# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # /// script # dependencies = [ # "trl @ git+https://github.com/huggingface/trl.git", # "kernels", # ] # /// """ pip install –-upgrade kernels Example: accelerate launch \ --config_file examples/accelerate_configs/deepspeed_zero3.yaml \ examples/sccripts/sft_gpt_oss.py \ --torch_dtype bfloat16 \ --model_name_or_path openai/gpt-oss-20b \ --packing true packing_strategy wrapped \ --run_name 20b-full-eager \ --attn_implementation kernels-community/vllm-flash-attn3 \ --dataset_num_proc 12 \ --dataset_name HuggingFaceH4/Multilingual-Thinking \ --gradient_checkpointing \ --max_length 4096 \ --per_device_train_batch_size 2 \ --num_train_epochs 1 \ --logging_steps 1 \ --warmup_ratio 0.03 \ --lr_scheduler_type cosine_with_min_lr \ --lr_scheduler_kwargs '{"min_lr_rate": 0.1}' \ --output_dir gpt-oss-20b-multilingual-reasoner \ --report_to trackio \ --seed 42 """ from datasets import load_dataset from transformers import AutoModelForCausalLM, AutoTokenizer, Mxfp4Config from trl import ModelConfig, ScriptArguments, SFTConfig, SFTTrainer, TrlParser, get_peft_config def main(script_args, training_args, model_args): # Load model & tokenizer quantization_config = Mxfp4Config(dequantize=True) model_kwargs = dict( revision=model_args.model_revision, trust_remote_code=model_args.trust_remote_code, attn_implementation=model_args.attn_implementation, torch_dtype=model_args.torch_dtype, use_cache=False if training_args.gradient_checkpointing else True, quantization_config=quantization_config, ) model = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path, **model_kwargs) tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path) # Load dataset dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) # Train model trainer = SFTTrainer( model=model, args=training_args, train_dataset=dataset[script_args.dataset_train_split], eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, processing_class=tokenizer, peft_config=get_peft_config(model_args), ) trainer.train() trainer.save_model(training_args.output_dir) if training_args.push_to_hub: trainer.push_to_hub(dataset_name=script_args.dataset_name) if __name__ == "__main__": parser = TrlParser((ScriptArguments, SFTConfig, ModelConfig)) script_args, training_args, model_args, _ = parser.parse_args_and_config(return_remaining_strings=True) main(script_args, training_args, model_args)