# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import atexit import base64 import logging import socket import time from io import BytesIO from typing import Optional, Union from urllib.parse import urlparse import torch from torch import nn from ..import_utils import is_requests_available, is_vllm_ascend_available, is_vllm_available if is_requests_available(): import requests from requests import ConnectionError if is_vllm_available(): from vllm.distributed.device_communicators.pynccl import PyNcclCommunicator from vllm.distributed.utils import StatelessProcessGroup if is_vllm_ascend_available(): from vllm_ascend.distributed.device_communicators.pyhccl import PyHcclCommunicator as PyNcclCommunicator logger = logging.getLogger(__name__) class VLLMClient: """ A client class to interact with a vLLM server. This class provides methods to generate completions, initialize and manage weight update groups, and update model weights in a distributed setting. Before using it, start the vLLM server with `trl vllm-serve`. Args: base_url (`str` or `None`, *optional*, defaults to `None`): Base URL for the vLLM server (e.g., `"http://localhost:8000"`). If provided, `host` and `server_port` are ignored. host (`str`, *optional*, defaults to `"0.0.0.0"`): IP address of the vLLM server. Ignored if `base_url` is provided. server_port (`int`, *optional*, defaults to `8000`): Port number of the vLLM server. Ignored if `base_url` is provided. group_port (`int`, *optional*, defaults to `51216`): Port number for the weight update group. connection_timeout (`float`, *optional*, defaults to `0.0`): Total timeout duration in seconds to wait for the server to be up. If the server is not up after the timeout, a `ConnectionError` is raised. Examples: Run the vLLM server with the model `Qwen/Qwen2.5-7B`: ``` $ trl vllm-serve --model Qwen/Qwen2.5-7B ... INFO: Application startup complete. INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit) ``` Use the client to generate completions and update model weights: ```python >>> from trl.extras.vllm_client import VLLMClient >>> client = VLLMClient() >>> client.generate(["Hello, AI!", "Tell me a joke"]) [[2980, 498, 1492, 752, 448, 264, 13027, 8645, 30, 358, 2776, 4460, 311, 3270, 264, 2025], [911, 7988, 1251, 382, 3838, 653, 498, 1618, 4325, 879, 2581, 20027, 264, 21428, 30, 362]] >>> from transformers import AutoModelForCausalLM >>> model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-7B", device_map="cuda") >>> client.init_communicator(device="cuda") >>> client.update_model_params(model) ``` There are several ways to initialize the client: ```python VLLMClient(base_url="http://localhost:8000") VLLMClient(base_url="http://192.168.1.100:8000") VLLMClient(host="localhost", server_port=8000) VLLMClient(host="192.168.1.100", server_port=8000) ``` """ def __init__( self, base_url: Optional[str] = None, host: str = "0.0.0.0", server_port: int = 8000, group_port: int = 51216, connection_timeout: float = 0.0, ): if not is_requests_available(): raise ImportError("requests is not installed. Please install it with `pip install requests`.") if not is_vllm_available(): raise ImportError("vLLM is not installed. Please install it with `pip install vllm`.") self.session = requests.Session() if base_url is not None: # Parse the base_url to extract host and port parsed_url = urlparse(base_url) self.host = socket.gethostbyname(parsed_url.hostname) scheme = parsed_url.scheme or "http" self.base_url = f"{scheme}://{parsed_url.netloc}{parsed_url.path}" else: self.host = host self.server_port = server_port self.base_url = f"http://{self.host}:{self.server_port}" self.group_port = group_port self.check_server(connection_timeout) # check server and fail after timeout def check_server(self, total_timeout: float = 0.0, retry_interval: float = 2.0): """ Check server availability with retries on failure, within a total timeout duration. If the server is not up after the total timeout duration, raise a `ConnectionError`. Args: retry_interval (`float`, *optional*, defaults to `2.0`): Interval in seconds between retries. total_timeout (`float`, *optional*, defaults to `0.0`): Total timeout duration in seconds. """ url = f"{self.base_url}/health/" start_time = time.time() # Record the start time while True: try: response = requests.get(url) except requests.exceptions.RequestException as exc: # Check if the total timeout duration has passed elapsed_time = time.time() - start_time if elapsed_time >= total_timeout: raise ConnectionError( f"The vLLM server can't be reached at {self.base_url} after {total_timeout} seconds. Make " "sure the server is running by running `trl vllm-serve`." ) from exc else: if response.status_code == 200: if "X-Forwarded-For" in response.headers: self.host = response.headers["X-Forwarded-For"] logger.info("Server is up!") return None # Retry logic: wait before trying again logger.info(f"Server is not up yet. Retrying in {retry_interval} seconds...") time.sleep(retry_interval) def generate( self, prompts: list[str], images: Optional[list] = None, n: int = 1, repetition_penalty: float = 1.0, temperature: float = 1.0, top_p: float = 1.0, top_k: int = -1, min_p: float = 0.0, max_tokens: int = 16, guided_decoding_regex: Optional[str] = None, generation_kwargs: Optional[dict] = None, ) -> list[list[int]]: """ Generates model completions for the provided prompts. Args: prompts (`list[str]`): List of text prompts for which the model will generate completions. images (`list[PIL.Image]` or `None`, *optional*, defaults to `None`): List of PIL Images to send along with the prompts. n (`int`, *optional*, defaults to `1`): Number of completions to generate for each prompt. repetition_penalty (`float`, *optional*, defaults to `1.0`): Parameter for repetition penalty. 1.0 means no penalty. temperature (`float`, *optional*, defaults to `1.0`): Temperature parameter for sampling. Higher values increase diversity. top_p (`float`, *optional*, defaults to `1.0`): Top-p sampling parameter.`1.0` means no truncation. top_k (`int`, *optional*, defaults to `-1`): Top-k sampling parameter. `-1` means no truncation. min_p (`float`, *optional*, defaults to `0.0`): Minimum probability for sampling. max_tokens (`int`, *optional*, defaults to `16`): Maximum number of tokens to generate for each prompt. guided_decoding_regex (`str` or `None`, *optional*, defaults to `None`): Regular expression to guide the decoding process. generation_kwargs (`dict` or `None`, *optional*, defaults to `None`): Additional generation parameters to pass to the vLLM `SamplingParams`. This can include parameters like `seed`, `frequency_penalty`, etc. If it contains keys that conflict with the other parameters, they will override them. Returns: `list[list[int]]`: List of lists of token IDs representing the model-generated completions for each prompt. """ url = f"{self.base_url}/generate/" def pil_to_base64(image): buffer = BytesIO() image.save(buffer, format="PNG") img_bytes = buffer.getvalue() return base64.b64encode(img_bytes).decode("utf-8") # Convert PIL images to base64 strings images = [pil_to_base64(img) for img in images] if images else None response = self.session.post( url, json={ "prompts": prompts, "images": images, "n": n, "repetition_penalty": repetition_penalty, "temperature": temperature, "top_p": top_p, "top_k": top_k, "min_p": min_p, "max_tokens": max_tokens, "guided_decoding_regex": guided_decoding_regex, "generation_kwargs": generation_kwargs or {}, }, ) if response.status_code == 200: return response.json()["completion_ids"] else: raise Exception(f"Request failed: {response.status_code}, {response.text}") def init_communicator(self, device: Union[torch.device, str, int] = 0): """ Initializes the weight update group in a distributed setup for model synchronization. Args: device (`torch.device`, `str`, or `int`, *optional*, defaults to `0`): Device of trainer main process. It's the device that will be used for the weights synchronization. Can be a `torch.device` object, a string like `'cuda:0'`, or an integer device index. """ # Get the world size from the server url = f"{self.base_url}/get_world_size/" response = requests.get(url) if response.status_code == 200: vllm_world_size = response.json()["world_size"] else: raise Exception(f"Request failed: {response.status_code}, {response.text}") world_size = vllm_world_size + 1 # add the client to the world self.rank = vllm_world_size # the client's rank is the last process # Initialize weight update group url = f"{self.base_url}/init_communicator/" client_device_uuid = str(torch.cuda.get_device_properties(device).uuid) # In the server side, the host is set to 0.0.0.0 response = self.session.post( url, json={ "host": "0.0.0.0", "port": self.group_port, "world_size": world_size, "client_device_uuid": client_device_uuid, }, ) if response.status_code != 200: raise Exception(f"Request failed: {response.status_code}, {response.text}") # Brief delay to allow server initialization. While not strictly required (client socket will retry on # connection failure), this prevents log warnings like: # [W416 23:24:57.460001114 socket.cpp:204] [c10d] The hostname of the client socket cannot be retrieved. err=-3 time.sleep(0.1) # Set up the communication group for weight broadcasting pg = StatelessProcessGroup.create(host=self.host, port=self.group_port, rank=self.rank, world_size=world_size) self.pynccl_comm = PyNcclCommunicator(pg, device=device) # When the client object is deleted, close the weight update group atexit.register(self.close_communicator) def update_named_param(self, name: str, weights: torch.Tensor): """ Updates a specific named parameter in the model and broadcasts it to other processes. Args: name (`str`): Name of the layer whose weights are being updated. weights (`torch.Tensor`): Tensor containing the updated weights. """ dtype, shape = str(weights.dtype), tuple(weights.shape) url = f"{self.base_url}/update_named_param/" response = self.session.post(url, json={"name": name, "dtype": dtype, "shape": shape}) if response.status_code != 200: raise Exception(f"Request failed: {response.status_code}, {response.text}") # Broadcast the weights to the other processes self.pynccl_comm.broadcast(weights, src=self.rank) self.pynccl_comm.group.barrier() def update_model_params(self, model: nn.Module): """ Updates all parameters of the given model by calling `update_named_param` for each parameter in the model. Args: model (`nn.Module`): Model whose parameters (weights/biases) are to be updated. """ for name, param in model.named_parameters(): # Update each parameter individually self.update_named_param(name, param.data) def reset_prefix_cache(self): """ Resets the prefix cache for the model. """ url = f"{self.base_url}/reset_prefix_cache/" response = self.session.post(url) if response.status_code != 200: raise Exception(f"Request failed: {response.status_code}, {response.text}") def close_communicator(self): """ Closes the weight update group and cleans up the communication group. """ url = f"{self.base_url}/close_communicator/" try: response = self.session.post(url) except ConnectionError: # The server might be already down, so we don't need to close the communicator pass else: if response.status_code != 200: raise Exception(f"Request failed: {response.status_code}, {response.text}") # Example usage if __name__ == "__main__": from vllm import SamplingParams client = VLLMClient() client.init_communicator(device="cuda") # Generate completions responses = client.generate(["Hello, AI!", "Tell me a joke"], n=4, max_tokens=32, sampling_params=SamplingParams()) print("Responses:", responses) # noqa # Update model weights from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-7B").to("cuda") client.update_model_params(model)