 |
+
prev_out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx)
|
257 |
+
|
258 |
+
if prev_out is not None and prev_out["pred_masks"] is not None:
|
259 |
+
device = inference_state["device"]
|
260 |
+
prev_sam_mask_logits = prev_out["pred_masks"].to(device, non_blocking=True)
|
261 |
+
# Clamp the scale of prev_sam_mask_logits to avoid rare numerical issues.
|
262 |
+
prev_sam_mask_logits = torch.clamp(prev_sam_mask_logits, -32.0, 32.0)
|
263 |
+
current_out, _ = self._run_single_frame_inference(
|
264 |
+
inference_state=inference_state,
|
265 |
+
output_dict=obj_output_dict, # run on the slice of a single object
|
266 |
+
frame_idx=frame_idx,
|
267 |
+
batch_size=1, # run on the slice of a single object
|
268 |
+
is_init_cond_frame=is_init_cond_frame,
|
269 |
+
point_inputs=point_inputs,
|
270 |
+
mask_inputs=None,
|
271 |
+
reverse=reverse,
|
272 |
+
# Skip the memory encoder when adding clicks or mask. We execute the memory encoder
|
273 |
+
# at the beginning of `propagate_in_video` (after user finalize their clicks). This
|
274 |
+
# allows us to enforce non-overlapping constraints on all objects before encoding
|
275 |
+
# them into memory.
|
276 |
+
run_mem_encoder=False,
|
277 |
+
prev_sam_mask_logits=prev_sam_mask_logits,
|
278 |
+
)
|
279 |
+
# Add the output to the output dict (to be used as future memory)
|
280 |
+
obj_temp_output_dict[storage_key][frame_idx] = current_out
|
281 |
+
|
282 |
+
# Resize the output mask to the original video resolution
|
283 |
+
obj_ids = inference_state["obj_ids"]
|
284 |
+
consolidated_out = self._consolidate_temp_output_across_obj(
|
285 |
+
inference_state,
|
286 |
+
frame_idx,
|
287 |
+
is_cond=is_cond,
|
288 |
+
consolidate_at_video_res=True,
|
289 |
+
)
|
290 |
+
_, video_res_masks = self._get_orig_video_res_output(
|
291 |
+
inference_state, consolidated_out["pred_masks_video_res"]
|
292 |
+
)
|
293 |
+
return frame_idx, obj_ids, video_res_masks
|
294 |
+
|
295 |
+
def add_new_points(self, *args, **kwargs):
|
296 |
+
"""Deprecated method. Please use `add_new_points_or_box` instead."""
|
297 |
+
return self.add_new_points_or_box(*args, **kwargs)
|
298 |
+
|
299 |
+
@torch.inference_mode()
|
300 |
+
def add_new_mask(
|
301 |
+
self,
|
302 |
+
inference_state,
|
303 |
+
frame_idx,
|
304 |
+
obj_id,
|
305 |
+
mask,
|
306 |
+
):
|
307 |
+
"""Add new mask to a frame."""
|
308 |
+
obj_idx = self._obj_id_to_idx(inference_state, obj_id)
|
309 |
+
point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx]
|
310 |
+
mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx]
|
311 |
+
|
312 |
+
if not isinstance(mask, torch.Tensor):
|
313 |
+
mask = torch.tensor(mask, dtype=torch.bool)
|
314 |
+
assert mask.dim() == 2
|
315 |
+
mask_H, mask_W = mask.shape
|
316 |
+
mask_inputs_orig = mask[None, None] # add batch and channel dimension
|
317 |
+
mask_inputs_orig = mask_inputs_orig.float().to(inference_state["device"])
|
318 |
+
|
319 |
+
# resize the mask if it doesn't match the model's image size
|
320 |
+
if mask_H != self.image_size or mask_W != self.image_size:
|
321 |
+
mask_inputs = torch.nn.functional.interpolate(
|
322 |
+
mask_inputs_orig,
|
323 |
+
size=(self.image_size, self.image_size),
|
324 |
+
align_corners=False,
|
325 |
+
mode="bilinear",
|
326 |
+
antialias=True, # use antialias for downsampling
|
327 |
+
)
|
328 |
+
mask_inputs = (mask_inputs >= 0.5).float()
|
329 |
+
else:
|
330 |
+
mask_inputs = mask_inputs_orig
|
331 |
+
|
332 |
+
mask_inputs_per_frame[frame_idx] = mask_inputs
|
333 |
+
point_inputs_per_frame.pop(frame_idx, None)
|
334 |
+
# If this frame hasn't been tracked before, we treat it as an initial conditioning
|
335 |
+
# frame, meaning that the inputs points are to generate segments on this frame without
|
336 |
+
# using any memory from other frames, like in SAM. Otherwise (if it has been tracked),
|
337 |
+
# the input points will be used to correct the already tracked masks.
|
338 |
+
obj_frames_tracked = inference_state["frames_tracked_per_obj"][obj_idx]
|
339 |
+
is_init_cond_frame = frame_idx not in obj_frames_tracked
|
340 |
+
# whether to track in reverse time order
|
341 |
+
if is_init_cond_frame:
|
342 |
+
reverse = False
|
343 |
+
else:
|
344 |
+
reverse = obj_frames_tracked[frame_idx]["reverse"]
|
345 |
+
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
346 |
+
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
|
347 |
+
# Add a frame to conditioning output if it's an initial conditioning frame or
|
348 |
+
# if the model sees all frames receiving clicks/mask as conditioning frames.
|
349 |
+
is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond
|
350 |
+
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
|
351 |
+
|
352 |
+
current_out, _ = self._run_single_frame_inference(
|
353 |
+
inference_state=inference_state,
|
354 |
+
output_dict=obj_output_dict, # run on the slice of a single object
|
355 |
+
frame_idx=frame_idx,
|
356 |
+
batch_size=1, # run on the slice of a single object
|
357 |
+
is_init_cond_frame=is_init_cond_frame,
|
358 |
+
point_inputs=None,
|
359 |
+
mask_inputs=mask_inputs,
|
360 |
+
reverse=reverse,
|
361 |
+
# Skip the memory encoder when adding clicks or mask. We execute the memory encoder
|
362 |
+
# at the beginning of `propagate_in_video` (after user finalize their clicks). This
|
363 |
+
# allows us to enforce non-overlapping constraints on all objects before encoding
|
364 |
+
# them into memory.
|
365 |
+
run_mem_encoder=False,
|
366 |
+
)
|
367 |
+
# Add the output to the output dict (to be used as future memory)
|
368 |
+
obj_temp_output_dict[storage_key][frame_idx] = current_out
|
369 |
+
|
370 |
+
# Resize the output mask to the original video resolution
|
371 |
+
obj_ids = inference_state["obj_ids"]
|
372 |
+
consolidated_out = self._consolidate_temp_output_across_obj(
|
373 |
+
inference_state,
|
374 |
+
frame_idx,
|
375 |
+
is_cond=is_cond,
|
376 |
+
consolidate_at_video_res=True,
|
377 |
+
)
|
378 |
+
_, video_res_masks = self._get_orig_video_res_output(
|
379 |
+
inference_state, consolidated_out["pred_masks_video_res"]
|
380 |
+
)
|
381 |
+
return frame_idx, obj_ids, video_res_masks
|
382 |
+
|
383 |
+
def _get_orig_video_res_output(self, inference_state, any_res_masks):
|
384 |
+
"""
|
385 |
+
Resize the object scores to the original video resolution (video_res_masks)
|
386 |
+
and apply non-overlapping constraints for final output.
|
387 |
+
"""
|
388 |
+
device = inference_state["device"]
|
389 |
+
video_H = inference_state["video_height"]
|
390 |
+
video_W = inference_state["video_width"]
|
391 |
+
any_res_masks = any_res_masks.to(device, non_blocking=True)
|
392 |
+
if any_res_masks.shape[-2:] == (video_H, video_W):
|
393 |
+
video_res_masks = any_res_masks
|
394 |
+
else:
|
395 |
+
video_res_masks = torch.nn.functional.interpolate(
|
396 |
+
any_res_masks,
|
397 |
+
size=(video_H, video_W),
|
398 |
+
mode="bilinear",
|
399 |
+
align_corners=False,
|
400 |
+
)
|
401 |
+
if self.non_overlap_masks:
|
402 |
+
video_res_masks = self._apply_non_overlapping_constraints(video_res_masks)
|
403 |
+
return any_res_masks, video_res_masks
|
404 |
+
|
405 |
+
def _consolidate_temp_output_across_obj(
|
406 |
+
self,
|
407 |
+
inference_state,
|
408 |
+
frame_idx,
|
409 |
+
is_cond,
|
410 |
+
consolidate_at_video_res=False,
|
411 |
+
):
|
412 |
+
"""
|
413 |
+
Consolidate the per-object temporary outputs in `temp_output_dict_per_obj` on
|
414 |
+
a frame into a single output for all objects, including
|
415 |
+
1) fill any missing objects either from `output_dict_per_obj` (if they exist in
|
416 |
+
`output_dict_per_obj` for this frame) or leave them as placeholder values
|
417 |
+
(if they don't exist in `output_dict_per_obj` for this frame);
|
418 |
+
2) if specified, rerun memory encoder after apply non-overlapping constraints
|
419 |
+
on the object scores.
|
420 |
+
"""
|
421 |
+
batch_size = self._get_obj_num(inference_state)
|
422 |
+
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
|
423 |
+
# Optionally, we allow consolidating the temporary outputs at the original
|
424 |
+
# video resolution (to provide a better editing experience for mask prompts).
|
425 |
+
if consolidate_at_video_res:
|
426 |
+
consolidated_H = inference_state["video_height"]
|
427 |
+
consolidated_W = inference_state["video_width"]
|
428 |
+
consolidated_mask_key = "pred_masks_video_res"
|
429 |
+
else:
|
430 |
+
consolidated_H = consolidated_W = self.image_size // 4
|
431 |
+
consolidated_mask_key = "pred_masks"
|
432 |
+
|
433 |
+
# Initialize `consolidated_out`. Its "maskmem_features" and "maskmem_pos_enc"
|
434 |
+
# will be added when rerunning the memory encoder after applying non-overlapping
|
435 |
+
# constraints to object scores. Its "pred_masks" are prefilled with a large
|
436 |
+
# negative value (NO_OBJ_SCORE) to represent missing objects.
|
437 |
+
consolidated_out = {
|
438 |
+
consolidated_mask_key: torch.full(
|
439 |
+
size=(batch_size, 1, consolidated_H, consolidated_W),
|
440 |
+
fill_value=NO_OBJ_SCORE,
|
441 |
+
dtype=torch.float32,
|
442 |
+
device=inference_state["storage_device"],
|
443 |
+
),
|
444 |
+
}
|
445 |
+
for obj_idx in range(batch_size):
|
446 |
+
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
|
447 |
+
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
448 |
+
out = obj_temp_output_dict[storage_key].get(frame_idx, None)
|
449 |
+
# If the object doesn't appear in "temp_output_dict_per_obj" on this frame,
|
450 |
+
# we fall back and look up its previous output in "output_dict_per_obj".
|
451 |
+
# We look up both "cond_frame_outputs" and "non_cond_frame_outputs" in
|
452 |
+
# "output_dict_per_obj" to find a previous output for this object.
|
453 |
+
if out is None:
|
454 |
+
out = obj_output_dict["cond_frame_outputs"].get(frame_idx, None)
|
455 |
+
if out is None:
|
456 |
+
out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx, None)
|
457 |
+
# If the object doesn't appear in "output_dict_per_obj" either, we skip it
|
458 |
+
# and leave its mask scores to the default scores (i.e. the NO_OBJ_SCORE
|
459 |
+
# placeholder above) and set its object pointer to be a dummy pointer.
|
460 |
+
if out is None:
|
461 |
+
continue
|
462 |
+
# Add the temporary object output mask to consolidated output mask
|
463 |
+
obj_mask = out["pred_masks"]
|
464 |
+
consolidated_pred_masks = consolidated_out[consolidated_mask_key]
|
465 |
+
if obj_mask.shape[-2:] == consolidated_pred_masks.shape[-2:]:
|
466 |
+
consolidated_pred_masks[obj_idx : obj_idx + 1] = obj_mask
|
467 |
+
else:
|
468 |
+
# Resize first if temporary object mask has a different resolution
|
469 |
+
resized_obj_mask = torch.nn.functional.interpolate(
|
470 |
+
obj_mask,
|
471 |
+
size=consolidated_pred_masks.shape[-2:],
|
472 |
+
mode="bilinear",
|
473 |
+
align_corners=False,
|
474 |
+
)
|
475 |
+
consolidated_pred_masks[obj_idx : obj_idx + 1] = resized_obj_mask
|
476 |
+
|
477 |
+
return consolidated_out
|
478 |
+
|
479 |
+
@torch.inference_mode()
|
480 |
+
def propagate_in_video_preflight(self, inference_state):
|
481 |
+
"""Prepare inference_state and consolidate temporary outputs before tracking."""
|
482 |
+
# Check and make sure that every object has received input points or masks.
|
483 |
+
batch_size = self._get_obj_num(inference_state)
|
484 |
+
if batch_size == 0:
|
485 |
+
raise RuntimeError(
|
486 |
+
"No input points or masks are provided for any object; please add inputs first."
|
487 |
+
)
|
488 |
+
|
489 |
+
# Consolidate per-object temporary outputs in "temp_output_dict_per_obj" and
|
490 |
+
# add them into "output_dict".
|
491 |
+
for obj_idx in range(batch_size):
|
492 |
+
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
493 |
+
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
|
494 |
+
for is_cond in [False, True]:
|
495 |
+
# Separately consolidate conditioning and non-conditioning temp outputs
|
496 |
+
storage_key = (
|
497 |
+
"cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
|
498 |
+
)
|
499 |
+
# Find all the frames that contain temporary outputs for any objects
|
500 |
+
# (these should be the frames that have just received clicks for mask inputs
|
501 |
+
# via `add_new_points_or_box` or `add_new_mask`)
|
502 |
+
for frame_idx, out in obj_temp_output_dict[storage_key].items():
|
503 |
+
# Run memory encoder on the temporary outputs (if the memory feature is missing)
|
504 |
+
if out["maskmem_features"] is None:
|
505 |
+
high_res_masks = torch.nn.functional.interpolate(
|
506 |
+
out["pred_masks"].to(inference_state["device"]),
|
507 |
+
size=(self.image_size, self.image_size),
|
508 |
+
mode="bilinear",
|
509 |
+
align_corners=False,
|
510 |
+
)
|
511 |
+
maskmem_features, maskmem_pos_enc = self._run_memory_encoder(
|
512 |
+
inference_state=inference_state,
|
513 |
+
frame_idx=frame_idx,
|
514 |
+
batch_size=1, # run on the slice of a single object
|
515 |
+
high_res_masks=high_res_masks,
|
516 |
+
object_score_logits=out["object_score_logits"],
|
517 |
+
# these frames are what the user interacted with
|
518 |
+
is_mask_from_pts=True,
|
519 |
+
)
|
520 |
+
out["maskmem_features"] = maskmem_features
|
521 |
+
out["maskmem_pos_enc"] = maskmem_pos_enc
|
522 |
+
|
523 |
+
obj_output_dict[storage_key][frame_idx] = out
|
524 |
+
if self.clear_non_cond_mem_around_input:
|
525 |
+
# clear non-conditioning memory of the surrounding frames
|
526 |
+
self._clear_obj_non_cond_mem_around_input(
|
527 |
+
inference_state, frame_idx, obj_idx
|
528 |
+
)
|
529 |
+
|
530 |
+
# clear temporary outputs in `temp_output_dict_per_obj`
|
531 |
+
obj_temp_output_dict[storage_key].clear()
|
532 |
+
|
533 |
+
# check and make sure that every object has received input points or masks
|
534 |
+
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
535 |
+
if len(obj_output_dict["cond_frame_outputs"]) == 0:
|
536 |
+
obj_id = self._obj_idx_to_id(inference_state, obj_idx)
|
537 |
+
raise RuntimeError(
|
538 |
+
f"No input points or masks are provided for object id {obj_id}; please add inputs first."
|
539 |
+
)
|
540 |
+
# edge case: if an output is added to "cond_frame_outputs", we remove any prior
|
541 |
+
# output on the same frame in "non_cond_frame_outputs"
|
542 |
+
for frame_idx in obj_output_dict["cond_frame_outputs"]:
|
543 |
+
obj_output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
|
544 |
+
|
545 |
+
@torch.inference_mode()
|
546 |
+
def propagate_in_video(
|
547 |
+
self,
|
548 |
+
inference_state,
|
549 |
+
start_frame_idx=None,
|
550 |
+
max_frame_num_to_track=None,
|
551 |
+
reverse=False,
|
552 |
+
):
|
553 |
+
"""Propagate the input points across frames to track in the entire video."""
|
554 |
+
self.propagate_in_video_preflight(inference_state)
|
555 |
+
|
556 |
+
obj_ids = inference_state["obj_ids"]
|
557 |
+
num_frames = inference_state["num_frames"]
|
558 |
+
batch_size = self._get_obj_num(inference_state)
|
559 |
+
|
560 |
+
# set start index, end index, and processing order
|
561 |
+
if start_frame_idx is None:
|
562 |
+
# default: start from the earliest frame with input points
|
563 |
+
start_frame_idx = min(
|
564 |
+
t
|
565 |
+
for obj_output_dict in inference_state["output_dict_per_obj"].values()
|
566 |
+
for t in obj_output_dict["cond_frame_outputs"]
|
567 |
+
)
|
568 |
+
if max_frame_num_to_track is None:
|
569 |
+
# default: track all the frames in the video
|
570 |
+
max_frame_num_to_track = num_frames
|
571 |
+
if reverse:
|
572 |
+
end_frame_idx = max(start_frame_idx - max_frame_num_to_track, 0)
|
573 |
+
if start_frame_idx > 0:
|
574 |
+
processing_order = range(start_frame_idx, end_frame_idx - 1, -1)
|
575 |
+
else:
|
576 |
+
processing_order = [] # skip reverse tracking if starting from frame 0
|
577 |
+
else:
|
578 |
+
end_frame_idx = min(
|
579 |
+
start_frame_idx + max_frame_num_to_track, num_frames - 1
|
580 |
+
)
|
581 |
+
processing_order = range(start_frame_idx, end_frame_idx + 1)
|
582 |
+
|
583 |
+
for frame_idx in tqdm(processing_order, desc="propagate in video"):
|
584 |
+
pred_masks_per_obj = [None] * batch_size
|
585 |
+
for obj_idx in range(batch_size):
|
586 |
+
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
587 |
+
# We skip those frames already in consolidated outputs (these are frames
|
588 |
+
# that received input clicks or mask). Note that we cannot directly run
|
589 |
+
# batched forward on them via `_run_single_frame_inference` because the
|
590 |
+
# number of clicks on each object might be different.
|
591 |
+
if frame_idx in obj_output_dict["cond_frame_outputs"]:
|
592 |
+
storage_key = "cond_frame_outputs"
|
593 |
+
current_out = obj_output_dict[storage_key][frame_idx]
|
594 |
+
device = inference_state["device"]
|
595 |
+
pred_masks = current_out["pred_masks"].to(device, non_blocking=True)
|
596 |
+
if self.clear_non_cond_mem_around_input:
|
597 |
+
# clear non-conditioning memory of the surrounding frames
|
598 |
+
self._clear_obj_non_cond_mem_around_input(
|
599 |
+
inference_state, frame_idx, obj_idx
|
600 |
+
)
|
601 |
+
else:
|
602 |
+
storage_key = "non_cond_frame_outputs"
|
603 |
+
current_out, pred_masks = self._run_single_frame_inference(
|
604 |
+
inference_state=inference_state,
|
605 |
+
output_dict=obj_output_dict,
|
606 |
+
frame_idx=frame_idx,
|
607 |
+
batch_size=1, # run on the slice of a single object
|
608 |
+
is_init_cond_frame=False,
|
609 |
+
point_inputs=None,
|
610 |
+
mask_inputs=None,
|
611 |
+
reverse=reverse,
|
612 |
+
run_mem_encoder=True,
|
613 |
+
)
|
614 |
+
obj_output_dict[storage_key][frame_idx] = current_out
|
615 |
+
|
616 |
+
inference_state["frames_tracked_per_obj"][obj_idx][frame_idx] = {
|
617 |
+
"reverse": reverse
|
618 |
+
}
|
619 |
+
pred_masks_per_obj[obj_idx] = pred_masks
|
620 |
+
|
621 |
+
# Resize the output mask to the original video resolution (we directly use
|
622 |
+
# the mask scores on GPU for output to avoid any CPU conversion in between)
|
623 |
+
if len(pred_masks_per_obj) > 1:
|
624 |
+
all_pred_masks = torch.cat(pred_masks_per_obj, dim=0)
|
625 |
+
else:
|
626 |
+
all_pred_masks = pred_masks_per_obj[0]
|
627 |
+
_, video_res_masks = self._get_orig_video_res_output(
|
628 |
+
inference_state, all_pred_masks
|
629 |
+
)
|
630 |
+
yield frame_idx, obj_ids, video_res_masks
|
631 |
+
|
632 |
+
@torch.inference_mode()
|
633 |
+
def clear_all_prompts_in_frame(
|
634 |
+
self, inference_state, frame_idx, obj_id, need_output=True
|
635 |
+
):
|
636 |
+
"""Remove all input points or mask in a specific frame for a given object."""
|
637 |
+
obj_idx = self._obj_id_to_idx(inference_state, obj_id)
|
638 |
+
|
639 |
+
# Clear the conditioning information on the given frame
|
640 |
+
inference_state["point_inputs_per_obj"][obj_idx].pop(frame_idx, None)
|
641 |
+
inference_state["mask_inputs_per_obj"][obj_idx].pop(frame_idx, None)
|
642 |
+
|
643 |
+
temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
|
644 |
+
temp_output_dict_per_obj[obj_idx]["cond_frame_outputs"].pop(frame_idx, None)
|
645 |
+
temp_output_dict_per_obj[obj_idx]["non_cond_frame_outputs"].pop(frame_idx, None)
|
646 |
+
|
647 |
+
# Remove the frame's conditioning output (possibly downgrading it to non-conditioning)
|
648 |
+
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
649 |
+
out = obj_output_dict["cond_frame_outputs"].pop(frame_idx, None)
|
650 |
+
if out is not None:
|
651 |
+
# The frame is not a conditioning frame anymore since it's not receiving inputs,
|
652 |
+
# so we "downgrade" its output (if exists) to a non-conditioning frame output.
|
653 |
+
obj_output_dict["non_cond_frame_outputs"][frame_idx] = out
|
654 |
+
inference_state["frames_tracked_per_obj"][obj_idx].pop(frame_idx, None)
|
655 |
+
|
656 |
+
if not need_output:
|
657 |
+
return
|
658 |
+
# Finally, output updated masks per object (after removing the inputs above)
|
659 |
+
obj_ids = inference_state["obj_ids"]
|
660 |
+
is_cond = any(
|
661 |
+
frame_idx in obj_temp_output_dict["cond_frame_outputs"]
|
662 |
+
for obj_temp_output_dict in temp_output_dict_per_obj.values()
|
663 |
+
)
|
664 |
+
consolidated_out = self._consolidate_temp_output_across_obj(
|
665 |
+
inference_state,
|
666 |
+
frame_idx,
|
667 |
+
is_cond=is_cond,
|
668 |
+
consolidate_at_video_res=True,
|
669 |
+
)
|
670 |
+
_, video_res_masks = self._get_orig_video_res_output(
|
671 |
+
inference_state, consolidated_out["pred_masks_video_res"]
|
672 |
+
)
|
673 |
+
return frame_idx, obj_ids, video_res_masks
|
674 |
+
|
675 |
+
@torch.inference_mode()
|
676 |
+
def reset_state(self, inference_state):
|
677 |
+
"""Remove all input points or mask in all frames throughout the video."""
|
678 |
+
self._reset_tracking_results(inference_state)
|
679 |
+
# Remove all object ids
|
680 |
+
inference_state["obj_id_to_idx"].clear()
|
681 |
+
inference_state["obj_idx_to_id"].clear()
|
682 |
+
inference_state["obj_ids"].clear()
|
683 |
+
inference_state["point_inputs_per_obj"].clear()
|
684 |
+
inference_state["mask_inputs_per_obj"].clear()
|
685 |
+
inference_state["output_dict_per_obj"].clear()
|
686 |
+
inference_state["temp_output_dict_per_obj"].clear()
|
687 |
+
inference_state["frames_tracked_per_obj"].clear()
|
688 |
+
|
689 |
+
def _reset_tracking_results(self, inference_state):
|
690 |
+
"""Reset all tracking inputs and results across the videos."""
|
691 |
+
for v in inference_state["point_inputs_per_obj"].values():
|
692 |
+
v.clear()
|
693 |
+
for v in inference_state["mask_inputs_per_obj"].values():
|
694 |
+
v.clear()
|
695 |
+
for v in inference_state["output_dict_per_obj"].values():
|
696 |
+
v["cond_frame_outputs"].clear()
|
697 |
+
v["non_cond_frame_outputs"].clear()
|
698 |
+
for v in inference_state["temp_output_dict_per_obj"].values():
|
699 |
+
v["cond_frame_outputs"].clear()
|
700 |
+
v["non_cond_frame_outputs"].clear()
|
701 |
+
for v in inference_state["frames_tracked_per_obj"].values():
|
702 |
+
v.clear()
|
703 |
+
|
704 |
+
def _get_image_feature(self, inference_state, frame_idx, batch_size):
|
705 |
+
"""Compute the image features on a given frame."""
|
706 |
+
# Look up in the cache first
|
707 |
+
image, backbone_out = inference_state["cached_features"].get(
|
708 |
+
frame_idx, (None, None)
|
709 |
+
)
|
710 |
+
if backbone_out is None:
|
711 |
+
# Cache miss -- we will run inference on a single image
|
712 |
+
device = inference_state["device"]
|
713 |
+
image = inference_state["images"][frame_idx].to(device).float().unsqueeze(0)
|
714 |
+
backbone_out = self.forward_image(image)
|
715 |
+
# Cache the most recent frame's feature (for repeated interactions with
|
716 |
+
# a frame; we can use an LRU cache for more frames in the future).
|
717 |
+
inference_state["cached_features"] = {frame_idx: (image, backbone_out)}
|
718 |
+
|
719 |
+
# expand the features to have the same dimension as the number of objects
|
720 |
+
expanded_image = image.expand(batch_size, -1, -1, -1)
|
721 |
+
expanded_backbone_out = {
|
722 |
+
"backbone_fpn": backbone_out["backbone_fpn"].copy(),
|
723 |
+
"vision_pos_enc": backbone_out["vision_pos_enc"].copy(),
|
724 |
+
}
|
725 |
+
for i, feat in enumerate(expanded_backbone_out["backbone_fpn"]):
|
726 |
+
expanded_backbone_out["backbone_fpn"][i] = feat.expand(
|
727 |
+
batch_size, -1, -1, -1
|
728 |
+
)
|
729 |
+
for i, pos in enumerate(expanded_backbone_out["vision_pos_enc"]):
|
730 |
+
pos = pos.expand(batch_size, -1, -1, -1)
|
731 |
+
expanded_backbone_out["vision_pos_enc"][i] = pos
|
732 |
+
|
733 |
+
features = self._prepare_backbone_features(expanded_backbone_out)
|
734 |
+
features = (expanded_image,) + features
|
735 |
+
return features
|
736 |
+
|
737 |
+
def _run_single_frame_inference(
|
738 |
+
self,
|
739 |
+
inference_state,
|
740 |
+
output_dict,
|
741 |
+
frame_idx,
|
742 |
+
batch_size,
|
743 |
+
is_init_cond_frame,
|
744 |
+
point_inputs,
|
745 |
+
mask_inputs,
|
746 |
+
reverse,
|
747 |
+
run_mem_encoder,
|
748 |
+
prev_sam_mask_logits=None,
|
749 |
+
):
|
750 |
+
"""Run tracking on a single frame based on current inputs and previous memory."""
|
751 |
+
# Retrieve correct image features
|
752 |
+
(
|
753 |
+
_,
|
754 |
+
_,
|
755 |
+
current_vision_feats,
|
756 |
+
current_vision_pos_embeds,
|
757 |
+
feat_sizes,
|
758 |
+
) = self._get_image_feature(inference_state, frame_idx, batch_size)
|
759 |
+
|
760 |
+
# point and mask should not appear as input simultaneously on the same frame
|
761 |
+
assert point_inputs is None or mask_inputs is None
|
762 |
+
current_out = self.track_step(
|
763 |
+
frame_idx=frame_idx,
|
764 |
+
is_init_cond_frame=is_init_cond_frame,
|
765 |
+
current_vision_feats=current_vision_feats,
|
766 |
+
current_vision_pos_embeds=current_vision_pos_embeds,
|
767 |
+
feat_sizes=feat_sizes,
|
768 |
+
point_inputs=point_inputs,
|
769 |
+
mask_inputs=mask_inputs,
|
770 |
+
output_dict=output_dict,
|
771 |
+
num_frames=inference_state["num_frames"],
|
772 |
+
track_in_reverse=reverse,
|
773 |
+
run_mem_encoder=run_mem_encoder,
|
774 |
+
prev_sam_mask_logits=prev_sam_mask_logits,
|
775 |
+
)
|
776 |
+
|
777 |
+
# optionally offload the output to CPU memory to save GPU space
|
778 |
+
storage_device = inference_state["storage_device"]
|
779 |
+
maskmem_features = current_out["maskmem_features"]
|
780 |
+
if maskmem_features is not None:
|
781 |
+
maskmem_features = maskmem_features.to(torch.bfloat16)
|
782 |
+
maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
|
783 |
+
pred_masks_gpu = current_out["pred_masks"]
|
784 |
+
# potentially fill holes in the predicted masks
|
785 |
+
if self.fill_hole_area > 0:
|
786 |
+
pred_masks_gpu = fill_holes_in_mask_scores(
|
787 |
+
pred_masks_gpu, self.fill_hole_area
|
788 |
+
)
|
789 |
+
pred_masks = pred_masks_gpu.to(storage_device, non_blocking=True)
|
790 |
+
# "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
|
791 |
+
maskmem_pos_enc = self._get_maskmem_pos_enc(inference_state, current_out)
|
792 |
+
# object pointer is a small tensor, so we always keep it on GPU memory for fast access
|
793 |
+
obj_ptr = current_out["obj_ptr"]
|
794 |
+
object_score_logits = current_out["object_score_logits"]
|
795 |
+
# make a compact version of this frame's output to reduce the state size
|
796 |
+
compact_current_out = {
|
797 |
+
"maskmem_features": maskmem_features,
|
798 |
+
"maskmem_pos_enc": maskmem_pos_enc,
|
799 |
+
"pred_masks": pred_masks,
|
800 |
+
"obj_ptr": obj_ptr,
|
801 |
+
"object_score_logits": object_score_logits,
|
802 |
+
}
|
803 |
+
return compact_current_out, pred_masks_gpu
|
804 |
+
|
805 |
+
def _run_memory_encoder(
|
806 |
+
self,
|
807 |
+
inference_state,
|
808 |
+
frame_idx,
|
809 |
+
batch_size,
|
810 |
+
high_res_masks,
|
811 |
+
object_score_logits,
|
812 |
+
is_mask_from_pts,
|
813 |
+
):
|
814 |
+
"""
|
815 |
+
Run the memory encoder on `high_res_masks`. This is usually after applying
|
816 |
+
non-overlapping constraints to object scores. Since their scores changed, their
|
817 |
+
memory also need to be computed again with the memory encoder.
|
818 |
+
"""
|
819 |
+
# Retrieve correct image features
|
820 |
+
_, _, current_vision_feats, _, feat_sizes = self._get_image_feature(
|
821 |
+
inference_state, frame_idx, batch_size
|
822 |
+
)
|
823 |
+
maskmem_features, maskmem_pos_enc = self._encode_new_memory(
|
824 |
+
current_vision_feats=current_vision_feats,
|
825 |
+
feat_sizes=feat_sizes,
|
826 |
+
pred_masks_high_res=high_res_masks,
|
827 |
+
object_score_logits=object_score_logits,
|
828 |
+
is_mask_from_pts=is_mask_from_pts,
|
829 |
+
)
|
830 |
+
|
831 |
+
# optionally offload the output to CPU memory to save GPU space
|
832 |
+
storage_device = inference_state["storage_device"]
|
833 |
+
maskmem_features = maskmem_features.to(torch.bfloat16)
|
834 |
+
maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
|
835 |
+
# "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
|
836 |
+
maskmem_pos_enc = self._get_maskmem_pos_enc(
|
837 |
+
inference_state, {"maskmem_pos_enc": maskmem_pos_enc}
|
838 |
+
)
|
839 |
+
return maskmem_features, maskmem_pos_enc
|
840 |
+
|
841 |
+
def _get_maskmem_pos_enc(self, inference_state, current_out):
|
842 |
+
"""
|
843 |
+
`maskmem_pos_enc` is the same across frames and objects, so we cache it as
|
844 |
+
a constant in the inference session to reduce session storage size.
|
845 |
+
"""
|
846 |
+
model_constants = inference_state["constants"]
|
847 |
+
# "out_maskmem_pos_enc" should be either a list of tensors or None
|
848 |
+
out_maskmem_pos_enc = current_out["maskmem_pos_enc"]
|
849 |
+
if out_maskmem_pos_enc is not None:
|
850 |
+
if "maskmem_pos_enc" not in model_constants:
|
851 |
+
assert isinstance(out_maskmem_pos_enc, list)
|
852 |
+
# only take the slice for one object, since it's same across objects
|
853 |
+
maskmem_pos_enc = [x[0:1].clone() for x in out_maskmem_pos_enc]
|
854 |
+
model_constants["maskmem_pos_enc"] = maskmem_pos_enc
|
855 |
+
else:
|
856 |
+
maskmem_pos_enc = model_constants["maskmem_pos_enc"]
|
857 |
+
# expand the cached maskmem_pos_enc to the actual batch size
|
858 |
+
batch_size = out_maskmem_pos_enc[0].size(0)
|
859 |
+
expanded_maskmem_pos_enc = [
|
860 |
+
x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc
|
861 |
+
]
|
862 |
+
else:
|
863 |
+
expanded_maskmem_pos_enc = None
|
864 |
+
return expanded_maskmem_pos_enc
|
865 |
+
|
866 |
+
@torch.inference_mode()
|
867 |
+
def remove_object(self, inference_state, obj_id, strict=False, need_output=True):
|
868 |
+
"""
|
869 |
+
Remove an object id from the tracking state. If strict is True, we check whether
|
870 |
+
the object id actually exists and raise an error if it doesn't exist.
|
871 |
+
"""
|
872 |
+
old_obj_idx_to_rm = inference_state["obj_id_to_idx"].get(obj_id, None)
|
873 |
+
updated_frames = []
|
874 |
+
# Check whether this object_id to remove actually exists and possibly raise an error.
|
875 |
+
if old_obj_idx_to_rm is None:
|
876 |
+
if not strict:
|
877 |
+
return inference_state["obj_ids"], updated_frames
|
878 |
+
raise RuntimeError(
|
879 |
+
f"Cannot remove object id {obj_id} as it doesn't exist. "
|
880 |
+
f"All existing object ids: {inference_state['obj_ids']}."
|
881 |
+
)
|
882 |
+
|
883 |
+
# If this is the only remaining object id, we simply reset the state.
|
884 |
+
if len(inference_state["obj_id_to_idx"]) == 1:
|
885 |
+
self.reset_state(inference_state)
|
886 |
+
return inference_state["obj_ids"], updated_frames
|
887 |
+
|
888 |
+
# There are still remaining objects after removing this object id. In this case,
|
889 |
+
# we need to delete the object storage from inference state tensors.
|
890 |
+
# Step 0: clear the input on those frames where this object id has point or mask input
|
891 |
+
# (note that this step is required as it might downgrade conditioning frames to
|
892 |
+
# non-conditioning ones)
|
893 |
+
obj_input_frames_inds = set()
|
894 |
+
obj_input_frames_inds.update(
|
895 |
+
inference_state["point_inputs_per_obj"][old_obj_idx_to_rm]
|
896 |
+
)
|
897 |
+
obj_input_frames_inds.update(
|
898 |
+
inference_state["mask_inputs_per_obj"][old_obj_idx_to_rm]
|
899 |
+
)
|
900 |
+
for frame_idx in obj_input_frames_inds:
|
901 |
+
self.clear_all_prompts_in_frame(
|
902 |
+
inference_state, frame_idx, obj_id, need_output=False
|
903 |
+
)
|
904 |
+
|
905 |
+
# Step 1: Update the object id mapping (note that it must be done after Step 0,
|
906 |
+
# since Step 0 still requires the old object id mappings in inference_state)
|
907 |
+
old_obj_ids = inference_state["obj_ids"]
|
908 |
+
old_obj_inds = list(range(len(old_obj_ids)))
|
909 |
+
remain_old_obj_inds = old_obj_inds.copy()
|
910 |
+
remain_old_obj_inds.remove(old_obj_idx_to_rm)
|
911 |
+
new_obj_ids = [old_obj_ids[old_idx] for old_idx in remain_old_obj_inds]
|
912 |
+
new_obj_inds = list(range(len(new_obj_ids)))
|
913 |
+
# build new mappings
|
914 |
+
old_idx_to_new_idx = dict(zip(remain_old_obj_inds, new_obj_inds))
|
915 |
+
inference_state["obj_id_to_idx"] = dict(zip(new_obj_ids, new_obj_inds))
|
916 |
+
inference_state["obj_idx_to_id"] = dict(zip(new_obj_inds, new_obj_ids))
|
917 |
+
inference_state["obj_ids"] = new_obj_ids
|
918 |
+
|
919 |
+
# Step 2: For per-object tensor storage, we shift their obj_idx in the dict keys.
|
920 |
+
def _map_keys(container):
|
921 |
+
new_kvs = []
|
922 |
+
for k in old_obj_inds:
|
923 |
+
v = container.pop(k)
|
924 |
+
if k in old_idx_to_new_idx:
|
925 |
+
new_kvs.append((old_idx_to_new_idx[k], v))
|
926 |
+
container.update(new_kvs)
|
927 |
+
|
928 |
+
_map_keys(inference_state["point_inputs_per_obj"])
|
929 |
+
_map_keys(inference_state["mask_inputs_per_obj"])
|
930 |
+
_map_keys(inference_state["output_dict_per_obj"])
|
931 |
+
_map_keys(inference_state["temp_output_dict_per_obj"])
|
932 |
+
_map_keys(inference_state["frames_tracked_per_obj"])
|
933 |
+
|
934 |
+
# Step 3: Further collect the outputs on those frames in `obj_input_frames_inds`, which
|
935 |
+
# could show an updated mask for objects previously occluded by the object being removed
|
936 |
+
if need_output:
|
937 |
+
temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
|
938 |
+
for frame_idx in obj_input_frames_inds:
|
939 |
+
is_cond = any(
|
940 |
+
frame_idx in obj_temp_output_dict["cond_frame_outputs"]
|
941 |
+
for obj_temp_output_dict in temp_output_dict_per_obj.values()
|
942 |
+
)
|
943 |
+
consolidated_out = self._consolidate_temp_output_across_obj(
|
944 |
+
inference_state,
|
945 |
+
frame_idx,
|
946 |
+
is_cond=is_cond,
|
947 |
+
consolidate_at_video_res=True,
|
948 |
+
)
|
949 |
+
_, video_res_masks = self._get_orig_video_res_output(
|
950 |
+
inference_state, consolidated_out["pred_masks_video_res"]
|
951 |
+
)
|
952 |
+
updated_frames.append((frame_idx, video_res_masks))
|
953 |
+
|
954 |
+
return inference_state["obj_ids"], updated_frames
|
955 |
+
|
956 |
+
def _clear_non_cond_mem_around_input(self, inference_state, frame_idx):
|
957 |
+
"""
|
958 |
+
Remove the non-conditioning memory around the input frame. When users provide
|
959 |
+
correction clicks, the surrounding frames' non-conditioning memories can still
|
960 |
+
contain outdated object appearance information and could confuse the model.
|
961 |
+
|
962 |
+
This method clears those non-conditioning memories surrounding the interacted
|
963 |
+
frame to avoid giving the model both old and new information about the object.
|
964 |
+
"""
|
965 |
+
r = self.memory_temporal_stride_for_eval
|
966 |
+
frame_idx_begin = frame_idx - r * self.num_maskmem
|
967 |
+
frame_idx_end = frame_idx + r * self.num_maskmem
|
968 |
+
batch_size = self._get_obj_num(inference_state)
|
969 |
+
for obj_idx in range(batch_size):
|
970 |
+
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
971 |
+
non_cond_frame_outputs = obj_output_dict["non_cond_frame_outputs"]
|
972 |
+
for t in range(frame_idx_begin, frame_idx_end + 1):
|
973 |
+
non_cond_frame_outputs.pop(t, None)
|
974 |
+
|
975 |
+
|
976 |
+
class SAM2VideoPredictorVOS(SAM2VideoPredictor):
|
977 |
+
"""Optimized for the VOS setting"""
|
978 |
+
|
979 |
+
def __init__(self, *args, **kwargs):
|
980 |
+
super().__init__(*args, **kwargs)
|
981 |
+
self._compile_all_components()
|
982 |
+
|
983 |
+
def _compile_all_components(self):
|
984 |
+
print("Compiling all components for VOS setting. First time may be very slow.")
|
985 |
+
self.memory_encoder.forward = torch.compile(
|
986 |
+
self.memory_encoder.forward,
|
987 |
+
mode="max-autotune",
|
988 |
+
fullgraph=True,
|
989 |
+
dynamic=False,
|
990 |
+
)
|
991 |
+
|
992 |
+
self.memory_attention.forward = torch.compile(
|
993 |
+
self.memory_attention.forward,
|
994 |
+
mode="max-autotune",
|
995 |
+
fullgraph=True,
|
996 |
+
dynamic=True, # Num. of memories varies
|
997 |
+
)
|
998 |
+
|
999 |
+
self.sam_prompt_encoder.forward = torch.compile(
|
1000 |
+
self.sam_prompt_encoder.forward,
|
1001 |
+
mode="max-autotune",
|
1002 |
+
fullgraph=True,
|
1003 |
+
dynamic=False, # Accuracy regression on True
|
1004 |
+
)
|
1005 |
+
|
1006 |
+
self.sam_mask_decoder.forward = torch.compile(
|
1007 |
+
self.sam_mask_decoder.forward,
|
1008 |
+
mode="max-autotune",
|
1009 |
+
fullgraph=True,
|
1010 |
+
dynamic=False, # Accuracy regression on True
|
1011 |
+
)
|
1012 |
+
|
1013 |
+
def forward_image(self, img_batch: torch.Tensor):
|
1014 |
+
"""
|
1015 |
+
Identical to the corresponding method in the parent (SAM2VideoPredictor), but
|
1016 |
+
cloning the backbone features and pos encoding to enable compilation.
|
1017 |
+
"""
|
1018 |
+
backbone_out = self.image_encoder(img_batch)
|
1019 |
+
if self.use_high_res_features_in_sam:
|
1020 |
+
# precompute projected level 0 and level 1 features in SAM decoder
|
1021 |
+
# to avoid running it again on every SAM click
|
1022 |
+
backbone_out["backbone_fpn"][0] = self.sam_mask_decoder.conv_s0(
|
1023 |
+
backbone_out["backbone_fpn"][0]
|
1024 |
+
)
|
1025 |
+
backbone_out["backbone_fpn"][1] = self.sam_mask_decoder.conv_s1(
|
1026 |
+
backbone_out["backbone_fpn"][1]
|
1027 |
+
)
|
1028 |
+
# Clone to help torch.compile
|
1029 |
+
for i in range(len(backbone_out["backbone_fpn"])):
|
1030 |
+
backbone_out["backbone_fpn"][i] = backbone_out["backbone_fpn"][i].clone()
|
1031 |
+
backbone_out["vision_pos_enc"][i] = backbone_out["vision_pos_enc"][
|
1032 |
+
i
|
1033 |
+
].clone()
|
1034 |
+
return backbone_out
|
1035 |
+
|
1036 |
+
def _forward_sam_heads(
|
1037 |
+
self,
|
1038 |
+
backbone_features,
|
1039 |
+
point_inputs=None,
|
1040 |
+
mask_inputs=None,
|
1041 |
+
high_res_features=None,
|
1042 |
+
multimask_output=False,
|
1043 |
+
):
|
1044 |
+
"""
|
1045 |
+
Identical to the corresponding method in the parent (SAM2VideoPredictor), but
|
1046 |
+
cloning the outputs of prompt_encoder and mask_decoder to enable compilation.
|
1047 |
+
"""
|
1048 |
+
B = backbone_features.size(0)
|
1049 |
+
device = backbone_features.device
|
1050 |
+
assert backbone_features.size(1) == self.sam_prompt_embed_dim
|
1051 |
+
assert backbone_features.size(2) == self.sam_image_embedding_size
|
1052 |
+
assert backbone_features.size(3) == self.sam_image_embedding_size
|
1053 |
+
|
1054 |
+
# a) Handle point prompts
|
1055 |
+
if point_inputs is not None:
|
1056 |
+
sam_point_coords = point_inputs["point_coords"]
|
1057 |
+
sam_point_labels = point_inputs["point_labels"]
|
1058 |
+
assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B
|
1059 |
+
else:
|
1060 |
+
# If no points are provide, pad with an empty point (with label -1)
|
1061 |
+
sam_point_coords = torch.zeros(B, 1, 2, device=device)
|
1062 |
+
sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device)
|
1063 |
+
|
1064 |
+
# b) Handle mask prompts
|
1065 |
+
if mask_inputs is not None:
|
1066 |
+
# If mask_inputs is provided, downsize it into low-res mask input if needed
|
1067 |
+
# and feed it as a dense mask prompt into the SAM mask encoder
|
1068 |
+
assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1)
|
1069 |
+
if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size:
|
1070 |
+
sam_mask_prompt = F.interpolate(
|
1071 |
+
mask_inputs.float(),
|
1072 |
+
size=self.sam_prompt_encoder.mask_input_size,
|
1073 |
+
align_corners=False,
|
1074 |
+
mode="bilinear",
|
1075 |
+
antialias=True, # use antialias for downsampling
|
1076 |
+
)
|
1077 |
+
else:
|
1078 |
+
sam_mask_prompt = mask_inputs
|
1079 |
+
else:
|
1080 |
+
# Otherwise, simply feed None (and SAM's prompt encoder will add
|
1081 |
+
# a learned `no_mask_embed` to indicate no mask input in this case).
|
1082 |
+
sam_mask_prompt = None
|
1083 |
+
|
1084 |
+
sparse_embeddings, dense_embeddings = self.sam_prompt_encoder(
|
1085 |
+
points=(sam_point_coords, sam_point_labels),
|
1086 |
+
boxes=None,
|
1087 |
+
masks=sam_mask_prompt,
|
1088 |
+
)
|
1089 |
+
# Clone image_pe and the outputs of sam_prompt_encoder
|
1090 |
+
# to enable compilation
|
1091 |
+
sparse_embeddings = sparse_embeddings.clone()
|
1092 |
+
dense_embeddings = dense_embeddings.clone()
|
1093 |
+
image_pe = self.sam_prompt_encoder.get_dense_pe().clone()
|
1094 |
+
(
|
1095 |
+
low_res_multimasks,
|
1096 |
+
ious,
|
1097 |
+
sam_output_tokens,
|
1098 |
+
object_score_logits,
|
1099 |
+
) = self.sam_mask_decoder(
|
1100 |
+
image_embeddings=backbone_features,
|
1101 |
+
image_pe=image_pe,
|
1102 |
+
sparse_prompt_embeddings=sparse_embeddings,
|
1103 |
+
dense_prompt_embeddings=dense_embeddings,
|
1104 |
+
multimask_output=multimask_output,
|
1105 |
+
repeat_image=False, # the image is already batched
|
1106 |
+
high_res_features=high_res_features,
|
1107 |
+
)
|
1108 |
+
# Clone the output of sam_mask_decoder
|
1109 |
+
# to enable compilation
|
1110 |
+
low_res_multimasks = low_res_multimasks.clone()
|
1111 |
+
ious = ious.clone()
|
1112 |
+
sam_output_tokens = sam_output_tokens.clone()
|
1113 |
+
object_score_logits = object_score_logits.clone()
|
1114 |
+
|
1115 |
+
if self.pred_obj_scores:
|
1116 |
+
is_obj_appearing = object_score_logits > 0
|
1117 |
+
|
1118 |
+
# Mask used for spatial memories is always a *hard* choice between obj and no obj,
|
1119 |
+
# consistent with the actual mask prediction
|
1120 |
+
low_res_multimasks = torch.where(
|
1121 |
+
is_obj_appearing[:, None, None],
|
1122 |
+
low_res_multimasks,
|
1123 |
+
NO_OBJ_SCORE,
|
1124 |
+
)
|
1125 |
+
|
1126 |
+
# convert masks from possibly bfloat16 (or float16) to float32
|
1127 |
+
# (older PyTorch versions before 2.1 don't support `interpolate` on bf16)
|
1128 |
+
low_res_multimasks = low_res_multimasks.float()
|
1129 |
+
high_res_multimasks = F.interpolate(
|
1130 |
+
low_res_multimasks,
|
1131 |
+
size=(self.image_size, self.image_size),
|
1132 |
+
mode="bilinear",
|
1133 |
+
align_corners=False,
|
1134 |
+
)
|
1135 |
+
|
1136 |
+
sam_output_token = sam_output_tokens[:, 0]
|
1137 |
+
if multimask_output:
|
1138 |
+
# take the best mask prediction (with the highest IoU estimation)
|
1139 |
+
best_iou_inds = torch.argmax(ious, dim=-1)
|
1140 |
+
batch_inds = torch.arange(B, device=device)
|
1141 |
+
low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
|
1142 |
+
high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
|
1143 |
+
if sam_output_tokens.size(1) > 1:
|
1144 |
+
sam_output_token = sam_output_tokens[batch_inds, best_iou_inds]
|
1145 |
+
else:
|
1146 |
+
low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks
|
1147 |
+
|
1148 |
+
# Extract object pointer from the SAM output token (with occlusion handling)
|
1149 |
+
obj_ptr = self.obj_ptr_proj(sam_output_token)
|
1150 |
+
if self.pred_obj_scores:
|
1151 |
+
# Allow *soft* no obj ptr, unlike for masks
|
1152 |
+
if self.soft_no_obj_ptr:
|
1153 |
+
lambda_is_obj_appearing = object_score_logits.sigmoid()
|
1154 |
+
else:
|
1155 |
+
lambda_is_obj_appearing = is_obj_appearing.float()
|
1156 |
+
|
1157 |
+
if self.fixed_no_obj_ptr:
|
1158 |
+
obj_ptr = lambda_is_obj_appearing * obj_ptr
|
1159 |
+
obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
|
1160 |
+
|
1161 |
+
return (
|
1162 |
+
low_res_multimasks,
|
1163 |
+
high_res_multimasks,
|
1164 |
+
ious,
|
1165 |
+
low_res_masks,
|
1166 |
+
high_res_masks,
|
1167 |
+
obj_ptr,
|
1168 |
+
object_score_logits,
|
1169 |
+
)
|
1170 |
+
|
1171 |
+
def _encode_new_memory(
|
1172 |
+
self,
|
1173 |
+
current_vision_feats,
|
1174 |
+
feat_sizes,
|
1175 |
+
pred_masks_high_res,
|
1176 |
+
object_score_logits,
|
1177 |
+
is_mask_from_pts,
|
1178 |
+
):
|
1179 |
+
"""
|
1180 |
+
Identical to the corresponding method in the parent (SAM2VideoPredictor), but
|
1181 |
+
cloning the memories and their pos enc to enable compilation.
|
1182 |
+
"""
|
1183 |
+
B = current_vision_feats[-1].size(1) # batch size on this frame
|
1184 |
+
C = self.hidden_dim
|
1185 |
+
H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size
|
1186 |
+
# top-level feature, (HW)BC => BCHW
|
1187 |
+
pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
|
1188 |
+
if self.non_overlap_masks_for_mem_enc and not self.training:
|
1189 |
+
# optionally, apply non-overlapping constraints to the masks (it's applied
|
1190 |
+
# in the batch dimension and should only be used during eval, where all
|
1191 |
+
# the objects come from the same video under batch size 1).
|
1192 |
+
pred_masks_high_res = self._apply_non_overlapping_constraints(
|
1193 |
+
pred_masks_high_res
|
1194 |
+
)
|
1195 |
+
# scale the raw mask logits with a temperature before applying sigmoid
|
1196 |
+
binarize = self.binarize_mask_from_pts_for_mem_enc and is_mask_from_pts
|
1197 |
+
if binarize and not self.training:
|
1198 |
+
mask_for_mem = (pred_masks_high_res > 0).float()
|
1199 |
+
else:
|
1200 |
+
# apply sigmoid on the raw mask logits to turn them into range (0, 1)
|
1201 |
+
mask_for_mem = torch.sigmoid(pred_masks_high_res)
|
1202 |
+
# apply scale and bias terms to the sigmoid probabilities
|
1203 |
+
if self.sigmoid_scale_for_mem_enc != 1.0:
|
1204 |
+
mask_for_mem = mask_for_mem * self.sigmoid_scale_for_mem_enc
|
1205 |
+
if self.sigmoid_bias_for_mem_enc != 0.0:
|
1206 |
+
mask_for_mem = mask_for_mem + self.sigmoid_bias_for_mem_enc
|
1207 |
+
maskmem_out = self.memory_encoder(
|
1208 |
+
pix_feat, mask_for_mem, skip_mask_sigmoid=True # sigmoid already applied
|
1209 |
+
)
|
1210 |
+
# Clone the feats and pos_enc to enable compilation
|
1211 |
+
maskmem_features = maskmem_out["vision_features"].clone()
|
1212 |
+
maskmem_pos_enc = [m.clone() for m in maskmem_out["vision_pos_enc"]]
|
1213 |
+
# add a no-object embedding to the spatial memory to indicate that the frame
|
1214 |
+
# is predicted to be occluded (i.e. no object is appearing in the frame)
|
1215 |
+
if self.no_obj_embed_spatial is not None:
|
1216 |
+
is_obj_appearing = (object_score_logits > 0).float()
|
1217 |
+
maskmem_features += (
|
1218 |
+
1 - is_obj_appearing[..., None, None]
|
1219 |
+
) * self.no_obj_embed_spatial[..., None, None].expand(
|
1220 |
+
*maskmem_features.shape
|
1221 |
+
)
|
1222 |
+
|
1223 |
+
return maskmem_features, maskmem_pos_enc
|
sam2/sam2_video_predictor_legacy.py
ADDED
@@ -0,0 +1,1172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import warnings
|
8 |
+
from collections import OrderedDict
|
9 |
+
|
10 |
+
import torch
|
11 |
+
|
12 |
+
from tqdm import tqdm
|
13 |
+
|
14 |
+
from sam2.modeling.sam2_base import NO_OBJ_SCORE, SAM2Base
|
15 |
+
from sam2.utils.misc import concat_points, fill_holes_in_mask_scores, load_video_frames
|
16 |
+
|
17 |
+
|
18 |
+
class SAM2VideoPredictor(SAM2Base):
|
19 |
+
"""The predictor class to handle user interactions and manage inference states."""
|
20 |
+
|
21 |
+
def __init__(
|
22 |
+
self,
|
23 |
+
fill_hole_area=0,
|
24 |
+
# whether to apply non-overlapping constraints on the output object masks
|
25 |
+
non_overlap_masks=False,
|
26 |
+
# whether to clear non-conditioning memory of the surrounding frames (which may contain outdated information) after adding correction clicks;
|
27 |
+
# note that this would only apply to *single-object tracking* unless `clear_non_cond_mem_for_multi_obj` is also set to True)
|
28 |
+
clear_non_cond_mem_around_input=False,
|
29 |
+
# whether to also clear non-conditioning memory of the surrounding frames (only effective when `clear_non_cond_mem_around_input` is True).
|
30 |
+
clear_non_cond_mem_for_multi_obj=False,
|
31 |
+
# if `add_all_frames_to_correct_as_cond` is True, we also append to the conditioning frame list any frame that receives a later correction click
|
32 |
+
# if `add_all_frames_to_correct_as_cond` is False, we conditioning frame list to only use those initial conditioning frames
|
33 |
+
add_all_frames_to_correct_as_cond=False,
|
34 |
+
**kwargs,
|
35 |
+
):
|
36 |
+
super().__init__(**kwargs)
|
37 |
+
self.fill_hole_area = fill_hole_area
|
38 |
+
self.non_overlap_masks = non_overlap_masks
|
39 |
+
self.clear_non_cond_mem_around_input = clear_non_cond_mem_around_input
|
40 |
+
self.clear_non_cond_mem_for_multi_obj = clear_non_cond_mem_for_multi_obj
|
41 |
+
self.add_all_frames_to_correct_as_cond = add_all_frames_to_correct_as_cond
|
42 |
+
|
43 |
+
@torch.inference_mode()
|
44 |
+
def init_state(
|
45 |
+
self,
|
46 |
+
video_path,
|
47 |
+
offload_video_to_cpu=False,
|
48 |
+
offload_state_to_cpu=False,
|
49 |
+
async_loading_frames=False,
|
50 |
+
):
|
51 |
+
"""Initialize an inference state."""
|
52 |
+
compute_device = self.device # device of the model
|
53 |
+
images, video_height, video_width = load_video_frames(
|
54 |
+
video_path=video_path,
|
55 |
+
image_size=self.image_size,
|
56 |
+
offload_video_to_cpu=offload_video_to_cpu,
|
57 |
+
async_loading_frames=async_loading_frames,
|
58 |
+
compute_device=compute_device,
|
59 |
+
)
|
60 |
+
inference_state = {}
|
61 |
+
inference_state["images"] = images
|
62 |
+
inference_state["num_frames"] = len(images)
|
63 |
+
# whether to offload the video frames to CPU memory
|
64 |
+
# turning on this option saves the GPU memory with only a very small overhead
|
65 |
+
inference_state["offload_video_to_cpu"] = offload_video_to_cpu
|
66 |
+
# whether to offload the inference state to CPU memory
|
67 |
+
# turning on this option saves the GPU memory at the cost of a lower tracking fps
|
68 |
+
# (e.g. in a test case of 768x768 model, fps dropped from 27 to 24 when tracking one object
|
69 |
+
# and from 24 to 21 when tracking two objects)
|
70 |
+
inference_state["offload_state_to_cpu"] = offload_state_to_cpu
|
71 |
+
# the original video height and width, used for resizing final output scores
|
72 |
+
inference_state["video_height"] = video_height
|
73 |
+
inference_state["video_width"] = video_width
|
74 |
+
inference_state["device"] = compute_device
|
75 |
+
if offload_state_to_cpu:
|
76 |
+
inference_state["storage_device"] = torch.device("cpu")
|
77 |
+
else:
|
78 |
+
inference_state["storage_device"] = compute_device
|
79 |
+
# inputs on each frame
|
80 |
+
inference_state["point_inputs_per_obj"] = {}
|
81 |
+
inference_state["mask_inputs_per_obj"] = {}
|
82 |
+
# visual features on a small number of recently visited frames for quick interactions
|
83 |
+
inference_state["cached_features"] = {}
|
84 |
+
# values that don't change across frames (so we only need to hold one copy of them)
|
85 |
+
inference_state["constants"] = {}
|
86 |
+
# mapping between client-side object id and model-side object index
|
87 |
+
inference_state["obj_id_to_idx"] = OrderedDict()
|
88 |
+
inference_state["obj_idx_to_id"] = OrderedDict()
|
89 |
+
inference_state["obj_ids"] = []
|
90 |
+
# A storage to hold the model's tracking results and states on each frame
|
91 |
+
inference_state["output_dict"] = {
|
92 |
+
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
93 |
+
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
94 |
+
}
|
95 |
+
# Slice (view) of each object tracking results, sharing the same memory with "output_dict"
|
96 |
+
inference_state["output_dict_per_obj"] = {}
|
97 |
+
# A temporary storage to hold new outputs when user interact with a frame
|
98 |
+
# to add clicks or mask (it's merged into "output_dict" before propagation starts)
|
99 |
+
inference_state["temp_output_dict_per_obj"] = {}
|
100 |
+
# Frames that already holds consolidated outputs from click or mask inputs
|
101 |
+
# (we directly use their consolidated outputs during tracking)
|
102 |
+
inference_state["consolidated_frame_inds"] = {
|
103 |
+
"cond_frame_outputs": set(), # set containing frame indices
|
104 |
+
"non_cond_frame_outputs": set(), # set containing frame indices
|
105 |
+
}
|
106 |
+
# metadata for each tracking frame (e.g. which direction it's tracked)
|
107 |
+
inference_state["tracking_has_started"] = False
|
108 |
+
inference_state["frames_already_tracked"] = {}
|
109 |
+
# Warm up the visual backbone and cache the image feature on frame 0
|
110 |
+
self._get_image_feature(inference_state, frame_idx=0, batch_size=1)
|
111 |
+
return inference_state
|
112 |
+
|
113 |
+
@classmethod
|
114 |
+
def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2VideoPredictor":
|
115 |
+
"""
|
116 |
+
Load a pretrained model from the Hugging Face hub.
|
117 |
+
|
118 |
+
Arguments:
|
119 |
+
model_id (str): The Hugging Face repository ID.
|
120 |
+
**kwargs: Additional arguments to pass to the model constructor.
|
121 |
+
|
122 |
+
Returns:
|
123 |
+
(SAM2VideoPredictor): The loaded model.
|
124 |
+
"""
|
125 |
+
from sam2.build_sam import build_sam2_video_predictor_hf
|
126 |
+
|
127 |
+
sam_model = build_sam2_video_predictor_hf(model_id, **kwargs)
|
128 |
+
return sam_model
|
129 |
+
|
130 |
+
def _obj_id_to_idx(self, inference_state, obj_id):
|
131 |
+
"""Map client-side object id to model-side object index."""
|
132 |
+
obj_idx = inference_state["obj_id_to_idx"].get(obj_id, None)
|
133 |
+
if obj_idx is not None:
|
134 |
+
return obj_idx
|
135 |
+
|
136 |
+
# This is a new object id not sent to the server before. We only allow adding
|
137 |
+
# new objects *before* the tracking starts.
|
138 |
+
allow_new_object = not inference_state["tracking_has_started"]
|
139 |
+
if allow_new_object:
|
140 |
+
# get the next object slot
|
141 |
+
obj_idx = len(inference_state["obj_id_to_idx"])
|
142 |
+
inference_state["obj_id_to_idx"][obj_id] = obj_idx
|
143 |
+
inference_state["obj_idx_to_id"][obj_idx] = obj_id
|
144 |
+
inference_state["obj_ids"] = list(inference_state["obj_id_to_idx"])
|
145 |
+
# set up input and output structures for this object
|
146 |
+
inference_state["point_inputs_per_obj"][obj_idx] = {}
|
147 |
+
inference_state["mask_inputs_per_obj"][obj_idx] = {}
|
148 |
+
inference_state["output_dict_per_obj"][obj_idx] = {
|
149 |
+
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
150 |
+
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
151 |
+
}
|
152 |
+
inference_state["temp_output_dict_per_obj"][obj_idx] = {
|
153 |
+
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
154 |
+
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
155 |
+
}
|
156 |
+
return obj_idx
|
157 |
+
else:
|
158 |
+
raise RuntimeError(
|
159 |
+
f"Cannot add new object id {obj_id} after tracking starts. "
|
160 |
+
f"All existing object ids: {inference_state['obj_ids']}. "
|
161 |
+
f"Please call 'reset_state' to restart from scratch."
|
162 |
+
)
|
163 |
+
|
164 |
+
def _obj_idx_to_id(self, inference_state, obj_idx):
|
165 |
+
"""Map model-side object index to client-side object id."""
|
166 |
+
return inference_state["obj_idx_to_id"][obj_idx]
|
167 |
+
|
168 |
+
def _get_obj_num(self, inference_state):
|
169 |
+
"""Get the total number of unique object ids received so far in this session."""
|
170 |
+
return len(inference_state["obj_idx_to_id"])
|
171 |
+
|
172 |
+
@torch.inference_mode()
|
173 |
+
def add_new_points_or_box(
|
174 |
+
self,
|
175 |
+
inference_state,
|
176 |
+
frame_idx,
|
177 |
+
obj_id,
|
178 |
+
points=None,
|
179 |
+
labels=None,
|
180 |
+
clear_old_points=True,
|
181 |
+
normalize_coords=True,
|
182 |
+
box=None,
|
183 |
+
):
|
184 |
+
"""Add new points to a frame."""
|
185 |
+
obj_idx = self._obj_id_to_idx(inference_state, obj_id)
|
186 |
+
point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx]
|
187 |
+
mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx]
|
188 |
+
|
189 |
+
if (points is not None) != (labels is not None):
|
190 |
+
raise ValueError("points and labels must be provided together")
|
191 |
+
if points is None and box is None:
|
192 |
+
raise ValueError("at least one of points or box must be provided as input")
|
193 |
+
|
194 |
+
if points is None:
|
195 |
+
points = torch.zeros(0, 2, dtype=torch.float32)
|
196 |
+
elif not isinstance(points, torch.Tensor):
|
197 |
+
points = torch.tensor(points, dtype=torch.float32)
|
198 |
+
if labels is None:
|
199 |
+
labels = torch.zeros(0, dtype=torch.int32)
|
200 |
+
elif not isinstance(labels, torch.Tensor):
|
201 |
+
labels = torch.tensor(labels, dtype=torch.int32)
|
202 |
+
if points.dim() == 2:
|
203 |
+
points = points.unsqueeze(0) # add batch dimension
|
204 |
+
if labels.dim() == 1:
|
205 |
+
labels = labels.unsqueeze(0) # add batch dimension
|
206 |
+
|
207 |
+
# If `box` is provided, we add it as the first two points with labels 2 and 3
|
208 |
+
# along with the user-provided points (consistent with how SAM 2 is trained).
|
209 |
+
if box is not None:
|
210 |
+
if not clear_old_points:
|
211 |
+
raise ValueError(
|
212 |
+
"cannot add box without clearing old points, since "
|
213 |
+
"box prompt must be provided before any point prompt "
|
214 |
+
"(please use clear_old_points=True instead)"
|
215 |
+
)
|
216 |
+
if inference_state["tracking_has_started"]:
|
217 |
+
warnings.warn(
|
218 |
+
"You are adding a box after tracking starts. SAM 2 may not always be "
|
219 |
+
"able to incorporate a box prompt for *refinement*. If you intend to "
|
220 |
+
"use box prompt as an *initial* input before tracking, please call "
|
221 |
+
"'reset_state' on the inference state to restart from scratch.",
|
222 |
+
category=UserWarning,
|
223 |
+
stacklevel=2,
|
224 |
+
)
|
225 |
+
if not isinstance(box, torch.Tensor):
|
226 |
+
box = torch.tensor(box, dtype=torch.float32, device=points.device)
|
227 |
+
box_coords = box.reshape(1, 2, 2)
|
228 |
+
box_labels = torch.tensor([2, 3], dtype=torch.int32, device=labels.device)
|
229 |
+
box_labels = box_labels.reshape(1, 2)
|
230 |
+
points = torch.cat([box_coords, points], dim=1)
|
231 |
+
labels = torch.cat([box_labels, labels], dim=1)
|
232 |
+
|
233 |
+
if normalize_coords:
|
234 |
+
video_H = inference_state["video_height"]
|
235 |
+
video_W = inference_state["video_width"]
|
236 |
+
points = points / torch.tensor([video_W, video_H]).to(points.device)
|
237 |
+
# scale the (normalized) coordinates by the model's internal image size
|
238 |
+
points = points * self.image_size
|
239 |
+
points = points.to(inference_state["device"])
|
240 |
+
labels = labels.to(inference_state["device"])
|
241 |
+
|
242 |
+
if not clear_old_points:
|
243 |
+
point_inputs = point_inputs_per_frame.get(frame_idx, None)
|
244 |
+
else:
|
245 |
+
point_inputs = None
|
246 |
+
point_inputs = concat_points(point_inputs, points, labels)
|
247 |
+
|
248 |
+
point_inputs_per_frame[frame_idx] = point_inputs
|
249 |
+
mask_inputs_per_frame.pop(frame_idx, None)
|
250 |
+
# If this frame hasn't been tracked before, we treat it as an initial conditioning
|
251 |
+
# frame, meaning that the inputs points are to generate segments on this frame without
|
252 |
+
# using any memory from other frames, like in SAM. Otherwise (if it has been tracked),
|
253 |
+
# the input points will be used to correct the already tracked masks.
|
254 |
+
is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"]
|
255 |
+
# whether to track in reverse time order
|
256 |
+
if is_init_cond_frame:
|
257 |
+
reverse = False
|
258 |
+
else:
|
259 |
+
reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"]
|
260 |
+
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
261 |
+
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
|
262 |
+
# Add a frame to conditioning output if it's an initial conditioning frame or
|
263 |
+
# if the model sees all frames receiving clicks/mask as conditioning frames.
|
264 |
+
is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond
|
265 |
+
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
|
266 |
+
|
267 |
+
# Get any previously predicted mask logits on this object and feed it along with
|
268 |
+
# the new clicks into the SAM mask decoder.
|
269 |
+
prev_sam_mask_logits = None
|
270 |
+
# lookup temporary output dict first, which contains the most recent output
|
271 |
+
# (if not found, then lookup conditioning and non-conditioning frame output)
|
272 |
+
prev_out = obj_temp_output_dict[storage_key].get(frame_idx)
|
273 |
+
if prev_out is None:
|
274 |
+
prev_out = obj_output_dict["cond_frame_outputs"].get(frame_idx)
|
275 |
+
if prev_out is None:
|
276 |
+
prev_out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx)
|
277 |
+
|
278 |
+
if prev_out is not None and prev_out["pred_masks"] is not None:
|
279 |
+
device = inference_state["device"]
|
280 |
+
prev_sam_mask_logits = prev_out["pred_masks"].to(device, non_blocking=True)
|
281 |
+
# Clamp the scale of prev_sam_mask_logits to avoid rare numerical issues.
|
282 |
+
prev_sam_mask_logits = torch.clamp(prev_sam_mask_logits, -32.0, 32.0)
|
283 |
+
current_out, _ = self._run_single_frame_inference(
|
284 |
+
inference_state=inference_state,
|
285 |
+
output_dict=obj_output_dict, # run on the slice of a single object
|
286 |
+
frame_idx=frame_idx,
|
287 |
+
batch_size=1, # run on the slice of a single object
|
288 |
+
is_init_cond_frame=is_init_cond_frame,
|
289 |
+
point_inputs=point_inputs,
|
290 |
+
mask_inputs=None,
|
291 |
+
reverse=reverse,
|
292 |
+
# Skip the memory encoder when adding clicks or mask. We execute the memory encoder
|
293 |
+
# at the beginning of `propagate_in_video` (after user finalize their clicks). This
|
294 |
+
# allows us to enforce non-overlapping constraints on all objects before encoding
|
295 |
+
# them into memory.
|
296 |
+
run_mem_encoder=False,
|
297 |
+
prev_sam_mask_logits=prev_sam_mask_logits,
|
298 |
+
)
|
299 |
+
# Add the output to the output dict (to be used as future memory)
|
300 |
+
obj_temp_output_dict[storage_key][frame_idx] = current_out
|
301 |
+
|
302 |
+
# Resize the output mask to the original video resolution
|
303 |
+
obj_ids = inference_state["obj_ids"]
|
304 |
+
consolidated_out = self._consolidate_temp_output_across_obj(
|
305 |
+
inference_state,
|
306 |
+
frame_idx,
|
307 |
+
is_cond=is_cond,
|
308 |
+
run_mem_encoder=False,
|
309 |
+
consolidate_at_video_res=True,
|
310 |
+
)
|
311 |
+
_, video_res_masks = self._get_orig_video_res_output(
|
312 |
+
inference_state, consolidated_out["pred_masks_video_res"]
|
313 |
+
)
|
314 |
+
return frame_idx, obj_ids, video_res_masks
|
315 |
+
|
316 |
+
def add_new_points(self, *args, **kwargs):
|
317 |
+
"""Deprecated method. Please use `add_new_points_or_box` instead."""
|
318 |
+
return self.add_new_points_or_box(*args, **kwargs)
|
319 |
+
|
320 |
+
@torch.inference_mode()
|
321 |
+
def add_new_mask(
|
322 |
+
self,
|
323 |
+
inference_state,
|
324 |
+
frame_idx,
|
325 |
+
obj_id,
|
326 |
+
mask,
|
327 |
+
):
|
328 |
+
"""Add new mask to a frame."""
|
329 |
+
obj_idx = self._obj_id_to_idx(inference_state, obj_id)
|
330 |
+
point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx]
|
331 |
+
mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx]
|
332 |
+
|
333 |
+
if not isinstance(mask, torch.Tensor):
|
334 |
+
mask = torch.tensor(mask, dtype=torch.bool)
|
335 |
+
assert mask.dim() == 2
|
336 |
+
mask_H, mask_W = mask.shape
|
337 |
+
mask_inputs_orig = mask[None, None] # add batch and channel dimension
|
338 |
+
mask_inputs_orig = mask_inputs_orig.float().to(inference_state["device"])
|
339 |
+
|
340 |
+
# resize the mask if it doesn't match the model's image size
|
341 |
+
if mask_H != self.image_size or mask_W != self.image_size:
|
342 |
+
mask_inputs = torch.nn.functional.interpolate(
|
343 |
+
mask_inputs_orig,
|
344 |
+
size=(self.image_size, self.image_size),
|
345 |
+
align_corners=False,
|
346 |
+
mode="bilinear",
|
347 |
+
antialias=True, # use antialias for downsampling
|
348 |
+
)
|
349 |
+
mask_inputs = (mask_inputs >= 0.5).float()
|
350 |
+
else:
|
351 |
+
mask_inputs = mask_inputs_orig
|
352 |
+
|
353 |
+
mask_inputs_per_frame[frame_idx] = mask_inputs
|
354 |
+
point_inputs_per_frame.pop(frame_idx, None)
|
355 |
+
# If this frame hasn't been tracked before, we treat it as an initial conditioning
|
356 |
+
# frame, meaning that the inputs points are to generate segments on this frame without
|
357 |
+
# using any memory from other frames, like in SAM. Otherwise (if it has been tracked),
|
358 |
+
# the input points will be used to correct the already tracked masks.
|
359 |
+
is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"]
|
360 |
+
# whether to track in reverse time order
|
361 |
+
if is_init_cond_frame:
|
362 |
+
reverse = False
|
363 |
+
else:
|
364 |
+
reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"]
|
365 |
+
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
366 |
+
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
|
367 |
+
# Add a frame to conditioning output if it's an initial conditioning frame or
|
368 |
+
# if the model sees all frames receiving clicks/mask as conditioning frames.
|
369 |
+
is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond
|
370 |
+
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
|
371 |
+
|
372 |
+
current_out, _ = self._run_single_frame_inference(
|
373 |
+
inference_state=inference_state,
|
374 |
+
output_dict=obj_output_dict, # run on the slice of a single object
|
375 |
+
frame_idx=frame_idx,
|
376 |
+
batch_size=1, # run on the slice of a single object
|
377 |
+
is_init_cond_frame=is_init_cond_frame,
|
378 |
+
point_inputs=None,
|
379 |
+
mask_inputs=mask_inputs,
|
380 |
+
reverse=reverse,
|
381 |
+
# Skip the memory encoder when adding clicks or mask. We execute the memory encoder
|
382 |
+
# at the beginning of `propagate_in_video` (after user finalize their clicks). This
|
383 |
+
# allows us to enforce non-overlapping constraints on all objects before encoding
|
384 |
+
# them into memory.
|
385 |
+
run_mem_encoder=False,
|
386 |
+
)
|
387 |
+
# Add the output to the output dict (to be used as future memory)
|
388 |
+
obj_temp_output_dict[storage_key][frame_idx] = current_out
|
389 |
+
|
390 |
+
# Resize the output mask to the original video resolution
|
391 |
+
obj_ids = inference_state["obj_ids"]
|
392 |
+
consolidated_out = self._consolidate_temp_output_across_obj(
|
393 |
+
inference_state,
|
394 |
+
frame_idx,
|
395 |
+
is_cond=is_cond,
|
396 |
+
run_mem_encoder=False,
|
397 |
+
consolidate_at_video_res=True,
|
398 |
+
)
|
399 |
+
_, video_res_masks = self._get_orig_video_res_output(
|
400 |
+
inference_state, consolidated_out["pred_masks_video_res"]
|
401 |
+
)
|
402 |
+
return frame_idx, obj_ids, video_res_masks
|
403 |
+
|
404 |
+
def _get_orig_video_res_output(self, inference_state, any_res_masks):
|
405 |
+
"""
|
406 |
+
Resize the object scores to the original video resolution (video_res_masks)
|
407 |
+
and apply non-overlapping constraints for final output.
|
408 |
+
"""
|
409 |
+
device = inference_state["device"]
|
410 |
+
video_H = inference_state["video_height"]
|
411 |
+
video_W = inference_state["video_width"]
|
412 |
+
any_res_masks = any_res_masks.to(device, non_blocking=True)
|
413 |
+
if any_res_masks.shape[-2:] == (video_H, video_W):
|
414 |
+
video_res_masks = any_res_masks
|
415 |
+
else:
|
416 |
+
video_res_masks = torch.nn.functional.interpolate(
|
417 |
+
any_res_masks,
|
418 |
+
size=(video_H, video_W),
|
419 |
+
mode="bilinear",
|
420 |
+
align_corners=False,
|
421 |
+
)
|
422 |
+
if self.non_overlap_masks:
|
423 |
+
video_res_masks = self._apply_non_overlapping_constraints(video_res_masks)
|
424 |
+
return any_res_masks, video_res_masks
|
425 |
+
|
426 |
+
def _consolidate_temp_output_across_obj(
|
427 |
+
self,
|
428 |
+
inference_state,
|
429 |
+
frame_idx,
|
430 |
+
is_cond,
|
431 |
+
run_mem_encoder,
|
432 |
+
consolidate_at_video_res=False,
|
433 |
+
):
|
434 |
+
"""
|
435 |
+
Consolidate the per-object temporary outputs in `temp_output_dict_per_obj` on
|
436 |
+
a frame into a single output for all objects, including
|
437 |
+
1) fill any missing objects either from `output_dict_per_obj` (if they exist in
|
438 |
+
`output_dict_per_obj` for this frame) or leave them as placeholder values
|
439 |
+
(if they don't exist in `output_dict_per_obj` for this frame);
|
440 |
+
2) if specified, rerun memory encoder after apply non-overlapping constraints
|
441 |
+
on the object scores.
|
442 |
+
"""
|
443 |
+
batch_size = self._get_obj_num(inference_state)
|
444 |
+
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
|
445 |
+
# Optionally, we allow consolidating the temporary outputs at the original
|
446 |
+
# video resolution (to provide a better editing experience for mask prompts).
|
447 |
+
if consolidate_at_video_res:
|
448 |
+
assert not run_mem_encoder, "memory encoder cannot run at video resolution"
|
449 |
+
consolidated_H = inference_state["video_height"]
|
450 |
+
consolidated_W = inference_state["video_width"]
|
451 |
+
consolidated_mask_key = "pred_masks_video_res"
|
452 |
+
else:
|
453 |
+
consolidated_H = consolidated_W = self.image_size // 4
|
454 |
+
consolidated_mask_key = "pred_masks"
|
455 |
+
|
456 |
+
# Initialize `consolidated_out`. Its "maskmem_features" and "maskmem_pos_enc"
|
457 |
+
# will be added when rerunning the memory encoder after applying non-overlapping
|
458 |
+
# constraints to object scores. Its "pred_masks" are prefilled with a large
|
459 |
+
# negative value (NO_OBJ_SCORE) to represent missing objects.
|
460 |
+
consolidated_out = {
|
461 |
+
"maskmem_features": None,
|
462 |
+
"maskmem_pos_enc": None,
|
463 |
+
consolidated_mask_key: torch.full(
|
464 |
+
size=(batch_size, 1, consolidated_H, consolidated_W),
|
465 |
+
fill_value=NO_OBJ_SCORE,
|
466 |
+
dtype=torch.float32,
|
467 |
+
device=inference_state["storage_device"],
|
468 |
+
),
|
469 |
+
"obj_ptr": torch.full(
|
470 |
+
size=(batch_size, self.hidden_dim),
|
471 |
+
fill_value=NO_OBJ_SCORE,
|
472 |
+
dtype=torch.float32,
|
473 |
+
device=inference_state["device"],
|
474 |
+
),
|
475 |
+
"object_score_logits": torch.full(
|
476 |
+
size=(batch_size, 1),
|
477 |
+
# default to 10.0 for object_score_logits, i.e. assuming the object is
|
478 |
+
# present as sigmoid(10)=1, same as in `predict_masks` of `MaskDecoder`
|
479 |
+
fill_value=10.0,
|
480 |
+
dtype=torch.float32,
|
481 |
+
device=inference_state["device"],
|
482 |
+
),
|
483 |
+
}
|
484 |
+
empty_mask_ptr = None
|
485 |
+
for obj_idx in range(batch_size):
|
486 |
+
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
|
487 |
+
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
488 |
+
out = obj_temp_output_dict[storage_key].get(frame_idx, None)
|
489 |
+
# If the object doesn't appear in "temp_output_dict_per_obj" on this frame,
|
490 |
+
# we fall back and look up its previous output in "output_dict_per_obj".
|
491 |
+
# We look up both "cond_frame_outputs" and "non_cond_frame_outputs" in
|
492 |
+
# "output_dict_per_obj" to find a previous output for this object.
|
493 |
+
if out is None:
|
494 |
+
out = obj_output_dict["cond_frame_outputs"].get(frame_idx, None)
|
495 |
+
if out is None:
|
496 |
+
out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx, None)
|
497 |
+
# If the object doesn't appear in "output_dict_per_obj" either, we skip it
|
498 |
+
# and leave its mask scores to the default scores (i.e. the NO_OBJ_SCORE
|
499 |
+
# placeholder above) and set its object pointer to be a dummy pointer.
|
500 |
+
if out is None:
|
501 |
+
# Fill in dummy object pointers for those objects without any inputs or
|
502 |
+
# tracking outcomes on this frame (only do it under `run_mem_encoder=True`,
|
503 |
+
# i.e. when we need to build the memory for tracking).
|
504 |
+
if run_mem_encoder:
|
505 |
+
if empty_mask_ptr is None:
|
506 |
+
empty_mask_ptr = self._get_empty_mask_ptr(
|
507 |
+
inference_state, frame_idx
|
508 |
+
)
|
509 |
+
# fill object pointer with a dummy pointer (based on an empty mask)
|
510 |
+
consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = empty_mask_ptr
|
511 |
+
continue
|
512 |
+
# Add the temporary object output mask to consolidated output mask
|
513 |
+
obj_mask = out["pred_masks"]
|
514 |
+
consolidated_pred_masks = consolidated_out[consolidated_mask_key]
|
515 |
+
if obj_mask.shape[-2:] == consolidated_pred_masks.shape[-2:]:
|
516 |
+
consolidated_pred_masks[obj_idx : obj_idx + 1] = obj_mask
|
517 |
+
else:
|
518 |
+
# Resize first if temporary object mask has a different resolution
|
519 |
+
resized_obj_mask = torch.nn.functional.interpolate(
|
520 |
+
obj_mask,
|
521 |
+
size=consolidated_pred_masks.shape[-2:],
|
522 |
+
mode="bilinear",
|
523 |
+
align_corners=False,
|
524 |
+
)
|
525 |
+
consolidated_pred_masks[obj_idx : obj_idx + 1] = resized_obj_mask
|
526 |
+
consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = out["obj_ptr"]
|
527 |
+
consolidated_out["object_score_logits"][obj_idx : obj_idx + 1] = out[
|
528 |
+
"object_score_logits"
|
529 |
+
]
|
530 |
+
|
531 |
+
# Optionally, apply non-overlapping constraints on the consolidated scores
|
532 |
+
# and rerun the memory encoder
|
533 |
+
if run_mem_encoder:
|
534 |
+
device = inference_state["device"]
|
535 |
+
high_res_masks = torch.nn.functional.interpolate(
|
536 |
+
consolidated_out["pred_masks"].to(device, non_blocking=True),
|
537 |
+
size=(self.image_size, self.image_size),
|
538 |
+
mode="bilinear",
|
539 |
+
align_corners=False,
|
540 |
+
)
|
541 |
+
if self.non_overlap_masks_for_mem_enc:
|
542 |
+
high_res_masks = self._apply_non_overlapping_constraints(high_res_masks)
|
543 |
+
maskmem_features, maskmem_pos_enc = self._run_memory_encoder(
|
544 |
+
inference_state=inference_state,
|
545 |
+
frame_idx=frame_idx,
|
546 |
+
batch_size=batch_size,
|
547 |
+
high_res_masks=high_res_masks,
|
548 |
+
object_score_logits=consolidated_out["object_score_logits"],
|
549 |
+
is_mask_from_pts=True, # these frames are what the user interacted with
|
550 |
+
)
|
551 |
+
consolidated_out["maskmem_features"] = maskmem_features
|
552 |
+
consolidated_out["maskmem_pos_enc"] = maskmem_pos_enc
|
553 |
+
|
554 |
+
return consolidated_out
|
555 |
+
|
556 |
+
def _get_empty_mask_ptr(self, inference_state, frame_idx):
|
557 |
+
"""Get a dummy object pointer based on an empty mask on the current frame."""
|
558 |
+
# A dummy (empty) mask with a single object
|
559 |
+
batch_size = 1
|
560 |
+
mask_inputs = torch.zeros(
|
561 |
+
(batch_size, 1, self.image_size, self.image_size),
|
562 |
+
dtype=torch.float32,
|
563 |
+
device=inference_state["device"],
|
564 |
+
)
|
565 |
+
|
566 |
+
# Retrieve correct image features
|
567 |
+
(
|
568 |
+
_,
|
569 |
+
_,
|
570 |
+
current_vision_feats,
|
571 |
+
current_vision_pos_embeds,
|
572 |
+
feat_sizes,
|
573 |
+
) = self._get_image_feature(inference_state, frame_idx, batch_size)
|
574 |
+
|
575 |
+
# Feed the empty mask and image feature above to get a dummy object pointer
|
576 |
+
current_out = self.track_step(
|
577 |
+
frame_idx=frame_idx,
|
578 |
+
is_init_cond_frame=True,
|
579 |
+
current_vision_feats=current_vision_feats,
|
580 |
+
current_vision_pos_embeds=current_vision_pos_embeds,
|
581 |
+
feat_sizes=feat_sizes,
|
582 |
+
point_inputs=None,
|
583 |
+
mask_inputs=mask_inputs,
|
584 |
+
output_dict={},
|
585 |
+
num_frames=inference_state["num_frames"],
|
586 |
+
track_in_reverse=False,
|
587 |
+
run_mem_encoder=False,
|
588 |
+
prev_sam_mask_logits=None,
|
589 |
+
)
|
590 |
+
return current_out["obj_ptr"]
|
591 |
+
|
592 |
+
@torch.inference_mode()
|
593 |
+
def propagate_in_video_preflight(self, inference_state):
|
594 |
+
"""Prepare inference_state and consolidate temporary outputs before tracking."""
|
595 |
+
# Tracking has started and we don't allow adding new objects until session is reset.
|
596 |
+
inference_state["tracking_has_started"] = True
|
597 |
+
batch_size = self._get_obj_num(inference_state)
|
598 |
+
|
599 |
+
# Consolidate per-object temporary outputs in "temp_output_dict_per_obj" and
|
600 |
+
# add them into "output_dict".
|
601 |
+
temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
|
602 |
+
output_dict = inference_state["output_dict"]
|
603 |
+
# "consolidated_frame_inds" contains indices of those frames where consolidated
|
604 |
+
# temporary outputs have been added (either in this call or any previous calls
|
605 |
+
# to `propagate_in_video_preflight`).
|
606 |
+
consolidated_frame_inds = inference_state["consolidated_frame_inds"]
|
607 |
+
for is_cond in [False, True]:
|
608 |
+
# Separately consolidate conditioning and non-conditioning temp outputs
|
609 |
+
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
|
610 |
+
# Find all the frames that contain temporary outputs for any objects
|
611 |
+
# (these should be the frames that have just received clicks for mask inputs
|
612 |
+
# via `add_new_points_or_box` or `add_new_mask`)
|
613 |
+
temp_frame_inds = set()
|
614 |
+
for obj_temp_output_dict in temp_output_dict_per_obj.values():
|
615 |
+
temp_frame_inds.update(obj_temp_output_dict[storage_key].keys())
|
616 |
+
consolidated_frame_inds[storage_key].update(temp_frame_inds)
|
617 |
+
# consolidate the temporary output across all objects on this frame
|
618 |
+
for frame_idx in temp_frame_inds:
|
619 |
+
consolidated_out = self._consolidate_temp_output_across_obj(
|
620 |
+
inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=True
|
621 |
+
)
|
622 |
+
# merge them into "output_dict" and also create per-object slices
|
623 |
+
output_dict[storage_key][frame_idx] = consolidated_out
|
624 |
+
self._add_output_per_object(
|
625 |
+
inference_state, frame_idx, consolidated_out, storage_key
|
626 |
+
)
|
627 |
+
clear_non_cond_mem = self.clear_non_cond_mem_around_input and (
|
628 |
+
self.clear_non_cond_mem_for_multi_obj or batch_size <= 1
|
629 |
+
)
|
630 |
+
if clear_non_cond_mem:
|
631 |
+
# clear non-conditioning memory of the surrounding frames
|
632 |
+
self._clear_non_cond_mem_around_input(inference_state, frame_idx)
|
633 |
+
|
634 |
+
# clear temporary outputs in `temp_output_dict_per_obj`
|
635 |
+
for obj_temp_output_dict in temp_output_dict_per_obj.values():
|
636 |
+
obj_temp_output_dict[storage_key].clear()
|
637 |
+
|
638 |
+
# edge case: if an output is added to "cond_frame_outputs", we remove any prior
|
639 |
+
# output on the same frame in "non_cond_frame_outputs"
|
640 |
+
for frame_idx in output_dict["cond_frame_outputs"]:
|
641 |
+
output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
|
642 |
+
for obj_output_dict in inference_state["output_dict_per_obj"].values():
|
643 |
+
for frame_idx in obj_output_dict["cond_frame_outputs"]:
|
644 |
+
obj_output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
|
645 |
+
for frame_idx in consolidated_frame_inds["cond_frame_outputs"]:
|
646 |
+
assert frame_idx in output_dict["cond_frame_outputs"]
|
647 |
+
consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx)
|
648 |
+
|
649 |
+
# Make sure that the frame indices in "consolidated_frame_inds" are exactly those frames
|
650 |
+
# with either points or mask inputs (which should be true under a correct workflow).
|
651 |
+
all_consolidated_frame_inds = (
|
652 |
+
consolidated_frame_inds["cond_frame_outputs"]
|
653 |
+
| consolidated_frame_inds["non_cond_frame_outputs"]
|
654 |
+
)
|
655 |
+
input_frames_inds = set()
|
656 |
+
for point_inputs_per_frame in inference_state["point_inputs_per_obj"].values():
|
657 |
+
input_frames_inds.update(point_inputs_per_frame.keys())
|
658 |
+
for mask_inputs_per_frame in inference_state["mask_inputs_per_obj"].values():
|
659 |
+
input_frames_inds.update(mask_inputs_per_frame.keys())
|
660 |
+
assert all_consolidated_frame_inds == input_frames_inds
|
661 |
+
|
662 |
+
@torch.inference_mode()
|
663 |
+
def propagate_in_video(
|
664 |
+
self,
|
665 |
+
inference_state,
|
666 |
+
start_frame_idx=None,
|
667 |
+
max_frame_num_to_track=None,
|
668 |
+
reverse=False,
|
669 |
+
):
|
670 |
+
"""Propagate the input points across frames to track in the entire video."""
|
671 |
+
self.propagate_in_video_preflight(inference_state)
|
672 |
+
|
673 |
+
output_dict = inference_state["output_dict"]
|
674 |
+
consolidated_frame_inds = inference_state["consolidated_frame_inds"]
|
675 |
+
obj_ids = inference_state["obj_ids"]
|
676 |
+
num_frames = inference_state["num_frames"]
|
677 |
+
batch_size = self._get_obj_num(inference_state)
|
678 |
+
if len(output_dict["cond_frame_outputs"]) == 0:
|
679 |
+
raise RuntimeError("No points are provided; please add points first")
|
680 |
+
clear_non_cond_mem = self.clear_non_cond_mem_around_input and (
|
681 |
+
self.clear_non_cond_mem_for_multi_obj or batch_size <= 1
|
682 |
+
)
|
683 |
+
|
684 |
+
# set start index, end index, and processing order
|
685 |
+
if start_frame_idx is None:
|
686 |
+
# default: start from the earliest frame with input points
|
687 |
+
start_frame_idx = min(output_dict["cond_frame_outputs"])
|
688 |
+
if max_frame_num_to_track is None:
|
689 |
+
# default: track all the frames in the video
|
690 |
+
max_frame_num_to_track = num_frames
|
691 |
+
if reverse:
|
692 |
+
end_frame_idx = max(start_frame_idx - max_frame_num_to_track, 0)
|
693 |
+
if start_frame_idx > 0:
|
694 |
+
processing_order = range(start_frame_idx, end_frame_idx - 1, -1)
|
695 |
+
else:
|
696 |
+
processing_order = [] # skip reverse tracking if starting from frame 0
|
697 |
+
else:
|
698 |
+
end_frame_idx = min(
|
699 |
+
start_frame_idx + max_frame_num_to_track, num_frames - 1
|
700 |
+
)
|
701 |
+
processing_order = range(start_frame_idx, end_frame_idx + 1)
|
702 |
+
|
703 |
+
for frame_idx in tqdm(processing_order, desc="propagate in video"):
|
704 |
+
# We skip those frames already in consolidated outputs (these are frames
|
705 |
+
# that received input clicks or mask). Note that we cannot directly run
|
706 |
+
# batched forward on them via `_run_single_frame_inference` because the
|
707 |
+
# number of clicks on each object might be different.
|
708 |
+
if frame_idx in consolidated_frame_inds["cond_frame_outputs"]:
|
709 |
+
storage_key = "cond_frame_outputs"
|
710 |
+
current_out = output_dict[storage_key][frame_idx]
|
711 |
+
pred_masks = current_out["pred_masks"]
|
712 |
+
if clear_non_cond_mem:
|
713 |
+
# clear non-conditioning memory of the surrounding frames
|
714 |
+
self._clear_non_cond_mem_around_input(inference_state, frame_idx)
|
715 |
+
elif frame_idx in consolidated_frame_inds["non_cond_frame_outputs"]:
|
716 |
+
storage_key = "non_cond_frame_outputs"
|
717 |
+
current_out = output_dict[storage_key][frame_idx]
|
718 |
+
pred_masks = current_out["pred_masks"]
|
719 |
+
else:
|
720 |
+
storage_key = "non_cond_frame_outputs"
|
721 |
+
current_out, pred_masks = self._run_single_frame_inference(
|
722 |
+
inference_state=inference_state,
|
723 |
+
output_dict=output_dict,
|
724 |
+
frame_idx=frame_idx,
|
725 |
+
batch_size=batch_size,
|
726 |
+
is_init_cond_frame=False,
|
727 |
+
point_inputs=None,
|
728 |
+
mask_inputs=None,
|
729 |
+
reverse=reverse,
|
730 |
+
run_mem_encoder=True,
|
731 |
+
)
|
732 |
+
output_dict[storage_key][frame_idx] = current_out
|
733 |
+
# Create slices of per-object outputs for subsequent interaction with each
|
734 |
+
# individual object after tracking.
|
735 |
+
self._add_output_per_object(
|
736 |
+
inference_state, frame_idx, current_out, storage_key
|
737 |
+
)
|
738 |
+
inference_state["frames_already_tracked"][frame_idx] = {"reverse": reverse}
|
739 |
+
|
740 |
+
# Resize the output mask to the original video resolution (we directly use
|
741 |
+
# the mask scores on GPU for output to avoid any CPU conversion in between)
|
742 |
+
_, video_res_masks = self._get_orig_video_res_output(
|
743 |
+
inference_state, pred_masks
|
744 |
+
)
|
745 |
+
yield frame_idx, obj_ids, video_res_masks
|
746 |
+
|
747 |
+
def _add_output_per_object(
|
748 |
+
self, inference_state, frame_idx, current_out, storage_key
|
749 |
+
):
|
750 |
+
"""
|
751 |
+
Split a multi-object output into per-object output slices and add them into
|
752 |
+
`output_dict_per_obj`. The resulting slices share the same tensor storage.
|
753 |
+
"""
|
754 |
+
maskmem_features = current_out["maskmem_features"]
|
755 |
+
assert maskmem_features is None or isinstance(maskmem_features, torch.Tensor)
|
756 |
+
|
757 |
+
maskmem_pos_enc = current_out["maskmem_pos_enc"]
|
758 |
+
assert maskmem_pos_enc is None or isinstance(maskmem_pos_enc, list)
|
759 |
+
|
760 |
+
output_dict_per_obj = inference_state["output_dict_per_obj"]
|
761 |
+
for obj_idx, obj_output_dict in output_dict_per_obj.items():
|
762 |
+
obj_slice = slice(obj_idx, obj_idx + 1)
|
763 |
+
obj_out = {
|
764 |
+
"maskmem_features": None,
|
765 |
+
"maskmem_pos_enc": None,
|
766 |
+
"pred_masks": current_out["pred_masks"][obj_slice],
|
767 |
+
"obj_ptr": current_out["obj_ptr"][obj_slice],
|
768 |
+
"object_score_logits": current_out["object_score_logits"][obj_slice],
|
769 |
+
}
|
770 |
+
if maskmem_features is not None:
|
771 |
+
obj_out["maskmem_features"] = maskmem_features[obj_slice]
|
772 |
+
if maskmem_pos_enc is not None:
|
773 |
+
obj_out["maskmem_pos_enc"] = [x[obj_slice] for x in maskmem_pos_enc]
|
774 |
+
obj_output_dict[storage_key][frame_idx] = obj_out
|
775 |
+
|
776 |
+
@torch.inference_mode()
|
777 |
+
def clear_all_prompts_in_frame(
|
778 |
+
self, inference_state, frame_idx, obj_id, need_output=True
|
779 |
+
):
|
780 |
+
"""Remove all input points or mask in a specific frame for a given object."""
|
781 |
+
obj_idx = self._obj_id_to_idx(inference_state, obj_id)
|
782 |
+
|
783 |
+
# Clear the conditioning information on the given frame
|
784 |
+
inference_state["point_inputs_per_obj"][obj_idx].pop(frame_idx, None)
|
785 |
+
inference_state["mask_inputs_per_obj"][obj_idx].pop(frame_idx, None)
|
786 |
+
|
787 |
+
temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
|
788 |
+
temp_output_dict_per_obj[obj_idx]["cond_frame_outputs"].pop(frame_idx, None)
|
789 |
+
temp_output_dict_per_obj[obj_idx]["non_cond_frame_outputs"].pop(frame_idx, None)
|
790 |
+
|
791 |
+
# Check and see if there are still any inputs left on this frame
|
792 |
+
batch_size = self._get_obj_num(inference_state)
|
793 |
+
frame_has_input = False
|
794 |
+
for obj_idx2 in range(batch_size):
|
795 |
+
if frame_idx in inference_state["point_inputs_per_obj"][obj_idx2]:
|
796 |
+
frame_has_input = True
|
797 |
+
break
|
798 |
+
if frame_idx in inference_state["mask_inputs_per_obj"][obj_idx2]:
|
799 |
+
frame_has_input = True
|
800 |
+
break
|
801 |
+
|
802 |
+
# If this frame has no remaining inputs for any objects, we further clear its
|
803 |
+
# conditioning frame status
|
804 |
+
if not frame_has_input:
|
805 |
+
output_dict = inference_state["output_dict"]
|
806 |
+
consolidated_frame_inds = inference_state["consolidated_frame_inds"]
|
807 |
+
consolidated_frame_inds["cond_frame_outputs"].discard(frame_idx)
|
808 |
+
consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx)
|
809 |
+
# Remove the frame's conditioning output (possibly downgrading it to non-conditioning)
|
810 |
+
out = output_dict["cond_frame_outputs"].pop(frame_idx, None)
|
811 |
+
if out is not None:
|
812 |
+
# The frame is not a conditioning frame anymore since it's not receiving inputs,
|
813 |
+
# so we "downgrade" its output (if exists) to a non-conditioning frame output.
|
814 |
+
output_dict["non_cond_frame_outputs"][frame_idx] = out
|
815 |
+
inference_state["frames_already_tracked"].pop(frame_idx, None)
|
816 |
+
# Similarly, do it for the sliced output on each object.
|
817 |
+
for obj_idx2 in range(batch_size):
|
818 |
+
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx2]
|
819 |
+
obj_out = obj_output_dict["cond_frame_outputs"].pop(frame_idx, None)
|
820 |
+
if obj_out is not None:
|
821 |
+
obj_output_dict["non_cond_frame_outputs"][frame_idx] = obj_out
|
822 |
+
|
823 |
+
# If all the conditioning frames have been removed, we also clear the tracking outputs
|
824 |
+
if len(output_dict["cond_frame_outputs"]) == 0:
|
825 |
+
self._reset_tracking_results(inference_state)
|
826 |
+
|
827 |
+
if not need_output:
|
828 |
+
return
|
829 |
+
# Finally, output updated masks per object (after removing the inputs above)
|
830 |
+
obj_ids = inference_state["obj_ids"]
|
831 |
+
is_cond = any(
|
832 |
+
frame_idx in obj_temp_output_dict["cond_frame_outputs"]
|
833 |
+
for obj_temp_output_dict in temp_output_dict_per_obj.values()
|
834 |
+
)
|
835 |
+
consolidated_out = self._consolidate_temp_output_across_obj(
|
836 |
+
inference_state,
|
837 |
+
frame_idx,
|
838 |
+
is_cond=is_cond,
|
839 |
+
run_mem_encoder=False,
|
840 |
+
consolidate_at_video_res=True,
|
841 |
+
)
|
842 |
+
_, video_res_masks = self._get_orig_video_res_output(
|
843 |
+
inference_state, consolidated_out["pred_masks_video_res"]
|
844 |
+
)
|
845 |
+
return frame_idx, obj_ids, video_res_masks
|
846 |
+
|
847 |
+
@torch.inference_mode()
|
848 |
+
def reset_state(self, inference_state):
|
849 |
+
"""Remove all input points or mask in all frames throughout the video."""
|
850 |
+
self._reset_tracking_results(inference_state)
|
851 |
+
# Remove all object ids
|
852 |
+
inference_state["obj_id_to_idx"].clear()
|
853 |
+
inference_state["obj_idx_to_id"].clear()
|
854 |
+
inference_state["obj_ids"].clear()
|
855 |
+
inference_state["point_inputs_per_obj"].clear()
|
856 |
+
inference_state["mask_inputs_per_obj"].clear()
|
857 |
+
inference_state["output_dict_per_obj"].clear()
|
858 |
+
inference_state["temp_output_dict_per_obj"].clear()
|
859 |
+
|
860 |
+
def _reset_tracking_results(self, inference_state):
|
861 |
+
"""Reset all tracking inputs and results across the videos."""
|
862 |
+
for v in inference_state["point_inputs_per_obj"].values():
|
863 |
+
v.clear()
|
864 |
+
for v in inference_state["mask_inputs_per_obj"].values():
|
865 |
+
v.clear()
|
866 |
+
for v in inference_state["output_dict_per_obj"].values():
|
867 |
+
v["cond_frame_outputs"].clear()
|
868 |
+
v["non_cond_frame_outputs"].clear()
|
869 |
+
for v in inference_state["temp_output_dict_per_obj"].values():
|
870 |
+
v["cond_frame_outputs"].clear()
|
871 |
+
v["non_cond_frame_outputs"].clear()
|
872 |
+
inference_state["output_dict"]["cond_frame_outputs"].clear()
|
873 |
+
inference_state["output_dict"]["non_cond_frame_outputs"].clear()
|
874 |
+
inference_state["consolidated_frame_inds"]["cond_frame_outputs"].clear()
|
875 |
+
inference_state["consolidated_frame_inds"]["non_cond_frame_outputs"].clear()
|
876 |
+
inference_state["tracking_has_started"] = False
|
877 |
+
inference_state["frames_already_tracked"].clear()
|
878 |
+
|
879 |
+
def _get_image_feature(self, inference_state, frame_idx, batch_size):
|
880 |
+
"""Compute the image features on a given frame."""
|
881 |
+
# Look up in the cache first
|
882 |
+
image, backbone_out = inference_state["cached_features"].get(
|
883 |
+
frame_idx, (None, None)
|
884 |
+
)
|
885 |
+
if backbone_out is None:
|
886 |
+
# Cache miss -- we will run inference on a single image
|
887 |
+
device = inference_state["device"]
|
888 |
+
image = inference_state["images"][frame_idx].to(device).float().unsqueeze(0)
|
889 |
+
backbone_out = self.forward_image(image)
|
890 |
+
# Cache the most recent frame's feature (for repeated interactions with
|
891 |
+
# a frame; we can use an LRU cache for more frames in the future).
|
892 |
+
inference_state["cached_features"] = {frame_idx: (image, backbone_out)}
|
893 |
+
|
894 |
+
# expand the features to have the same dimension as the number of objects
|
895 |
+
expanded_image = image.expand(batch_size, -1, -1, -1)
|
896 |
+
expanded_backbone_out = {
|
897 |
+
"backbone_fpn": backbone_out["backbone_fpn"].copy(),
|
898 |
+
"vision_pos_enc": backbone_out["vision_pos_enc"].copy(),
|
899 |
+
}
|
900 |
+
for i, feat in enumerate(expanded_backbone_out["backbone_fpn"]):
|
901 |
+
expanded_backbone_out["backbone_fpn"][i] = feat.expand(
|
902 |
+
batch_size, -1, -1, -1
|
903 |
+
)
|
904 |
+
for i, pos in enumerate(expanded_backbone_out["vision_pos_enc"]):
|
905 |
+
pos = pos.expand(batch_size, -1, -1, -1)
|
906 |
+
expanded_backbone_out["vision_pos_enc"][i] = pos
|
907 |
+
|
908 |
+
features = self._prepare_backbone_features(expanded_backbone_out)
|
909 |
+
features = (expanded_image,) + features
|
910 |
+
return features
|
911 |
+
|
912 |
+
def _run_single_frame_inference(
|
913 |
+
self,
|
914 |
+
inference_state,
|
915 |
+
output_dict,
|
916 |
+
frame_idx,
|
917 |
+
batch_size,
|
918 |
+
is_init_cond_frame,
|
919 |
+
point_inputs,
|
920 |
+
mask_inputs,
|
921 |
+
reverse,
|
922 |
+
run_mem_encoder,
|
923 |
+
prev_sam_mask_logits=None,
|
924 |
+
):
|
925 |
+
"""Run tracking on a single frame based on current inputs and previous memory."""
|
926 |
+
# Retrieve correct image features
|
927 |
+
(
|
928 |
+
_,
|
929 |
+
_,
|
930 |
+
current_vision_feats,
|
931 |
+
current_vision_pos_embeds,
|
932 |
+
feat_sizes,
|
933 |
+
) = self._get_image_feature(inference_state, frame_idx, batch_size)
|
934 |
+
|
935 |
+
# point and mask should not appear as input simultaneously on the same frame
|
936 |
+
assert point_inputs is None or mask_inputs is None
|
937 |
+
current_out = self.track_step(
|
938 |
+
frame_idx=frame_idx,
|
939 |
+
is_init_cond_frame=is_init_cond_frame,
|
940 |
+
current_vision_feats=current_vision_feats,
|
941 |
+
current_vision_pos_embeds=current_vision_pos_embeds,
|
942 |
+
feat_sizes=feat_sizes,
|
943 |
+
point_inputs=point_inputs,
|
944 |
+
mask_inputs=mask_inputs,
|
945 |
+
output_dict=output_dict,
|
946 |
+
num_frames=inference_state["num_frames"],
|
947 |
+
track_in_reverse=reverse,
|
948 |
+
run_mem_encoder=run_mem_encoder,
|
949 |
+
prev_sam_mask_logits=prev_sam_mask_logits,
|
950 |
+
)
|
951 |
+
|
952 |
+
# optionally offload the output to CPU memory to save GPU space
|
953 |
+
storage_device = inference_state["storage_device"]
|
954 |
+
maskmem_features = current_out["maskmem_features"]
|
955 |
+
if maskmem_features is not None:
|
956 |
+
maskmem_features = maskmem_features.to(torch.bfloat16)
|
957 |
+
maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
|
958 |
+
pred_masks_gpu = current_out["pred_masks"]
|
959 |
+
# potentially fill holes in the predicted masks
|
960 |
+
if self.fill_hole_area > 0:
|
961 |
+
pred_masks_gpu = fill_holes_in_mask_scores(
|
962 |
+
pred_masks_gpu, self.fill_hole_area
|
963 |
+
)
|
964 |
+
pred_masks = pred_masks_gpu.to(storage_device, non_blocking=True)
|
965 |
+
# "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
|
966 |
+
maskmem_pos_enc = self._get_maskmem_pos_enc(inference_state, current_out)
|
967 |
+
# object pointer is a small tensor, so we always keep it on GPU memory for fast access
|
968 |
+
obj_ptr = current_out["obj_ptr"]
|
969 |
+
object_score_logits = current_out["object_score_logits"]
|
970 |
+
# make a compact version of this frame's output to reduce the state size
|
971 |
+
compact_current_out = {
|
972 |
+
"maskmem_features": maskmem_features,
|
973 |
+
"maskmem_pos_enc": maskmem_pos_enc,
|
974 |
+
"pred_masks": pred_masks,
|
975 |
+
"obj_ptr": obj_ptr,
|
976 |
+
"object_score_logits": object_score_logits,
|
977 |
+
}
|
978 |
+
return compact_current_out, pred_masks_gpu
|
979 |
+
|
980 |
+
def _run_memory_encoder(
|
981 |
+
self,
|
982 |
+
inference_state,
|
983 |
+
frame_idx,
|
984 |
+
batch_size,
|
985 |
+
high_res_masks,
|
986 |
+
object_score_logits,
|
987 |
+
is_mask_from_pts,
|
988 |
+
):
|
989 |
+
"""
|
990 |
+
Run the memory encoder on `high_res_masks`. This is usually after applying
|
991 |
+
non-overlapping constraints to object scores. Since their scores changed, their
|
992 |
+
memory also need to be computed again with the memory encoder.
|
993 |
+
"""
|
994 |
+
# Retrieve correct image features
|
995 |
+
_, _, current_vision_feats, _, feat_sizes = self._get_image_feature(
|
996 |
+
inference_state, frame_idx, batch_size
|
997 |
+
)
|
998 |
+
maskmem_features, maskmem_pos_enc = self._encode_new_memory(
|
999 |
+
current_vision_feats=current_vision_feats,
|
1000 |
+
feat_sizes=feat_sizes,
|
1001 |
+
pred_masks_high_res=high_res_masks,
|
1002 |
+
object_score_logits=object_score_logits,
|
1003 |
+
is_mask_from_pts=is_mask_from_pts,
|
1004 |
+
)
|
1005 |
+
|
1006 |
+
# optionally offload the output to CPU memory to save GPU space
|
1007 |
+
storage_device = inference_state["storage_device"]
|
1008 |
+
maskmem_features = maskmem_features.to(torch.bfloat16)
|
1009 |
+
maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
|
1010 |
+
# "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
|
1011 |
+
maskmem_pos_enc = self._get_maskmem_pos_enc(
|
1012 |
+
inference_state, {"maskmem_pos_enc": maskmem_pos_enc}
|
1013 |
+
)
|
1014 |
+
return maskmem_features, maskmem_pos_enc
|
1015 |
+
|
1016 |
+
def _get_maskmem_pos_enc(self, inference_state, current_out):
|
1017 |
+
"""
|
1018 |
+
`maskmem_pos_enc` is the same across frames and objects, so we cache it as
|
1019 |
+
a constant in the inference session to reduce session storage size.
|
1020 |
+
"""
|
1021 |
+
model_constants = inference_state["constants"]
|
1022 |
+
# "out_maskmem_pos_enc" should be either a list of tensors or None
|
1023 |
+
out_maskmem_pos_enc = current_out["maskmem_pos_enc"]
|
1024 |
+
if out_maskmem_pos_enc is not None:
|
1025 |
+
if "maskmem_pos_enc" not in model_constants:
|
1026 |
+
assert isinstance(out_maskmem_pos_enc, list)
|
1027 |
+
# only take the slice for one object, since it's same across objects
|
1028 |
+
maskmem_pos_enc = [x[0:1].clone() for x in out_maskmem_pos_enc]
|
1029 |
+
model_constants["maskmem_pos_enc"] = maskmem_pos_enc
|
1030 |
+
else:
|
1031 |
+
maskmem_pos_enc = model_constants["maskmem_pos_enc"]
|
1032 |
+
# expand the cached maskmem_pos_enc to the actual batch size
|
1033 |
+
batch_size = out_maskmem_pos_enc[0].size(0)
|
1034 |
+
expanded_maskmem_pos_enc = [
|
1035 |
+
x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc
|
1036 |
+
]
|
1037 |
+
else:
|
1038 |
+
expanded_maskmem_pos_enc = None
|
1039 |
+
return expanded_maskmem_pos_enc
|
1040 |
+
|
1041 |
+
@torch.inference_mode()
|
1042 |
+
def remove_object(self, inference_state, obj_id, strict=False, need_output=True):
|
1043 |
+
"""
|
1044 |
+
Remove an object id from the tracking state. If strict is True, we check whether
|
1045 |
+
the object id actually exists and raise an error if it doesn't exist.
|
1046 |
+
"""
|
1047 |
+
old_obj_idx_to_rm = inference_state["obj_id_to_idx"].get(obj_id, None)
|
1048 |
+
updated_frames = []
|
1049 |
+
# Check whether this object_id to remove actually exists and possibly raise an error.
|
1050 |
+
if old_obj_idx_to_rm is None:
|
1051 |
+
if not strict:
|
1052 |
+
return inference_state["obj_ids"], updated_frames
|
1053 |
+
raise RuntimeError(
|
1054 |
+
f"Cannot remove object id {obj_id} as it doesn't exist. "
|
1055 |
+
f"All existing object ids: {inference_state['obj_ids']}."
|
1056 |
+
)
|
1057 |
+
|
1058 |
+
# If this is the only remaining object id, we simply reset the state.
|
1059 |
+
if len(inference_state["obj_id_to_idx"]) == 1:
|
1060 |
+
self.reset_state(inference_state)
|
1061 |
+
return inference_state["obj_ids"], updated_frames
|
1062 |
+
|
1063 |
+
# There are still remaining objects after removing this object id. In this case,
|
1064 |
+
# we need to delete the object storage from inference state tensors.
|
1065 |
+
# Step 0: clear the input on those frames where this object id has point or mask input
|
1066 |
+
# (note that this step is required as it might downgrade conditioning frames to
|
1067 |
+
# non-conditioning ones)
|
1068 |
+
obj_input_frames_inds = set()
|
1069 |
+
obj_input_frames_inds.update(
|
1070 |
+
inference_state["point_inputs_per_obj"][old_obj_idx_to_rm]
|
1071 |
+
)
|
1072 |
+
obj_input_frames_inds.update(
|
1073 |
+
inference_state["mask_inputs_per_obj"][old_obj_idx_to_rm]
|
1074 |
+
)
|
1075 |
+
for frame_idx in obj_input_frames_inds:
|
1076 |
+
self.clear_all_prompts_in_frame(
|
1077 |
+
inference_state, frame_idx, obj_id, need_output=False
|
1078 |
+
)
|
1079 |
+
|
1080 |
+
# Step 1: Update the object id mapping (note that it must be done after Step 0,
|
1081 |
+
# since Step 0 still requires the old object id mappings in inference_state)
|
1082 |
+
old_obj_ids = inference_state["obj_ids"]
|
1083 |
+
old_obj_inds = list(range(len(old_obj_ids)))
|
1084 |
+
remain_old_obj_inds = old_obj_inds.copy()
|
1085 |
+
remain_old_obj_inds.remove(old_obj_idx_to_rm)
|
1086 |
+
new_obj_ids = [old_obj_ids[old_idx] for old_idx in remain_old_obj_inds]
|
1087 |
+
new_obj_inds = list(range(len(new_obj_ids)))
|
1088 |
+
# build new mappings
|
1089 |
+
old_idx_to_new_idx = dict(zip(remain_old_obj_inds, new_obj_inds))
|
1090 |
+
inference_state["obj_id_to_idx"] = dict(zip(new_obj_ids, new_obj_inds))
|
1091 |
+
inference_state["obj_idx_to_id"] = dict(zip(new_obj_inds, new_obj_ids))
|
1092 |
+
inference_state["obj_ids"] = new_obj_ids
|
1093 |
+
|
1094 |
+
# Step 2: For per-object tensor storage, we shift their obj_idx in the dict keys.
|
1095 |
+
# (note that "consolidated_frame_inds" doesn't need to be updated in this step as
|
1096 |
+
# it's already handled in Step 0)
|
1097 |
+
def _map_keys(container):
|
1098 |
+
new_kvs = []
|
1099 |
+
for k in old_obj_inds:
|
1100 |
+
v = container.pop(k)
|
1101 |
+
if k in old_idx_to_new_idx:
|
1102 |
+
new_kvs.append((old_idx_to_new_idx[k], v))
|
1103 |
+
container.update(new_kvs)
|
1104 |
+
|
1105 |
+
_map_keys(inference_state["point_inputs_per_obj"])
|
1106 |
+
_map_keys(inference_state["mask_inputs_per_obj"])
|
1107 |
+
_map_keys(inference_state["output_dict_per_obj"])
|
1108 |
+
_map_keys(inference_state["temp_output_dict_per_obj"])
|
1109 |
+
|
1110 |
+
# Step 3: For packed tensor storage, we index the remaining ids and rebuild the per-object slices.
|
1111 |
+
def _slice_state(output_dict, storage_key):
|
1112 |
+
for frame_idx, out in output_dict[storage_key].items():
|
1113 |
+
out["maskmem_features"] = out["maskmem_features"][remain_old_obj_inds]
|
1114 |
+
out["maskmem_pos_enc"] = [
|
1115 |
+
x[remain_old_obj_inds] for x in out["maskmem_pos_enc"]
|
1116 |
+
]
|
1117 |
+
# "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
|
1118 |
+
out["maskmem_pos_enc"] = self._get_maskmem_pos_enc(inference_state, out)
|
1119 |
+
out["pred_masks"] = out["pred_masks"][remain_old_obj_inds]
|
1120 |
+
out["obj_ptr"] = out["obj_ptr"][remain_old_obj_inds]
|
1121 |
+
out["object_score_logits"] = out["object_score_logits"][
|
1122 |
+
remain_old_obj_inds
|
1123 |
+
]
|
1124 |
+
# also update the per-object slices
|
1125 |
+
self._add_output_per_object(
|
1126 |
+
inference_state, frame_idx, out, storage_key
|
1127 |
+
)
|
1128 |
+
|
1129 |
+
_slice_state(inference_state["output_dict"], "cond_frame_outputs")
|
1130 |
+
_slice_state(inference_state["output_dict"], "non_cond_frame_outputs")
|
1131 |
+
|
1132 |
+
# Step 4: Further collect the outputs on those frames in `obj_input_frames_inds`, which
|
1133 |
+
# could show an updated mask for objects previously occluded by the object being removed
|
1134 |
+
if need_output:
|
1135 |
+
temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
|
1136 |
+
for frame_idx in obj_input_frames_inds:
|
1137 |
+
is_cond = any(
|
1138 |
+
frame_idx in obj_temp_output_dict["cond_frame_outputs"]
|
1139 |
+
for obj_temp_output_dict in temp_output_dict_per_obj.values()
|
1140 |
+
)
|
1141 |
+
consolidated_out = self._consolidate_temp_output_across_obj(
|
1142 |
+
inference_state,
|
1143 |
+
frame_idx,
|
1144 |
+
is_cond=is_cond,
|
1145 |
+
run_mem_encoder=False,
|
1146 |
+
consolidate_at_video_res=True,
|
1147 |
+
)
|
1148 |
+
_, video_res_masks = self._get_orig_video_res_output(
|
1149 |
+
inference_state, consolidated_out["pred_masks_video_res"]
|
1150 |
+
)
|
1151 |
+
updated_frames.append((frame_idx, video_res_masks))
|
1152 |
+
|
1153 |
+
return inference_state["obj_ids"], updated_frames
|
1154 |
+
|
1155 |
+
def _clear_non_cond_mem_around_input(self, inference_state, frame_idx):
|
1156 |
+
"""
|
1157 |
+
Remove the non-conditioning memory around the input frame. When users provide
|
1158 |
+
correction clicks, the surrounding frames' non-conditioning memories can still
|
1159 |
+
contain outdated object appearance information and could confuse the model.
|
1160 |
+
|
1161 |
+
This method clears those non-conditioning memories surrounding the interacted
|
1162 |
+
frame to avoid giving the model both old and new information about the object.
|
1163 |
+
"""
|
1164 |
+
r = self.memory_temporal_stride_for_eval
|
1165 |
+
frame_idx_begin = frame_idx - r * self.num_maskmem
|
1166 |
+
frame_idx_end = frame_idx + r * self.num_maskmem
|
1167 |
+
output_dict = inference_state["output_dict"]
|
1168 |
+
non_cond_frame_outputs = output_dict["non_cond_frame_outputs"]
|
1169 |
+
for t in range(frame_idx_begin, frame_idx_end + 1):
|
1170 |
+
non_cond_frame_outputs.pop(t, None)
|
1171 |
+
for obj_output_dict in inference_state["output_dict_per_obj"].values():
|
1172 |
+
obj_output_dict["non_cond_frame_outputs"].pop(t, None)
|
sam2/utils/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
sam2/utils/amg.py
ADDED
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import math
|
8 |
+
from copy import deepcopy
|
9 |
+
from itertools import product
|
10 |
+
from typing import Any, Dict, Generator, ItemsView, List, Tuple
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
import torch
|
14 |
+
|
15 |
+
# Very lightly adapted from https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/utils/amg.py
|
16 |
+
|
17 |
+
|
18 |
+
class MaskData:
|
19 |
+
"""
|
20 |
+
A structure for storing masks and their related data in batched format.
|
21 |
+
Implements basic filtering and concatenation.
|
22 |
+
"""
|
23 |
+
|
24 |
+
def __init__(self, **kwargs) -> None:
|
25 |
+
for v in kwargs.values():
|
26 |
+
assert isinstance(
|
27 |
+
v, (list, np.ndarray, torch.Tensor)
|
28 |
+
), "MaskData only supports list, numpy arrays, and torch tensors."
|
29 |
+
self._stats = dict(**kwargs)
|
30 |
+
|
31 |
+
def __setitem__(self, key: str, item: Any) -> None:
|
32 |
+
assert isinstance(
|
33 |
+
item, (list, np.ndarray, torch.Tensor)
|
34 |
+
), "MaskData only supports list, numpy arrays, and torch tensors."
|
35 |
+
self._stats[key] = item
|
36 |
+
|
37 |
+
def __delitem__(self, key: str) -> None:
|
38 |
+
del self._stats[key]
|
39 |
+
|
40 |
+
def __getitem__(self, key: str) -> Any:
|
41 |
+
return self._stats[key]
|
42 |
+
|
43 |
+
def items(self) -> ItemsView[str, Any]:
|
44 |
+
return self._stats.items()
|
45 |
+
|
46 |
+
def filter(self, keep: torch.Tensor) -> None:
|
47 |
+
for k, v in self._stats.items():
|
48 |
+
if v is None:
|
49 |
+
self._stats[k] = None
|
50 |
+
elif isinstance(v, torch.Tensor):
|
51 |
+
self._stats[k] = v[torch.as_tensor(keep, device=v.device)]
|
52 |
+
elif isinstance(v, np.ndarray):
|
53 |
+
self._stats[k] = v[keep.detach().cpu().numpy()]
|
54 |
+
elif isinstance(v, list) and keep.dtype == torch.bool:
|
55 |
+
self._stats[k] = [a for i, a in enumerate(v) if keep[i]]
|
56 |
+
elif isinstance(v, list):
|
57 |
+
self._stats[k] = [v[i] for i in keep]
|
58 |
+
else:
|
59 |
+
raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
|
60 |
+
|
61 |
+
def cat(self, new_stats: "MaskData") -> None:
|
62 |
+
for k, v in new_stats.items():
|
63 |
+
if k not in self._stats or self._stats[k] is None:
|
64 |
+
self._stats[k] = deepcopy(v)
|
65 |
+
elif isinstance(v, torch.Tensor):
|
66 |
+
self._stats[k] = torch.cat([self._stats[k], v], dim=0)
|
67 |
+
elif isinstance(v, np.ndarray):
|
68 |
+
self._stats[k] = np.concatenate([self._stats[k], v], axis=0)
|
69 |
+
elif isinstance(v, list):
|
70 |
+
self._stats[k] = self._stats[k] + deepcopy(v)
|
71 |
+
else:
|
72 |
+
raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
|
73 |
+
|
74 |
+
def to_numpy(self) -> None:
|
75 |
+
for k, v in self._stats.items():
|
76 |
+
if isinstance(v, torch.Tensor):
|
77 |
+
self._stats[k] = v.float().detach().cpu().numpy()
|
78 |
+
|
79 |
+
|
80 |
+
def is_box_near_crop_edge(
|
81 |
+
boxes: torch.Tensor, crop_box: List[int], orig_box: List[int], atol: float = 20.0
|
82 |
+
) -> torch.Tensor:
|
83 |
+
"""Filter masks at the edge of a crop, but not at the edge of the original image."""
|
84 |
+
crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device)
|
85 |
+
orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device)
|
86 |
+
boxes = uncrop_boxes_xyxy(boxes, crop_box).float()
|
87 |
+
near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0)
|
88 |
+
near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0)
|
89 |
+
near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge)
|
90 |
+
return torch.any(near_crop_edge, dim=1)
|
91 |
+
|
92 |
+
|
93 |
+
def box_xyxy_to_xywh(box_xyxy: torch.Tensor) -> torch.Tensor:
|
94 |
+
box_xywh = deepcopy(box_xyxy)
|
95 |
+
box_xywh[2] = box_xywh[2] - box_xywh[0]
|
96 |
+
box_xywh[3] = box_xywh[3] - box_xywh[1]
|
97 |
+
return box_xywh
|
98 |
+
|
99 |
+
|
100 |
+
def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
|
101 |
+
assert len(args) > 0 and all(
|
102 |
+
len(a) == len(args[0]) for a in args
|
103 |
+
), "Batched iteration must have inputs of all the same size."
|
104 |
+
n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
|
105 |
+
for b in range(n_batches):
|
106 |
+
yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args]
|
107 |
+
|
108 |
+
|
109 |
+
def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]:
|
110 |
+
"""
|
111 |
+
Encodes masks to an uncompressed RLE, in the format expected by
|
112 |
+
pycoco tools.
|
113 |
+
"""
|
114 |
+
# Put in fortran order and flatten h,w
|
115 |
+
b, h, w = tensor.shape
|
116 |
+
tensor = tensor.permute(0, 2, 1).flatten(1)
|
117 |
+
|
118 |
+
# Compute change indices
|
119 |
+
diff = tensor[:, 1:] ^ tensor[:, :-1]
|
120 |
+
change_indices = diff.nonzero()
|
121 |
+
|
122 |
+
# Encode run length
|
123 |
+
out = []
|
124 |
+
for i in range(b):
|
125 |
+
cur_idxs = change_indices[change_indices[:, 0] == i, 1]
|
126 |
+
cur_idxs = torch.cat(
|
127 |
+
[
|
128 |
+
torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device),
|
129 |
+
cur_idxs + 1,
|
130 |
+
torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device),
|
131 |
+
]
|
132 |
+
)
|
133 |
+
btw_idxs = cur_idxs[1:] - cur_idxs[:-1]
|
134 |
+
counts = [] if tensor[i, 0] == 0 else [0]
|
135 |
+
counts.extend(btw_idxs.detach().cpu().tolist())
|
136 |
+
out.append({"size": [h, w], "counts": counts})
|
137 |
+
return out
|
138 |
+
|
139 |
+
|
140 |
+
def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray:
|
141 |
+
"""Compute a binary mask from an uncompressed RLE."""
|
142 |
+
h, w = rle["size"]
|
143 |
+
mask = np.empty(h * w, dtype=bool)
|
144 |
+
idx = 0
|
145 |
+
parity = False
|
146 |
+
for count in rle["counts"]:
|
147 |
+
mask[idx : idx + count] = parity
|
148 |
+
idx += count
|
149 |
+
parity ^= True
|
150 |
+
mask = mask.reshape(w, h)
|
151 |
+
return mask.transpose() # Put in C order
|
152 |
+
|
153 |
+
|
154 |
+
def area_from_rle(rle: Dict[str, Any]) -> int:
|
155 |
+
return sum(rle["counts"][1::2])
|
156 |
+
|
157 |
+
|
158 |
+
def calculate_stability_score(
|
159 |
+
masks: torch.Tensor, mask_threshold: float, threshold_offset: float
|
160 |
+
) -> torch.Tensor:
|
161 |
+
"""
|
162 |
+
Computes the stability score for a batch of masks. The stability
|
163 |
+
score is the IoU between the binary masks obtained by thresholding
|
164 |
+
the predicted mask logits at high and low values.
|
165 |
+
"""
|
166 |
+
# One mask is always contained inside the other.
|
167 |
+
# Save memory by preventing unnecessary cast to torch.int64
|
168 |
+
intersections = (
|
169 |
+
(masks > (mask_threshold + threshold_offset))
|
170 |
+
.sum(-1, dtype=torch.int16)
|
171 |
+
.sum(-1, dtype=torch.int32)
|
172 |
+
)
|
173 |
+
unions = (
|
174 |
+
(masks > (mask_threshold - threshold_offset))
|
175 |
+
.sum(-1, dtype=torch.int16)
|
176 |
+
.sum(-1, dtype=torch.int32)
|
177 |
+
)
|
178 |
+
return intersections / unions
|
179 |
+
|
180 |
+
|
181 |
+
def build_point_grid(n_per_side: int) -> np.ndarray:
|
182 |
+
"""Generates a 2D grid of points evenly spaced in [0,1]x[0,1]."""
|
183 |
+
offset = 1 / (2 * n_per_side)
|
184 |
+
points_one_side = np.linspace(offset, 1 - offset, n_per_side)
|
185 |
+
points_x = np.tile(points_one_side[None, :], (n_per_side, 1))
|
186 |
+
points_y = np.tile(points_one_side[:, None], (1, n_per_side))
|
187 |
+
points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2)
|
188 |
+
return points
|
189 |
+
|
190 |
+
|
191 |
+
def build_all_layer_point_grids(
|
192 |
+
n_per_side: int, n_layers: int, scale_per_layer: int
|
193 |
+
) -> List[np.ndarray]:
|
194 |
+
"""Generates point grids for all crop layers."""
|
195 |
+
points_by_layer = []
|
196 |
+
for i in range(n_layers + 1):
|
197 |
+
n_points = int(n_per_side / (scale_per_layer**i))
|
198 |
+
points_by_layer.append(build_point_grid(n_points))
|
199 |
+
return points_by_layer
|
200 |
+
|
201 |
+
|
202 |
+
def generate_crop_boxes(
|
203 |
+
im_size: Tuple[int, ...], n_layers: int, overlap_ratio: float
|
204 |
+
) -> Tuple[List[List[int]], List[int]]:
|
205 |
+
"""
|
206 |
+
Generates a list of crop boxes of different sizes. Each layer
|
207 |
+
has (2**i)**2 boxes for the ith layer.
|
208 |
+
"""
|
209 |
+
crop_boxes, layer_idxs = [], []
|
210 |
+
im_h, im_w = im_size
|
211 |
+
short_side = min(im_h, im_w)
|
212 |
+
|
213 |
+
# Original image
|
214 |
+
crop_boxes.append([0, 0, im_w, im_h])
|
215 |
+
layer_idxs.append(0)
|
216 |
+
|
217 |
+
def crop_len(orig_len, n_crops, overlap):
|
218 |
+
return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops))
|
219 |
+
|
220 |
+
for i_layer in range(n_layers):
|
221 |
+
n_crops_per_side = 2 ** (i_layer + 1)
|
222 |
+
overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side))
|
223 |
+
|
224 |
+
crop_w = crop_len(im_w, n_crops_per_side, overlap)
|
225 |
+
crop_h = crop_len(im_h, n_crops_per_side, overlap)
|
226 |
+
|
227 |
+
crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)]
|
228 |
+
crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)]
|
229 |
+
|
230 |
+
# Crops in XYWH format
|
231 |
+
for x0, y0 in product(crop_box_x0, crop_box_y0):
|
232 |
+
box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)]
|
233 |
+
crop_boxes.append(box)
|
234 |
+
layer_idxs.append(i_layer + 1)
|
235 |
+
|
236 |
+
return crop_boxes, layer_idxs
|
237 |
+
|
238 |
+
|
239 |
+
def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
|
240 |
+
x0, y0, _, _ = crop_box
|
241 |
+
offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device)
|
242 |
+
# Check if boxes has a channel dimension
|
243 |
+
if len(boxes.shape) == 3:
|
244 |
+
offset = offset.unsqueeze(1)
|
245 |
+
return boxes + offset
|
246 |
+
|
247 |
+
|
248 |
+
def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
|
249 |
+
x0, y0, _, _ = crop_box
|
250 |
+
offset = torch.tensor([[x0, y0]], device=points.device)
|
251 |
+
# Check if points has a channel dimension
|
252 |
+
if len(points.shape) == 3:
|
253 |
+
offset = offset.unsqueeze(1)
|
254 |
+
return points + offset
|
255 |
+
|
256 |
+
|
257 |
+
def uncrop_masks(
|
258 |
+
masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int
|
259 |
+
) -> torch.Tensor:
|
260 |
+
x0, y0, x1, y1 = crop_box
|
261 |
+
if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h:
|
262 |
+
return masks
|
263 |
+
# Coordinate transform masks
|
264 |
+
pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0)
|
265 |
+
pad = (x0, pad_x - x0, y0, pad_y - y0)
|
266 |
+
return torch.nn.functional.pad(masks, pad, value=0)
|
267 |
+
|
268 |
+
|
269 |
+
def remove_small_regions(
|
270 |
+
mask: np.ndarray, area_thresh: float, mode: str
|
271 |
+
) -> Tuple[np.ndarray, bool]:
|
272 |
+
"""
|
273 |
+
Removes small disconnected regions and holes in a mask. Returns the
|
274 |
+
mask and an indicator of if the mask has been modified.
|
275 |
+
"""
|
276 |
+
import cv2 # type: ignore
|
277 |
+
|
278 |
+
assert mode in ["holes", "islands"]
|
279 |
+
correct_holes = mode == "holes"
|
280 |
+
working_mask = (correct_holes ^ mask).astype(np.uint8)
|
281 |
+
n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8)
|
282 |
+
sizes = stats[:, -1][1:] # Row 0 is background label
|
283 |
+
small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh]
|
284 |
+
if len(small_regions) == 0:
|
285 |
+
return mask, False
|
286 |
+
fill_labels = [0] + small_regions
|
287 |
+
if not correct_holes:
|
288 |
+
fill_labels = [i for i in range(n_labels) if i not in fill_labels]
|
289 |
+
# If every region is below threshold, keep largest
|
290 |
+
if len(fill_labels) == 0:
|
291 |
+
fill_labels = [int(np.argmax(sizes)) + 1]
|
292 |
+
mask = np.isin(regions, fill_labels)
|
293 |
+
return mask, True
|
294 |
+
|
295 |
+
|
296 |
+
def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]:
|
297 |
+
from pycocotools import mask as mask_utils # type: ignore
|
298 |
+
|
299 |
+
h, w = uncompressed_rle["size"]
|
300 |
+
rle = mask_utils.frPyObjects(uncompressed_rle, h, w)
|
301 |
+
rle["counts"] = rle["counts"].decode("utf-8") # Necessary to serialize with json
|
302 |
+
return rle
|
303 |
+
|
304 |
+
|
305 |
+
def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor:
|
306 |
+
"""
|
307 |
+
Calculates boxes in XYXY format around masks. Return [0,0,0,0] for
|
308 |
+
an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4.
|
309 |
+
"""
|
310 |
+
# torch.max below raises an error on empty inputs, just skip in this case
|
311 |
+
if torch.numel(masks) == 0:
|
312 |
+
return torch.zeros(*masks.shape[:-2], 4, device=masks.device)
|
313 |
+
|
314 |
+
# Normalize shape to CxHxW
|
315 |
+
shape = masks.shape
|
316 |
+
h, w = shape[-2:]
|
317 |
+
if len(shape) > 2:
|
318 |
+
masks = masks.flatten(0, -3)
|
319 |
+
else:
|
320 |
+
masks = masks.unsqueeze(0)
|
321 |
+
|
322 |
+
# Get top and bottom edges
|
323 |
+
in_height, _ = torch.max(masks, dim=-1)
|
324 |
+
in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :]
|
325 |
+
bottom_edges, _ = torch.max(in_height_coords, dim=-1)
|
326 |
+
in_height_coords = in_height_coords + h * (~in_height)
|
327 |
+
top_edges, _ = torch.min(in_height_coords, dim=-1)
|
328 |
+
|
329 |
+
# Get left and right edges
|
330 |
+
in_width, _ = torch.max(masks, dim=-2)
|
331 |
+
in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :]
|
332 |
+
right_edges, _ = torch.max(in_width_coords, dim=-1)
|
333 |
+
in_width_coords = in_width_coords + w * (~in_width)
|
334 |
+
left_edges, _ = torch.min(in_width_coords, dim=-1)
|
335 |
+
|
336 |
+
# If the mask is empty the right edge will be to the left of the left edge.
|
337 |
+
# Replace these boxes with [0, 0, 0, 0]
|
338 |
+
empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges)
|
339 |
+
out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1)
|
340 |
+
out = out * (~empty_filter).unsqueeze(-1)
|
341 |
+
|
342 |
+
# Return to original shape
|
343 |
+
if len(shape) > 2:
|
344 |
+
out = out.reshape(*shape[:-2], 4)
|
345 |
+
else:
|
346 |
+
out = out[0]
|
347 |
+
|
348 |
+
return out
|
sam2/utils/misc.py
ADDED
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import os
|
8 |
+
import warnings
|
9 |
+
from threading import Thread
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
from PIL import Image
|
14 |
+
from tqdm import tqdm
|
15 |
+
|
16 |
+
|
17 |
+
def get_sdpa_settings():
|
18 |
+
if torch.cuda.is_available():
|
19 |
+
old_gpu = torch.cuda.get_device_properties(0).major < 7
|
20 |
+
# only use Flash Attention on Ampere (8.0) or newer GPUs
|
21 |
+
use_flash_attn = torch.cuda.get_device_properties(0).major >= 8
|
22 |
+
if not use_flash_attn:
|
23 |
+
warnings.warn(
|
24 |
+
"Flash Attention is disabled as it requires a GPU with Ampere (8.0) CUDA capability.",
|
25 |
+
category=UserWarning,
|
26 |
+
stacklevel=2,
|
27 |
+
)
|
28 |
+
# keep math kernel for PyTorch versions before 2.2 (Flash Attention v2 is only
|
29 |
+
# available on PyTorch 2.2+, while Flash Attention v1 cannot handle all cases)
|
30 |
+
pytorch_version = tuple(int(v) for v in torch.__version__.split(".")[:2])
|
31 |
+
if pytorch_version < (2, 2):
|
32 |
+
warnings.warn(
|
33 |
+
f"You are using PyTorch {torch.__version__} without Flash Attention v2 support. "
|
34 |
+
"Consider upgrading to PyTorch 2.2+ for Flash Attention v2 (which could be faster).",
|
35 |
+
category=UserWarning,
|
36 |
+
stacklevel=2,
|
37 |
+
)
|
38 |
+
math_kernel_on = pytorch_version < (2, 2) or not use_flash_attn
|
39 |
+
else:
|
40 |
+
old_gpu = True
|
41 |
+
use_flash_attn = False
|
42 |
+
math_kernel_on = True
|
43 |
+
|
44 |
+
return old_gpu, use_flash_attn, math_kernel_on
|
45 |
+
|
46 |
+
|
47 |
+
def get_connected_components(mask):
|
48 |
+
"""
|
49 |
+
Get the connected components (8-connectivity) of binary masks of shape (N, 1, H, W).
|
50 |
+
|
51 |
+
Inputs:
|
52 |
+
- mask: A binary mask tensor of shape (N, 1, H, W), where 1 is foreground and 0 is
|
53 |
+
background.
|
54 |
+
|
55 |
+
Outputs:
|
56 |
+
- labels: A tensor of shape (N, 1, H, W) containing the connected component labels
|
57 |
+
for foreground pixels and 0 for background pixels.
|
58 |
+
- counts: A tensor of shape (N, 1, H, W) containing the area of the connected
|
59 |
+
components for foreground pixels and 0 for background pixels.
|
60 |
+
"""
|
61 |
+
from sam2 import _C
|
62 |
+
|
63 |
+
return _C.get_connected_componnets(mask.to(torch.uint8).contiguous())
|
64 |
+
|
65 |
+
|
66 |
+
def mask_to_box(masks: torch.Tensor):
|
67 |
+
"""
|
68 |
+
compute bounding box given an input mask
|
69 |
+
|
70 |
+
Inputs:
|
71 |
+
- masks: [B, 1, H, W] masks, dtype=torch.Tensor
|
72 |
+
|
73 |
+
Returns:
|
74 |
+
- box_coords: [B, 1, 4], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.Tensor
|
75 |
+
"""
|
76 |
+
B, _, h, w = masks.shape
|
77 |
+
device = masks.device
|
78 |
+
xs = torch.arange(w, device=device, dtype=torch.int32)
|
79 |
+
ys = torch.arange(h, device=device, dtype=torch.int32)
|
80 |
+
grid_xs, grid_ys = torch.meshgrid(xs, ys, indexing="xy")
|
81 |
+
grid_xs = grid_xs[None, None, ...].expand(B, 1, h, w)
|
82 |
+
grid_ys = grid_ys[None, None, ...].expand(B, 1, h, w)
|
83 |
+
min_xs, _ = torch.min(torch.where(masks, grid_xs, w).flatten(-2), dim=-1)
|
84 |
+
max_xs, _ = torch.max(torch.where(masks, grid_xs, -1).flatten(-2), dim=-1)
|
85 |
+
min_ys, _ = torch.min(torch.where(masks, grid_ys, h).flatten(-2), dim=-1)
|
86 |
+
max_ys, _ = torch.max(torch.where(masks, grid_ys, -1).flatten(-2), dim=-1)
|
87 |
+
bbox_coords = torch.stack((min_xs, min_ys, max_xs, max_ys), dim=-1)
|
88 |
+
|
89 |
+
return bbox_coords
|
90 |
+
|
91 |
+
|
92 |
+
def _load_img_as_tensor(img_path, image_size):
|
93 |
+
img_pil = Image.open(img_path)
|
94 |
+
img_np = np.array(img_pil.convert("RGB").resize((image_size, image_size)))
|
95 |
+
if img_np.dtype == np.uint8: # np.uint8 is expected for JPEG images
|
96 |
+
img_np = img_np / 255.0
|
97 |
+
else:
|
98 |
+
raise RuntimeError(f"Unknown image dtype: {img_np.dtype} on {img_path}")
|
99 |
+
img = torch.from_numpy(img_np).permute(2, 0, 1)
|
100 |
+
video_width, video_height = img_pil.size # the original video size
|
101 |
+
return img, video_height, video_width
|
102 |
+
|
103 |
+
|
104 |
+
class AsyncVideoFrameLoader:
|
105 |
+
"""
|
106 |
+
A list of video frames to be load asynchronously without blocking session start.
|
107 |
+
"""
|
108 |
+
|
109 |
+
def __init__(
|
110 |
+
self,
|
111 |
+
img_paths,
|
112 |
+
image_size,
|
113 |
+
offload_video_to_cpu,
|
114 |
+
img_mean,
|
115 |
+
img_std,
|
116 |
+
compute_device,
|
117 |
+
):
|
118 |
+
self.img_paths = img_paths
|
119 |
+
self.image_size = image_size
|
120 |
+
self.offload_video_to_cpu = offload_video_to_cpu
|
121 |
+
self.img_mean = img_mean
|
122 |
+
self.img_std = img_std
|
123 |
+
# items in `self.images` will be loaded asynchronously
|
124 |
+
self.images = [None] * len(img_paths)
|
125 |
+
# catch and raise any exceptions in the async loading thread
|
126 |
+
self.exception = None
|
127 |
+
# video_height and video_width be filled when loading the first image
|
128 |
+
self.video_height = None
|
129 |
+
self.video_width = None
|
130 |
+
self.compute_device = compute_device
|
131 |
+
|
132 |
+
# load the first frame to fill video_height and video_width and also
|
133 |
+
# to cache it (since it's most likely where the user will click)
|
134 |
+
self.__getitem__(0)
|
135 |
+
|
136 |
+
# load the rest of frames asynchronously without blocking the session start
|
137 |
+
def _load_frames():
|
138 |
+
try:
|
139 |
+
for n in tqdm(range(len(self.images)), desc="frame loading (JPEG)"):
|
140 |
+
self.__getitem__(n)
|
141 |
+
except Exception as e:
|
142 |
+
self.exception = e
|
143 |
+
|
144 |
+
self.thread = Thread(target=_load_frames, daemon=True)
|
145 |
+
self.thread.start()
|
146 |
+
|
147 |
+
def __getitem__(self, index):
|
148 |
+
if self.exception is not None:
|
149 |
+
raise RuntimeError("Failure in frame loading thread") from self.exception
|
150 |
+
|
151 |
+
img = self.images[index]
|
152 |
+
if img is not None:
|
153 |
+
return img
|
154 |
+
|
155 |
+
img, video_height, video_width = _load_img_as_tensor(
|
156 |
+
self.img_paths[index], self.image_size
|
157 |
+
)
|
158 |
+
self.video_height = video_height
|
159 |
+
self.video_width = video_width
|
160 |
+
# normalize by mean and std
|
161 |
+
img -= self.img_mean
|
162 |
+
img /= self.img_std
|
163 |
+
if not self.offload_video_to_cpu:
|
164 |
+
img = img.to(self.compute_device, non_blocking=True)
|
165 |
+
self.images[index] = img
|
166 |
+
return img
|
167 |
+
|
168 |
+
def __len__(self):
|
169 |
+
return len(self.images)
|
170 |
+
|
171 |
+
|
172 |
+
def load_video_frames(
|
173 |
+
video_path,
|
174 |
+
image_size,
|
175 |
+
offload_video_to_cpu,
|
176 |
+
img_mean=(0.485, 0.456, 0.406),
|
177 |
+
img_std=(0.229, 0.224, 0.225),
|
178 |
+
async_loading_frames=False,
|
179 |
+
compute_device=torch.device("cuda"),
|
180 |
+
):
|
181 |
+
"""
|
182 |
+
Load the video frames from video_path. The frames are resized to image_size as in
|
183 |
+
the model and are loaded to GPU if offload_video_to_cpu=False. This is used by the demo.
|
184 |
+
"""
|
185 |
+
is_bytes = isinstance(video_path, bytes)
|
186 |
+
is_str = isinstance(video_path, str)
|
187 |
+
is_mp4_path = is_str and os.path.splitext(video_path)[-1] in [".mp4", ".MP4"]
|
188 |
+
if is_bytes or is_mp4_path:
|
189 |
+
return load_video_frames_from_video_file(
|
190 |
+
video_path=video_path,
|
191 |
+
image_size=image_size,
|
192 |
+
offload_video_to_cpu=offload_video_to_cpu,
|
193 |
+
img_mean=img_mean,
|
194 |
+
img_std=img_std,
|
195 |
+
compute_device=compute_device,
|
196 |
+
)
|
197 |
+
elif is_str and os.path.isdir(video_path):
|
198 |
+
return load_video_frames_from_jpg_images(
|
199 |
+
video_path=video_path,
|
200 |
+
image_size=image_size,
|
201 |
+
offload_video_to_cpu=offload_video_to_cpu,
|
202 |
+
img_mean=img_mean,
|
203 |
+
img_std=img_std,
|
204 |
+
async_loading_frames=async_loading_frames,
|
205 |
+
compute_device=compute_device,
|
206 |
+
)
|
207 |
+
else:
|
208 |
+
raise NotImplementedError(
|
209 |
+
"Only MP4 video and JPEG folder are supported at this moment"
|
210 |
+
)
|
211 |
+
|
212 |
+
|
213 |
+
def load_video_frames_from_jpg_images(
|
214 |
+
video_path,
|
215 |
+
image_size,
|
216 |
+
offload_video_to_cpu,
|
217 |
+
img_mean=(0.485, 0.456, 0.406),
|
218 |
+
img_std=(0.229, 0.224, 0.225),
|
219 |
+
async_loading_frames=False,
|
220 |
+
compute_device=torch.device("cuda"),
|
221 |
+
):
|
222 |
+
"""
|
223 |
+
Load the video frames from a directory of JPEG files ("<frame_index>.jpg" format).
|
224 |
+
|
225 |
+
The frames are resized to image_size x image_size and are loaded to GPU if
|
226 |
+
`offload_video_to_cpu` is `False` and to CPU if `offload_video_to_cpu` is `True`.
|
227 |
+
|
228 |
+
You can load a frame asynchronously by setting `async_loading_frames` to `True`.
|
229 |
+
"""
|
230 |
+
if isinstance(video_path, str) and os.path.isdir(video_path):
|
231 |
+
jpg_folder = video_path
|
232 |
+
else:
|
233 |
+
raise NotImplementedError(
|
234 |
+
"Only JPEG frames are supported at this moment. For video files, you may use "
|
235 |
+
"ffmpeg (https://ffmpeg.org/) to extract frames into a folder of JPEG files, such as \n"
|
236 |
+
"```\n"
|
237 |
+
"ffmpeg -i <your_video>.mp4 -q:v 2 -start_number 0 <output_dir>/'%05d.jpg'\n"
|
238 |
+
"```\n"
|
239 |
+
"where `-q:v` generates high-quality JPEG frames and `-start_number 0` asks "
|
240 |
+
"ffmpeg to start the JPEG file from 00000.jpg."
|
241 |
+
)
|
242 |
+
|
243 |
+
frame_names = [
|
244 |
+
p
|
245 |
+
for p in os.listdir(jpg_folder)
|
246 |
+
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
|
247 |
+
]
|
248 |
+
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
|
249 |
+
num_frames = len(frame_names)
|
250 |
+
if num_frames == 0:
|
251 |
+
raise RuntimeError(f"no images found in {jpg_folder}")
|
252 |
+
img_paths = [os.path.join(jpg_folder, frame_name) for frame_name in frame_names]
|
253 |
+
img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None]
|
254 |
+
img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None]
|
255 |
+
|
256 |
+
if async_loading_frames:
|
257 |
+
lazy_images = AsyncVideoFrameLoader(
|
258 |
+
img_paths,
|
259 |
+
image_size,
|
260 |
+
offload_video_to_cpu,
|
261 |
+
img_mean,
|
262 |
+
img_std,
|
263 |
+
compute_device,
|
264 |
+
)
|
265 |
+
return lazy_images, lazy_images.video_height, lazy_images.video_width
|
266 |
+
|
267 |
+
images = torch.zeros(num_frames, 3, image_size, image_size, dtype=torch.float32)
|
268 |
+
for n, img_path in enumerate(tqdm(img_paths, desc="frame loading (JPEG)")):
|
269 |
+
images[n], video_height, video_width = _load_img_as_tensor(img_path, image_size)
|
270 |
+
if not offload_video_to_cpu:
|
271 |
+
images = images.to(compute_device)
|
272 |
+
img_mean = img_mean.to(compute_device)
|
273 |
+
img_std = img_std.to(compute_device)
|
274 |
+
# normalize by mean and std
|
275 |
+
images -= img_mean
|
276 |
+
images /= img_std
|
277 |
+
return images, video_height, video_width
|
278 |
+
|
279 |
+
|
280 |
+
def load_video_frames_from_video_file(
|
281 |
+
video_path,
|
282 |
+
image_size,
|
283 |
+
offload_video_to_cpu,
|
284 |
+
img_mean=(0.485, 0.456, 0.406),
|
285 |
+
img_std=(0.229, 0.224, 0.225),
|
286 |
+
compute_device=torch.device("cuda"),
|
287 |
+
):
|
288 |
+
"""Load the video frames from a video file."""
|
289 |
+
import decord
|
290 |
+
|
291 |
+
img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None]
|
292 |
+
img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None]
|
293 |
+
# Get the original video height and width
|
294 |
+
decord.bridge.set_bridge("torch")
|
295 |
+
video_height, video_width, _ = decord.VideoReader(video_path).next().shape
|
296 |
+
# Iterate over all frames in the video
|
297 |
+
images = []
|
298 |
+
for frame in decord.VideoReader(video_path, width=image_size, height=image_size):
|
299 |
+
images.append(frame.permute(2, 0, 1))
|
300 |
+
|
301 |
+
images = torch.stack(images, dim=0).float() / 255.0
|
302 |
+
if not offload_video_to_cpu:
|
303 |
+
images = images.to(compute_device)
|
304 |
+
img_mean = img_mean.to(compute_device)
|
305 |
+
img_std = img_std.to(compute_device)
|
306 |
+
# normalize by mean and std
|
307 |
+
images -= img_mean
|
308 |
+
images /= img_std
|
309 |
+
return images, video_height, video_width
|
310 |
+
|
311 |
+
|
312 |
+
def fill_holes_in_mask_scores(mask, max_area):
|
313 |
+
"""
|
314 |
+
A post processor to fill small holes in mask scores with area under `max_area`.
|
315 |
+
"""
|
316 |
+
# Holes are those connected components in background with area <= self.max_area
|
317 |
+
# (background regions are those with mask scores <= 0)
|
318 |
+
assert max_area > 0, "max_area must be positive"
|
319 |
+
|
320 |
+
input_mask = mask
|
321 |
+
try:
|
322 |
+
labels, areas = get_connected_components(mask <= 0)
|
323 |
+
is_hole = (labels > 0) & (areas <= max_area)
|
324 |
+
# We fill holes with a small positive mask score (0.1) to change them to foreground.
|
325 |
+
mask = torch.where(is_hole, 0.1, mask)
|
326 |
+
except Exception as e:
|
327 |
+
# Skip the post-processing step on removing small holes if the CUDA kernel fails
|
328 |
+
warnings.warn(
|
329 |
+
f"{e}\n\nSkipping the post-processing step due to the error above. You can "
|
330 |
+
"still use SAM 2 and it's OK to ignore the error above, although some post-processing "
|
331 |
+
"functionality may be limited (which doesn't affect the results in most cases; see "
|
332 |
+
"https://github.com/facebookresearch/sam2/blob/main/INSTALL.md).",
|
333 |
+
category=UserWarning,
|
334 |
+
stacklevel=2,
|
335 |
+
)
|
336 |
+
mask = input_mask
|
337 |
+
|
338 |
+
return mask
|
339 |
+
|
340 |
+
|
341 |
+
def concat_points(old_point_inputs, new_points, new_labels):
|
342 |
+
"""Add new points and labels to previous point inputs (add at the end)."""
|
343 |
+
if old_point_inputs is None:
|
344 |
+
points, labels = new_points, new_labels
|
345 |
+
else:
|
346 |
+
points = torch.cat([old_point_inputs["point_coords"], new_points], dim=1)
|
347 |
+
labels = torch.cat([old_point_inputs["point_labels"], new_labels], dim=1)
|
348 |
+
|
349 |
+
return {"point_coords": points, "point_labels": labels}
|
sam2/utils/transforms.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import warnings
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from torchvision.transforms import Normalize, Resize, ToTensor
|
13 |
+
|
14 |
+
|
15 |
+
class SAM2Transforms(nn.Module):
|
16 |
+
def __init__(
|
17 |
+
self, resolution, mask_threshold, max_hole_area=0.0, max_sprinkle_area=0.0
|
18 |
+
):
|
19 |
+
"""
|
20 |
+
Transforms for SAM2.
|
21 |
+
"""
|
22 |
+
super().__init__()
|
23 |
+
self.resolution = resolution
|
24 |
+
self.mask_threshold = mask_threshold
|
25 |
+
self.max_hole_area = max_hole_area
|
26 |
+
self.max_sprinkle_area = max_sprinkle_area
|
27 |
+
self.mean = [0.485, 0.456, 0.406]
|
28 |
+
self.std = [0.229, 0.224, 0.225]
|
29 |
+
self.to_tensor = ToTensor()
|
30 |
+
self.transforms = torch.jit.script(
|
31 |
+
nn.Sequential(
|
32 |
+
Resize((self.resolution, self.resolution)),
|
33 |
+
Normalize(self.mean, self.std),
|
34 |
+
)
|
35 |
+
)
|
36 |
+
|
37 |
+
def __call__(self, x):
|
38 |
+
x = self.to_tensor(x)
|
39 |
+
return self.transforms(x)
|
40 |
+
|
41 |
+
def forward_batch(self, img_list):
|
42 |
+
img_batch = [self.transforms(self.to_tensor(img)) for img in img_list]
|
43 |
+
img_batch = torch.stack(img_batch, dim=0)
|
44 |
+
return img_batch
|
45 |
+
|
46 |
+
def transform_coords(
|
47 |
+
self, coords: torch.Tensor, normalize=False, orig_hw=None
|
48 |
+
) -> torch.Tensor:
|
49 |
+
"""
|
50 |
+
Expects a torch tensor with length 2 in the last dimension. The coordinates can be in absolute image or normalized coordinates,
|
51 |
+
If the coords are in absolute image coordinates, normalize should be set to True and original image size is required.
|
52 |
+
|
53 |
+
Returns
|
54 |
+
Un-normalized coordinates in the range of [0, 1] which is expected by the SAM2 model.
|
55 |
+
"""
|
56 |
+
if normalize:
|
57 |
+
assert orig_hw is not None
|
58 |
+
h, w = orig_hw
|
59 |
+
coords = coords.clone()
|
60 |
+
coords[..., 0] = coords[..., 0] / w
|
61 |
+
coords[..., 1] = coords[..., 1] / h
|
62 |
+
|
63 |
+
coords = coords * self.resolution # unnormalize coords
|
64 |
+
return coords
|
65 |
+
|
66 |
+
def transform_boxes(
|
67 |
+
self, boxes: torch.Tensor, normalize=False, orig_hw=None
|
68 |
+
) -> torch.Tensor:
|
69 |
+
"""
|
70 |
+
Expects a tensor of shape Bx4. The coordinates can be in absolute image or normalized coordinates,
|
71 |
+
if the coords are in absolute image coordinates, normalize should be set to True and original image size is required.
|
72 |
+
"""
|
73 |
+
boxes = self.transform_coords(boxes.reshape(-1, 2, 2), normalize, orig_hw)
|
74 |
+
return boxes
|
75 |
+
|
76 |
+
def postprocess_masks(self, masks: torch.Tensor, orig_hw) -> torch.Tensor:
|
77 |
+
"""
|
78 |
+
Perform PostProcessing on output masks.
|
79 |
+
"""
|
80 |
+
from sam2.utils.misc import get_connected_components
|
81 |
+
|
82 |
+
masks = masks.float()
|
83 |
+
input_masks = masks
|
84 |
+
mask_flat = masks.flatten(0, 1).unsqueeze(1) # flatten as 1-channel image
|
85 |
+
try:
|
86 |
+
if self.max_hole_area > 0:
|
87 |
+
# Holes are those connected components in background with area <= self.fill_hole_area
|
88 |
+
# (background regions are those with mask scores <= self.mask_threshold)
|
89 |
+
labels, areas = get_connected_components(
|
90 |
+
mask_flat <= self.mask_threshold
|
91 |
+
)
|
92 |
+
is_hole = (labels > 0) & (areas <= self.max_hole_area)
|
93 |
+
is_hole = is_hole.reshape_as(masks)
|
94 |
+
# We fill holes with a small positive mask score (10.0) to change them to foreground.
|
95 |
+
masks = torch.where(is_hole, self.mask_threshold + 10.0, masks)
|
96 |
+
|
97 |
+
if self.max_sprinkle_area > 0:
|
98 |
+
labels, areas = get_connected_components(
|
99 |
+
mask_flat > self.mask_threshold
|
100 |
+
)
|
101 |
+
is_hole = (labels > 0) & (areas <= self.max_sprinkle_area)
|
102 |
+
is_hole = is_hole.reshape_as(masks)
|
103 |
+
# We fill holes with negative mask score (-10.0) to change them to background.
|
104 |
+
masks = torch.where(is_hole, self.mask_threshold - 10.0, masks)
|
105 |
+
except Exception as e:
|
106 |
+
# Skip the post-processing step if the CUDA kernel fails
|
107 |
+
warnings.warn(
|
108 |
+
f"{e}\n\nSkipping the post-processing step due to the error above. You can "
|
109 |
+
"still use SAM 2 and it's OK to ignore the error above, although some post-processing "
|
110 |
+
"functionality may be limited (which doesn't affect the results in most cases; see "
|
111 |
+
"https://github.com/facebookresearch/sam2/blob/main/INSTALL.md).",
|
112 |
+
category=UserWarning,
|
113 |
+
stacklevel=2,
|
114 |
+
)
|
115 |
+
masks = input_masks
|
116 |
+
|
117 |
+
masks = F.interpolate(masks, orig_hw, mode="bilinear", align_corners=False)
|
118 |
+
return masks
|
tools/vos_inference.py
ADDED
@@ -0,0 +1,507 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import argparse
|
8 |
+
import os
|
9 |
+
from collections import defaultdict
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
from PIL import Image
|
14 |
+
from sam2.build_sam import build_sam2_video_predictor
|
15 |
+
|
16 |
+
|
17 |
+
# the PNG palette for DAVIS 2017 dataset
|
18 |
+
DAVIS_PALETTE = b"\x00\x00\x00\x80\x00\x00\x00\x80\x00\x80\x80\x00\x00\x00\x80\x80\x00\x80\x00\x80\x80\x80\x80\x80@\x00\x00\xc0\x00\x00@\x80\x00\xc0\x80\x00@\x00\x80\xc0\x00\x80@\x80\x80\xc0\x80\x80\x00@\x00\x80@\x00\x00\xc0\x00\x80\xc0\x00\x00@\x80\x80@\x80\x00\xc0\x80\x80\xc0\x80@@\x00\xc0@\x00@\xc0\x00\xc0\xc0\x00@@\x80\xc0@\x80@\xc0\x80\xc0\xc0\x80\x00\x00@\x80\x00@\x00\x80@\x80\x80@\x00\x00\xc0\x80\x00\xc0\x00\x80\xc0\x80\x80\xc0@\x00@\xc0\x00@@\x80@\xc0\x80@@\x00\xc0\xc0\x00\xc0@\x80\xc0\xc0\x80\xc0\x00@@\x80@@\x00\xc0@\x80\xc0@\x00@\xc0\x80@\xc0\x00\xc0\xc0\x80\xc0\xc0@@@\xc0@@@\xc0@\xc0\xc0@@@\xc0\xc0@\xc0@\xc0\xc0\xc0\xc0\xc0 \x00\x00\xa0\x00\x00 \x80\x00\xa0\x80\x00 \x00\x80\xa0\x00\x80 \x80\x80\xa0\x80\x80`\x00\x00\xe0\x00\x00`\x80\x00\xe0\x80\x00`\x00\x80\xe0\x00\x80`\x80\x80\xe0\x80\x80 @\x00\xa0@\x00 \xc0\x00\xa0\xc0\x00 @\x80\xa0@\x80 \xc0\x80\xa0\xc0\x80`@\x00\xe0@\x00`\xc0\x00\xe0\xc0\x00`@\x80\xe0@\x80`\xc0\x80\xe0\xc0\x80 \x00@\xa0\x00@ \x80@\xa0\x80@ \x00\xc0\xa0\x00\xc0 \x80\xc0\xa0\x80\xc0`\x00@\xe0\x00@`\x80@\xe0\x80@`\x00\xc0\xe0\x00\xc0`\x80\xc0\xe0\x80\xc0 @@\xa0@@ \xc0@\xa0\xc0@ @\xc0\xa0@\xc0 \xc0\xc0\xa0\xc0\xc0`@@\xe0@@`\xc0@\xe0\xc0@`@\xc0\xe0@\xc0`\xc0\xc0\xe0\xc0\xc0\x00 \x00\x80 \x00\x00\xa0\x00\x80\xa0\x00\x00 \x80\x80 \x80\x00\xa0\x80\x80\xa0\x80@ \x00\xc0 \x00@\xa0\x00\xc0\xa0\x00@ \x80\xc0 \x80@\xa0\x80\xc0\xa0\x80\x00`\x00\x80`\x00\x00\xe0\x00\x80\xe0\x00\x00`\x80\x80`\x80\x00\xe0\x80\x80\xe0\x80@`\x00\xc0`\x00@\xe0\x00\xc0\xe0\x00@`\x80\xc0`\x80@\xe0\x80\xc0\xe0\x80\x00 @\x80 @\x00\xa0@\x80\xa0@\x00 \xc0\x80 \xc0\x00\xa0\xc0\x80\xa0\xc0@ @\xc0 @@\xa0@\xc0\xa0@@ \xc0\xc0 \xc0@\xa0\xc0\xc0\xa0\xc0\x00`@\x80`@\x00\xe0@\x80\xe0@\x00`\xc0\x80`\xc0\x00\xe0\xc0\x80\xe0\xc0@`@\xc0`@@\xe0@\xc0\xe0@@`\xc0\xc0`\xc0@\xe0\xc0\xc0\xe0\xc0 \x00\xa0 \x00 \xa0\x00\xa0\xa0\x00 \x80\xa0 \x80 \xa0\x80\xa0\xa0\x80` \x00\xe0 \x00`\xa0\x00\xe0\xa0\x00` \x80\xe0 \x80`\xa0\x80\xe0\xa0\x80 `\x00\xa0`\x00 \xe0\x00\xa0\xe0\x00 `\x80\xa0`\x80 \xe0\x80\xa0\xe0\x80``\x00\xe0`\x00`\xe0\x00\xe0\xe0\x00``\x80\xe0`\x80`\xe0\x80\xe0\xe0\x80 @\xa0 @ \xa0@\xa0\xa0@ \xc0\xa0 \xc0 \xa0\xc0\xa0\xa0\xc0` @\xe0 @`\xa0@\xe0\xa0@` \xc0\xe0 \xc0`\xa0\xc0\xe0\xa0\xc0 `@\xa0`@ \xe0@\xa0\xe0@ `\xc0\xa0`\xc0 \xe0\xc0\xa0\xe0\xc0``@\xe0`@`\xe0@\xe0\xe0@``\xc0\xe0`\xc0`\xe0\xc0\xe0\xe0\xc0"
|
19 |
+
|
20 |
+
|
21 |
+
def load_ann_png(path):
|
22 |
+
"""Load a PNG file as a mask and its palette."""
|
23 |
+
mask = Image.open(path)
|
24 |
+
palette = mask.getpalette()
|
25 |
+
mask = np.array(mask).astype(np.uint8)
|
26 |
+
return mask, palette
|
27 |
+
|
28 |
+
|
29 |
+
def save_ann_png(path, mask, palette):
|
30 |
+
"""Save a mask as a PNG file with the given palette."""
|
31 |
+
assert mask.dtype == np.uint8
|
32 |
+
assert mask.ndim == 2
|
33 |
+
output_mask = Image.fromarray(mask)
|
34 |
+
output_mask.putpalette(palette)
|
35 |
+
output_mask.save(path)
|
36 |
+
|
37 |
+
|
38 |
+
def get_per_obj_mask(mask):
|
39 |
+
"""Split a mask into per-object masks."""
|
40 |
+
object_ids = np.unique(mask)
|
41 |
+
object_ids = object_ids[object_ids > 0].tolist()
|
42 |
+
per_obj_mask = {object_id: (mask == object_id) for object_id in object_ids}
|
43 |
+
return per_obj_mask
|
44 |
+
|
45 |
+
|
46 |
+
def put_per_obj_mask(per_obj_mask, height, width):
|
47 |
+
"""Combine per-object masks into a single mask."""
|
48 |
+
mask = np.zeros((height, width), dtype=np.uint8)
|
49 |
+
object_ids = sorted(per_obj_mask)[::-1]
|
50 |
+
for object_id in object_ids:
|
51 |
+
object_mask = per_obj_mask[object_id]
|
52 |
+
object_mask = object_mask.reshape(height, width)
|
53 |
+
mask[object_mask] = object_id
|
54 |
+
return mask
|
55 |
+
|
56 |
+
|
57 |
+
def load_masks_from_dir(
|
58 |
+
input_mask_dir, video_name, frame_name, per_obj_png_file, allow_missing=False
|
59 |
+
):
|
60 |
+
"""Load masks from a directory as a dict of per-object masks."""
|
61 |
+
if not per_obj_png_file:
|
62 |
+
input_mask_path = os.path.join(input_mask_dir, video_name, f"{frame_name}.png")
|
63 |
+
if allow_missing and not os.path.exists(input_mask_path):
|
64 |
+
return {}, None
|
65 |
+
input_mask, input_palette = load_ann_png(input_mask_path)
|
66 |
+
per_obj_input_mask = get_per_obj_mask(input_mask)
|
67 |
+
else:
|
68 |
+
per_obj_input_mask = {}
|
69 |
+
input_palette = None
|
70 |
+
# each object is a directory in "{object_id:%03d}" format
|
71 |
+
for object_name in os.listdir(os.path.join(input_mask_dir, video_name)):
|
72 |
+
object_id = int(object_name)
|
73 |
+
input_mask_path = os.path.join(
|
74 |
+
input_mask_dir, video_name, object_name, f"{frame_name}.png"
|
75 |
+
)
|
76 |
+
if allow_missing and not os.path.exists(input_mask_path):
|
77 |
+
continue
|
78 |
+
input_mask, input_palette = load_ann_png(input_mask_path)
|
79 |
+
per_obj_input_mask[object_id] = input_mask > 0
|
80 |
+
|
81 |
+
return per_obj_input_mask, input_palette
|
82 |
+
|
83 |
+
|
84 |
+
def save_masks_to_dir(
|
85 |
+
output_mask_dir,
|
86 |
+
video_name,
|
87 |
+
frame_name,
|
88 |
+
per_obj_output_mask,
|
89 |
+
height,
|
90 |
+
width,
|
91 |
+
per_obj_png_file,
|
92 |
+
output_palette,
|
93 |
+
):
|
94 |
+
"""Save masks to a directory as PNG files."""
|
95 |
+
os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True)
|
96 |
+
if not per_obj_png_file:
|
97 |
+
output_mask = put_per_obj_mask(per_obj_output_mask, height, width)
|
98 |
+
output_mask_path = os.path.join(
|
99 |
+
output_mask_dir, video_name, f"{frame_name}.png"
|
100 |
+
)
|
101 |
+
save_ann_png(output_mask_path, output_mask, output_palette)
|
102 |
+
else:
|
103 |
+
for object_id, object_mask in per_obj_output_mask.items():
|
104 |
+
object_name = f"{object_id:03d}"
|
105 |
+
os.makedirs(
|
106 |
+
os.path.join(output_mask_dir, video_name, object_name),
|
107 |
+
exist_ok=True,
|
108 |
+
)
|
109 |
+
output_mask = object_mask.reshape(height, width).astype(np.uint8)
|
110 |
+
output_mask_path = os.path.join(
|
111 |
+
output_mask_dir, video_name, object_name, f"{frame_name}.png"
|
112 |
+
)
|
113 |
+
save_ann_png(output_mask_path, output_mask, output_palette)
|
114 |
+
|
115 |
+
|
116 |
+
@torch.inference_mode()
|
117 |
+
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
118 |
+
def vos_inference(
|
119 |
+
predictor,
|
120 |
+
base_video_dir,
|
121 |
+
input_mask_dir,
|
122 |
+
output_mask_dir,
|
123 |
+
video_name,
|
124 |
+
score_thresh=0.0,
|
125 |
+
use_all_masks=False,
|
126 |
+
per_obj_png_file=False,
|
127 |
+
):
|
128 |
+
"""Run VOS inference on a single video with the given predictor."""
|
129 |
+
# load the video frames and initialize the inference state on this video
|
130 |
+
video_dir = os.path.join(base_video_dir, video_name)
|
131 |
+
frame_names = [
|
132 |
+
os.path.splitext(p)[0]
|
133 |
+
for p in os.listdir(video_dir)
|
134 |
+
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
|
135 |
+
]
|
136 |
+
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
|
137 |
+
inference_state = predictor.init_state(
|
138 |
+
video_path=video_dir, async_loading_frames=False
|
139 |
+
)
|
140 |
+
height = inference_state["video_height"]
|
141 |
+
width = inference_state["video_width"]
|
142 |
+
input_palette = None
|
143 |
+
|
144 |
+
# fetch mask inputs from input_mask_dir (either only mask for the first frame, or all available masks)
|
145 |
+
if not use_all_masks:
|
146 |
+
# use only the first video's ground-truth mask as the input mask
|
147 |
+
input_frame_inds = [0]
|
148 |
+
else:
|
149 |
+
# use all mask files available in the input_mask_dir as the input masks
|
150 |
+
if not per_obj_png_file:
|
151 |
+
input_frame_inds = [
|
152 |
+
idx
|
153 |
+
for idx, name in enumerate(frame_names)
|
154 |
+
if os.path.exists(
|
155 |
+
os.path.join(input_mask_dir, video_name, f"{name}.png")
|
156 |
+
)
|
157 |
+
]
|
158 |
+
else:
|
159 |
+
input_frame_inds = [
|
160 |
+
idx
|
161 |
+
for object_name in os.listdir(os.path.join(input_mask_dir, video_name))
|
162 |
+
for idx, name in enumerate(frame_names)
|
163 |
+
if os.path.exists(
|
164 |
+
os.path.join(input_mask_dir, video_name, object_name, f"{name}.png")
|
165 |
+
)
|
166 |
+
]
|
167 |
+
# check and make sure we got at least one input frame
|
168 |
+
if len(input_frame_inds) == 0:
|
169 |
+
raise RuntimeError(
|
170 |
+
f"In {video_name=}, got no input masks in {input_mask_dir=}. "
|
171 |
+
"Please make sure the input masks are available in the correct format."
|
172 |
+
)
|
173 |
+
input_frame_inds = sorted(set(input_frame_inds))
|
174 |
+
|
175 |
+
# add those input masks to SAM 2 inference state before propagation
|
176 |
+
object_ids_set = None
|
177 |
+
for input_frame_idx in input_frame_inds:
|
178 |
+
try:
|
179 |
+
per_obj_input_mask, input_palette = load_masks_from_dir(
|
180 |
+
input_mask_dir=input_mask_dir,
|
181 |
+
video_name=video_name,
|
182 |
+
frame_name=frame_names[input_frame_idx],
|
183 |
+
per_obj_png_file=per_obj_png_file,
|
184 |
+
)
|
185 |
+
except FileNotFoundError as e:
|
186 |
+
raise RuntimeError(
|
187 |
+
f"In {video_name=}, failed to load input mask for frame {input_frame_idx=}. "
|
188 |
+
"Please add the `--track_object_appearing_later_in_video` flag "
|
189 |
+
"for VOS datasets that don't have all objects to track appearing "
|
190 |
+
"in the first frame (such as LVOS or YouTube-VOS)."
|
191 |
+
) from e
|
192 |
+
# get the list of object ids to track from the first input frame
|
193 |
+
if object_ids_set is None:
|
194 |
+
object_ids_set = set(per_obj_input_mask)
|
195 |
+
for object_id, object_mask in per_obj_input_mask.items():
|
196 |
+
# check and make sure no new object ids appear only in later frames
|
197 |
+
if object_id not in object_ids_set:
|
198 |
+
raise RuntimeError(
|
199 |
+
f"In {video_name=}, got a new {object_id=} appearing only in a "
|
200 |
+
f"later {input_frame_idx=} (but not appearing in the first frame). "
|
201 |
+
"Please add the `--track_object_appearing_later_in_video` flag "
|
202 |
+
"for VOS datasets that don't have all objects to track appearing "
|
203 |
+
"in the first frame (such as LVOS or YouTube-VOS)."
|
204 |
+
)
|
205 |
+
predictor.add_new_mask(
|
206 |
+
inference_state=inference_state,
|
207 |
+
frame_idx=input_frame_idx,
|
208 |
+
obj_id=object_id,
|
209 |
+
mask=object_mask,
|
210 |
+
)
|
211 |
+
|
212 |
+
# check and make sure we have at least one object to track
|
213 |
+
if object_ids_set is None or len(object_ids_set) == 0:
|
214 |
+
raise RuntimeError(
|
215 |
+
f"In {video_name=}, got no object ids on {input_frame_inds=}. "
|
216 |
+
"Please add the `--track_object_appearing_later_in_video` flag "
|
217 |
+
"for VOS datasets that don't have all objects to track appearing "
|
218 |
+
"in the first frame (such as LVOS or YouTube-VOS)."
|
219 |
+
)
|
220 |
+
# run propagation throughout the video and collect the results in a dict
|
221 |
+
os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True)
|
222 |
+
output_palette = input_palette or DAVIS_PALETTE
|
223 |
+
video_segments = {} # video_segments contains the per-frame segmentation results
|
224 |
+
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(
|
225 |
+
inference_state
|
226 |
+
):
|
227 |
+
per_obj_output_mask = {
|
228 |
+
out_obj_id: (out_mask_logits[i] > score_thresh).cpu().numpy()
|
229 |
+
for i, out_obj_id in enumerate(out_obj_ids)
|
230 |
+
}
|
231 |
+
video_segments[out_frame_idx] = per_obj_output_mask
|
232 |
+
|
233 |
+
# write the output masks as palette PNG files to output_mask_dir
|
234 |
+
for out_frame_idx, per_obj_output_mask in video_segments.items():
|
235 |
+
save_masks_to_dir(
|
236 |
+
output_mask_dir=output_mask_dir,
|
237 |
+
video_name=video_name,
|
238 |
+
frame_name=frame_names[out_frame_idx],
|
239 |
+
per_obj_output_mask=per_obj_output_mask,
|
240 |
+
height=height,
|
241 |
+
width=width,
|
242 |
+
per_obj_png_file=per_obj_png_file,
|
243 |
+
output_palette=output_palette,
|
244 |
+
)
|
245 |
+
|
246 |
+
|
247 |
+
@torch.inference_mode()
|
248 |
+
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
249 |
+
def vos_separate_inference_per_object(
|
250 |
+
predictor,
|
251 |
+
base_video_dir,
|
252 |
+
input_mask_dir,
|
253 |
+
output_mask_dir,
|
254 |
+
video_name,
|
255 |
+
score_thresh=0.0,
|
256 |
+
use_all_masks=False,
|
257 |
+
per_obj_png_file=False,
|
258 |
+
):
|
259 |
+
"""
|
260 |
+
Run VOS inference on a single video with the given predictor.
|
261 |
+
|
262 |
+
Unlike `vos_inference`, this function run inference separately for each object
|
263 |
+
in a video, which could be applied to datasets like LVOS or YouTube-VOS that
|
264 |
+
don't have all objects to track appearing in the first frame (i.e. some objects
|
265 |
+
might appear only later in the video).
|
266 |
+
"""
|
267 |
+
# load the video frames and initialize the inference state on this video
|
268 |
+
video_dir = os.path.join(base_video_dir, video_name)
|
269 |
+
frame_names = [
|
270 |
+
os.path.splitext(p)[0]
|
271 |
+
for p in os.listdir(video_dir)
|
272 |
+
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
|
273 |
+
]
|
274 |
+
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
|
275 |
+
inference_state = predictor.init_state(
|
276 |
+
video_path=video_dir, async_loading_frames=False
|
277 |
+
)
|
278 |
+
height = inference_state["video_height"]
|
279 |
+
width = inference_state["video_width"]
|
280 |
+
input_palette = None
|
281 |
+
|
282 |
+
# collect all the object ids and their input masks
|
283 |
+
inputs_per_object = defaultdict(dict)
|
284 |
+
for idx, name in enumerate(frame_names):
|
285 |
+
if per_obj_png_file or os.path.exists(
|
286 |
+
os.path.join(input_mask_dir, video_name, f"{name}.png")
|
287 |
+
):
|
288 |
+
per_obj_input_mask, input_palette = load_masks_from_dir(
|
289 |
+
input_mask_dir=input_mask_dir,
|
290 |
+
video_name=video_name,
|
291 |
+
frame_name=frame_names[idx],
|
292 |
+
per_obj_png_file=per_obj_png_file,
|
293 |
+
allow_missing=True,
|
294 |
+
)
|
295 |
+
for object_id, object_mask in per_obj_input_mask.items():
|
296 |
+
# skip empty masks
|
297 |
+
if not np.any(object_mask):
|
298 |
+
continue
|
299 |
+
# if `use_all_masks=False`, we only use the first mask for each object
|
300 |
+
if len(inputs_per_object[object_id]) > 0 and not use_all_masks:
|
301 |
+
continue
|
302 |
+
print(f"adding mask from frame {idx} as input for {object_id=}")
|
303 |
+
inputs_per_object[object_id][idx] = object_mask
|
304 |
+
|
305 |
+
# run inference separately for each object in the video
|
306 |
+
object_ids = sorted(inputs_per_object)
|
307 |
+
output_scores_per_object = defaultdict(dict)
|
308 |
+
for object_id in object_ids:
|
309 |
+
# add those input masks to SAM 2 inference state before propagation
|
310 |
+
input_frame_inds = sorted(inputs_per_object[object_id])
|
311 |
+
predictor.reset_state(inference_state)
|
312 |
+
for input_frame_idx in input_frame_inds:
|
313 |
+
predictor.add_new_mask(
|
314 |
+
inference_state=inference_state,
|
315 |
+
frame_idx=input_frame_idx,
|
316 |
+
obj_id=object_id,
|
317 |
+
mask=inputs_per_object[object_id][input_frame_idx],
|
318 |
+
)
|
319 |
+
|
320 |
+
# run propagation throughout the video and collect the results in a dict
|
321 |
+
for out_frame_idx, _, out_mask_logits in predictor.propagate_in_video(
|
322 |
+
inference_state,
|
323 |
+
start_frame_idx=min(input_frame_inds),
|
324 |
+
reverse=False,
|
325 |
+
):
|
326 |
+
obj_scores = out_mask_logits.cpu().numpy()
|
327 |
+
output_scores_per_object[object_id][out_frame_idx] = obj_scores
|
328 |
+
|
329 |
+
# post-processing: consolidate the per-object scores into per-frame masks
|
330 |
+
os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True)
|
331 |
+
output_palette = input_palette or DAVIS_PALETTE
|
332 |
+
video_segments = {} # video_segments contains the per-frame segmentation results
|
333 |
+
for frame_idx in range(len(frame_names)):
|
334 |
+
scores = torch.full(
|
335 |
+
size=(len(object_ids), 1, height, width),
|
336 |
+
fill_value=-1024.0,
|
337 |
+
dtype=torch.float32,
|
338 |
+
)
|
339 |
+
for i, object_id in enumerate(object_ids):
|
340 |
+
if frame_idx in output_scores_per_object[object_id]:
|
341 |
+
scores[i] = torch.from_numpy(
|
342 |
+
output_scores_per_object[object_id][frame_idx]
|
343 |
+
)
|
344 |
+
|
345 |
+
if not per_obj_png_file:
|
346 |
+
scores = predictor._apply_non_overlapping_constraints(scores)
|
347 |
+
per_obj_output_mask = {
|
348 |
+
object_id: (scores[i] > score_thresh).cpu().numpy()
|
349 |
+
for i, object_id in enumerate(object_ids)
|
350 |
+
}
|
351 |
+
video_segments[frame_idx] = per_obj_output_mask
|
352 |
+
|
353 |
+
# write the output masks as palette PNG files to output_mask_dir
|
354 |
+
for frame_idx, per_obj_output_mask in video_segments.items():
|
355 |
+
save_masks_to_dir(
|
356 |
+
output_mask_dir=output_mask_dir,
|
357 |
+
video_name=video_name,
|
358 |
+
frame_name=frame_names[frame_idx],
|
359 |
+
per_obj_output_mask=per_obj_output_mask,
|
360 |
+
height=height,
|
361 |
+
width=width,
|
362 |
+
per_obj_png_file=per_obj_png_file,
|
363 |
+
output_palette=output_palette,
|
364 |
+
)
|
365 |
+
|
366 |
+
|
367 |
+
def main():
|
368 |
+
parser = argparse.ArgumentParser()
|
369 |
+
parser.add_argument(
|
370 |
+
"--sam2_cfg",
|
371 |
+
type=str,
|
372 |
+
default="configs/sam2.1/sam2.1_hiera_b+.yaml",
|
373 |
+
help="SAM 2 model configuration file",
|
374 |
+
)
|
375 |
+
parser.add_argument(
|
376 |
+
"--sam2_checkpoint",
|
377 |
+
type=str,
|
378 |
+
default="./checkpoints/sam2.1_hiera_base_plus.pt",
|
379 |
+
help="path to the SAM 2 model checkpoint",
|
380 |
+
)
|
381 |
+
parser.add_argument(
|
382 |
+
"--base_video_dir",
|
383 |
+
type=str,
|
384 |
+
required=True,
|
385 |
+
help="directory containing videos (as JPEG files) to run VOS prediction on",
|
386 |
+
)
|
387 |
+
parser.add_argument(
|
388 |
+
"--input_mask_dir",
|
389 |
+
type=str,
|
390 |
+
required=True,
|
391 |
+
help="directory containing input masks (as PNG files) of each video",
|
392 |
+
)
|
393 |
+
parser.add_argument(
|
394 |
+
"--video_list_file",
|
395 |
+
type=str,
|
396 |
+
default=None,
|
397 |
+
help="text file containing the list of video names to run VOS prediction on",
|
398 |
+
)
|
399 |
+
parser.add_argument(
|
400 |
+
"--output_mask_dir",
|
401 |
+
type=str,
|
402 |
+
required=True,
|
403 |
+
help="directory to save the output masks (as PNG files)",
|
404 |
+
)
|
405 |
+
parser.add_argument(
|
406 |
+
"--score_thresh",
|
407 |
+
type=float,
|
408 |
+
default=0.0,
|
409 |
+
help="threshold for the output mask logits (default: 0.0)",
|
410 |
+
)
|
411 |
+
parser.add_argument(
|
412 |
+
"--use_all_masks",
|
413 |
+
action="store_true",
|
414 |
+
help="whether to use all available PNG files in input_mask_dir "
|
415 |
+
"(default without this flag: just the first PNG file as input to the SAM 2 model; "
|
416 |
+
"usually we don't need this flag, since semi-supervised VOS evaluation usually takes input from the first frame only)",
|
417 |
+
)
|
418 |
+
parser.add_argument(
|
419 |
+
"--per_obj_png_file",
|
420 |
+
action="store_true",
|
421 |
+
help="whether use separate per-object PNG files for input and output masks "
|
422 |
+
"(default without this flag: all object masks are packed into a single PNG file on each frame following DAVIS format; "
|
423 |
+
"note that the SA-V dataset stores each object mask as an individual PNG file and requires this flag)",
|
424 |
+
)
|
425 |
+
parser.add_argument(
|
426 |
+
"--apply_postprocessing",
|
427 |
+
action="store_true",
|
428 |
+
help="whether to apply postprocessing (e.g. hole-filling) to the output masks "
|
429 |
+
"(we don't apply such post-processing in the SAM 2 model evaluation)",
|
430 |
+
)
|
431 |
+
parser.add_argument(
|
432 |
+
"--track_object_appearing_later_in_video",
|
433 |
+
action="store_true",
|
434 |
+
help="whether to track objects that appear later in the video (i.e. not on the first frame; "
|
435 |
+
"some VOS datasets like LVOS or YouTube-VOS don't have all objects appearing in the first frame)",
|
436 |
+
)
|
437 |
+
parser.add_argument(
|
438 |
+
"--use_vos_optimized_video_predictor",
|
439 |
+
action="store_true",
|
440 |
+
help="whether to use vos optimized video predictor with all modules compiled",
|
441 |
+
)
|
442 |
+
args = parser.parse_args()
|
443 |
+
|
444 |
+
# if we use per-object PNG files, they could possibly overlap in inputs and outputs
|
445 |
+
hydra_overrides_extra = [
|
446 |
+
"++model.non_overlap_masks=" + ("false" if args.per_obj_png_file else "true")
|
447 |
+
]
|
448 |
+
predictor = build_sam2_video_predictor(
|
449 |
+
config_file=args.sam2_cfg,
|
450 |
+
ckpt_path=args.sam2_checkpoint,
|
451 |
+
apply_postprocessing=args.apply_postprocessing,
|
452 |
+
hydra_overrides_extra=hydra_overrides_extra,
|
453 |
+
vos_optimized=args.use_vos_optimized_video_predictor,
|
454 |
+
)
|
455 |
+
|
456 |
+
if args.use_all_masks:
|
457 |
+
print("using all available masks in input_mask_dir as input to the SAM 2 model")
|
458 |
+
else:
|
459 |
+
print(
|
460 |
+
"using only the first frame's mask in input_mask_dir as input to the SAM 2 model"
|
461 |
+
)
|
462 |
+
# if a video list file is provided, read the video names from the file
|
463 |
+
# (otherwise, we use all subdirectories in base_video_dir)
|
464 |
+
if args.video_list_file is not None:
|
465 |
+
with open(args.video_list_file, "r") as f:
|
466 |
+
video_names = [v.strip() for v in f.readlines()]
|
467 |
+
else:
|
468 |
+
video_names = [
|
469 |
+
p
|
470 |
+
for p in os.listdir(args.base_video_dir)
|
471 |
+
if os.path.isdir(os.path.join(args.base_video_dir, p))
|
472 |
+
]
|
473 |
+
print(f"running VOS prediction on {len(video_names)} videos:\n{video_names}")
|
474 |
+
|
475 |
+
for n_video, video_name in enumerate(video_names):
|
476 |
+
print(f"\n{n_video + 1}/{len(video_names)} - running on {video_name}")
|
477 |
+
if not args.track_object_appearing_later_in_video:
|
478 |
+
vos_inference(
|
479 |
+
predictor=predictor,
|
480 |
+
base_video_dir=args.base_video_dir,
|
481 |
+
input_mask_dir=args.input_mask_dir,
|
482 |
+
output_mask_dir=args.output_mask_dir,
|
483 |
+
video_name=video_name,
|
484 |
+
score_thresh=args.score_thresh,
|
485 |
+
use_all_masks=args.use_all_masks,
|
486 |
+
per_obj_png_file=args.per_obj_png_file,
|
487 |
+
)
|
488 |
+
else:
|
489 |
+
vos_separate_inference_per_object(
|
490 |
+
predictor=predictor,
|
491 |
+
base_video_dir=args.base_video_dir,
|
492 |
+
input_mask_dir=args.input_mask_dir,
|
493 |
+
output_mask_dir=args.output_mask_dir,
|
494 |
+
video_name=video_name,
|
495 |
+
score_thresh=args.score_thresh,
|
496 |
+
use_all_masks=args.use_all_masks,
|
497 |
+
per_obj_png_file=args.per_obj_png_file,
|
498 |
+
)
|
499 |
+
|
500 |
+
print(
|
501 |
+
f"completed VOS prediction on {len(video_names)} videos -- "
|
502 |
+
f"output masks saved to {args.output_mask_dir}"
|
503 |
+
)
|
504 |
+
|
505 |
+
|
506 |
+
if __name__ == "__main__":
|
507 |
+
main()
|