clip / app.py
Vivien
Switch from ViT-B32 to ViT-B16
a55de09
raw
history blame
4.02 kB
import streamlit as st
import pandas as pd, numpy as np
from html import escape
import os
from transformers import CLIPProcessor, CLIPModel
@st.cache(
show_spinner=False,
hash_funcs={
CLIPModel: lambda _: None,
CLIPProcessor: lambda _: None,
dict: lambda _: None,
},
)
def load():
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
df = {0: pd.read_csv("data.csv"), 1: pd.read_csv("data2.csv")}
embeddings = {0: np.load("embeddings.npy"), 1: np.load("embeddings2.npy")}
for k in [0, 1]:
embeddings[k] = np.divide(
embeddings[k], np.sqrt(np.sum(embeddings[k] ** 2, axis=1, keepdims=True))
)
return model, processor, df, embeddings
model, processor, df, embeddings = load()
source = {0: "\nSource: Unsplash", 1: "\nSource: The Movie Database (TMDB)"}
def get_html(url_list, height=200):
html = "<div style='margin-top: 20px; max-width: 1200px; display: flex; flex-wrap: wrap; justify-content: space-evenly'>"
for url, title, link in url_list:
html2 = f"<img title='{escape(title)}' style='height: {height}px; margin: 5px' src='{escape(url)}'>"
if len(link) > 0:
html2 = f"<a href='{escape(link)}' target='_blank'>" + html2 + "</a>"
html = html + html2
html += "</div>"
return html
def compute_text_embeddings(list_of_strings):
inputs = processor(text=list_of_strings, return_tensors="pt", padding=True)
return model.get_text_features(**inputs)
st.cache(show_spinner=False)
def image_search(query, corpus, n_results=24):
text_embeddings = compute_text_embeddings([query]).detach().numpy()
k = 0 if corpus == "Unsplash" else 1
results = np.argsort((embeddings[k] @ text_embeddings.T)[:, 0])[
-1 : -n_results - 1 : -1
]
return [
(
df[k].iloc[i]["path"],
df[k].iloc[i]["tooltip"] + source[k],
df[k].iloc[i]["link"],
)
for i in results
]
description = """
# Semantic image search
**Enter your query and hit enter**
*Built with OpenAI's [CLIP](https://openai.com/blog/clip/) model, πŸ€— Hugging Face's [transformers library](https://huggingface.co/transformers/), [Streamlit](https://streamlit.io/), 25k images from [Unsplash](https://unsplash.com/) and 8k images from [The Movie Database (TMDB)](https://www.themoviedb.org/)*
*Inspired by [Unsplash Image Search](https://github.com/haltakov/natural-language-image-search) from Vladimir Haltakov and [Alph, The Sacred River](https://github.com/thoppe/alph-the-sacred-river) from Travis Hoppe*
"""
def main():
st.markdown(
"""
<style>
.block-container{
max-width: 1200px;
}
div.row-widget.stRadio > div{
flex-direction:row;
display: flex;
justify-content: center;
}
div.row-widget.stRadio > div > label{
margin-left: 5px;
margin-right: 5px;
}
section.main>div:first-child {
padding-top: 0px;
}
section:not(.main)>div:first-child {
padding-top: 30px;
}
div.reportview-container > section:first-child{
max-width: 320px;
}
#MainMenu {
visibility: hidden;
}
footer {
visibility: hidden;
}
</style>""",
unsafe_allow_html=True,
)
st.sidebar.markdown(description)
_, c, _ = st.columns((1, 3, 1))
query = c.text_input("", value="clouds at sunset")
corpus = st.radio("", ["Unsplash", "Movies"])
if len(query) > 0:
results = image_search(query, corpus)
st.markdown(get_html(results), unsafe_allow_html=True)
if __name__ == "__main__":
main()