# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # /// script # dependencies = [ # "trl @ git+https://github.com/huggingface/trl.git", # "peft", # ] # /// """ Run the CPO training script with the following command with some example arguments. In general, the optimal configuration for CPO will be similar to that of DPO: # regular: python examples/scripts/cpo.py \ --dataset_name trl-lib/ultrafeedback_binarized \ --model_name_or_path=gpt2 \ --per_device_train_batch_size 4 \ --max_steps 1000 \ --learning_rate 8e-6 \ --gradient_accumulation_steps 1 \ --eval_steps 500 \ --output_dir="gpt2-aligned-cpo" \ --warmup_steps 150 \ --report_to wandb \ --bf16 \ --logging_first_step \ --no_remove_unused_columns # peft: python examples/scripts/cpo.py \ --dataset_name trl-lib/ultrafeedback_binarized \ --model_name_or_path=gpt2 \ --per_device_train_batch_size 4 \ --max_steps 1000 \ --learning_rate 8e-5 \ --gradient_accumulation_steps 1 \ --eval_steps 500 \ --output_dir="gpt2-lora-aligned-cpo" \ --optim rmsprop \ --warmup_steps 150 \ --report_to wandb \ --bf16 \ --logging_first_step \ --no_remove_unused_columns \ --use_peft \ --lora_r=16 \ --lora_alpha=16 """ from datasets import load_dataset from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser from trl import CPOConfig, CPOTrainer, ModelConfig, ScriptArguments, get_peft_config from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE if __name__ == "__main__": parser = HfArgumentParser((ScriptArguments, CPOConfig, ModelConfig)) script_args, training_args, model_args = parser.parse_args_into_dataclasses() ################ # Model & Tokenizer ################ model = AutoModelForCausalLM.from_pretrained( model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code ) tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code ) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token ################ # Dataset ################ dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) if tokenizer.chat_template is None: tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE ################ # Training ################ trainer = CPOTrainer( model, args=training_args, train_dataset=dataset[script_args.dataset_train_split], eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, processing_class=tokenizer, peft_config=get_peft_config(model_args), ) # train and save the model trainer.train() # Save and push to hub trainer.save_model(training_args.output_dir) if training_args.push_to_hub: trainer.push_to_hub(dataset_name=script_args.dataset_name)