# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools from contextlib import contextmanager from copy import deepcopy from dataclasses import dataclass from typing import TYPE_CHECKING, Any, Literal, Optional, Union import torch.nn as nn from packaging import version from transformers import AddedToken, AutoTokenizer, PreTrainedModel, PreTrainedTokenizer from .modeling_value_head import AutoModelForCausalLMWithValueHead, AutoModelForSeq2SeqLMWithValueHead SUPPORTED_ARCHITECTURES = ( AutoModelForCausalLMWithValueHead, AutoModelForSeq2SeqLMWithValueHead, ) if TYPE_CHECKING: from accelerate import Accelerator from deepspeed.runtime.engine import DeepSpeedEngine from torch.nn import Module from torch.nn.parallel.distributed import DistributedDataParallel # TODO: Add Abstract Base Class if more formats are added @dataclass class ChatMlSpecialTokens: """Dataclass for special tokens used in ChatML, including system, user, assistant, bos, eos, and pad tokens.""" bos_token: str = "<|im_start|>" eos_token: str = "<|im_end|>" pad_token: str = "<|im_end|>" @property def system(self): return f"{self.bos_token}system" @property def user(self): return f"{self.bos_token}user" @property def assistant(self): return f"{self.bos_token}assistant" @property def chat_template(self): return ( "{% for message in messages %}" f"{{{{'{self.bos_token}' + message['role'] + '\n' + message['content'] + '{self.eos_token}' + '\n'}}}}" "{% endfor %}" "{% if add_generation_prompt %}" f"{{{{ '{self.assistant}\n' }}}}" "{% endif %}" ) FORMAT_MAPPING = {"chatml": ChatMlSpecialTokens} def setup_chat_format( model: PreTrainedModel, tokenizer: PreTrainedTokenizer, format: Optional[Literal["chatml"]] = "chatml", resize_to_multiple_of: Optional[int] = None, ) -> tuple[PreTrainedModel, PreTrainedTokenizer]: """ Setup chat format by adding special tokens to the tokenizer, setting the correct format, and extending the embedding layer of the model based on the new special tokens. We recommend using [`clone_chat_template`] instead of this function. If the model already has a chat template, this will throw an error. If you want to overwrite it, please set `tokenizer.chat_template` to `None`. Args: model (`~transformers.PreTrainedModel`): The model to be modified. tokenizer (`~transformers.PreTrainedTokenizer`): The tokenizer to be modified. format (`Optional[Literal["chatml"]]`): The format to be set. Defaults to "chatml". resize_to_multiple_of (`int` or `None`): Number to resize the embedding layer to. Defaults to None. Returns: model (`~transformers.PreTrainedModel`): The modified model. tokenizer (`~transformers.PreTrainedTokenizer`): The modified tokenizer. """ # check if model already had a chat template if tokenizer.chat_template is not None: raise ValueError( "Chat template is already added to the tokenizer. If you want to overwrite it, please set it to None" ) # check if format available and retrieve if format not in FORMAT_MAPPING: raise ValueError(f"Format {format} not available. Please use one of {FORMAT_MAPPING.keys()}") chat_format = FORMAT_MAPPING[format]() # set special tokens and them tokenizer.eos_token = chat_format.eos_token tokenizer.pad_token = chat_format.pad_token tokenizer.bos_token = chat_format.bos_token tokenizer.add_special_tokens({"additional_special_tokens": [chat_format.bos_token, chat_format.eos_token]}) # set chat format for tokenizer tokenizer.chat_template = chat_format.chat_template # resize embedding layer to a multiple of 64, https://x.com/karpathy/status/1621578354024677377 model.resize_token_embeddings( # After studying many tokenizers, we found that len(tokenizer.vocab) is the most reliable way to get the vocab # size. Avoid using tokenizer.vocab_size or tokenizer.vocab_size + len(tokenizer.added_tokens_encoder), # as handling of special and added tokens varies across tokenizers. new_num_tokens=len(tokenizer.vocab), pad_to_multiple_of=resize_to_multiple_of if resize_to_multiple_of is not None else None, ) # Update the model config to use the new eos & bos tokens if getattr(model, "config", None) is not None: model.config.pad_token_id = tokenizer.pad_token_id model.config.bos_token_id = tokenizer.bos_token_id model.config.eos_token_id = tokenizer.eos_token_id # Update the generation config to use the new eos & bos token if getattr(model, "generation_config", None) is not None: model.generation_config.bos_token_id = tokenizer.bos_token_id model.generation_config.eos_token_id = tokenizer.eos_token_id model.generation_config.pad_token_id = tokenizer.pad_token_id return model, tokenizer def clone_chat_template( model: PreTrainedModel, tokenizer: PreTrainedTokenizer, source_tokenizer_path: str, resize_to_multiple_of: Optional[int] = 64, ) -> tuple[PreTrainedModel, PreTrainedTokenizer, list[int]]: """ Clones a chat template from a source tokenizer to the target tokenizer and updates the model accordingly. This function: - Copies the chat template from a source tokenizer to the target tokenizer. - Adds any new tokens from the source tokenizer to the target tokenizer. - Sets and synchronizes the EOS token across the tokenizer and model. - Resizes the model's token embeddings to match the new vocabulary size, optionally rounding it up to a multiple of a specified value. In such cases, dummy tokens are added to the tokenizer to ensure the vocabulary size matches the embedding dimensions. Args: model (`PreTrainedModel`): Model to update. tokenizer (`PreTrainedTokenizer`): Tokenizer to update. source_tokenizer_path (`str`): Path or identifier of the pretrained tokenizer to clone from. resize_to_multiple_of (`int` or `None`, *optional*, defaults to `64`): The embedding layer will be resized to the new vocabulary size. If this is not `None`, it will round up the new vocabulary size to the nearest multiple of this value. Returns: model (`PreTrainedModel`): Updated model with resized token embeddings and EOS token configured. tokenizer (`~transformers.PreTrainedTokenizer`): Updated tokenizer with the chat template and special tokens applied. added_tokens (`list[int]`): List of tokens that were added to the tokenizer from the source tokenizer. Example: ```python from transformers import AutoModelForCausalLM, AutoTokenizer from trl import clone_chat_template model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-1B") tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B") model, tokenizer, added_tokens = clone_chat_template(model, tokenizer, "Qwen/Qwen3-0.6B") ``` """ # Load the source tokenizer containing the desired chat template tokenizer_source = AutoTokenizer.from_pretrained(source_tokenizer_path) # Copy the chat template from the source tokenizer tokenizer.chat_template = tokenizer_source.get_chat_template() # Ensure all added tokens from the source are available in the target tokenizer added_tokens = [ token for token in tokenizer_source.added_tokens_decoder.values() if token.content not in tokenizer.vocab ] tokenizer.add_tokens(added_tokens) # Set the EOS token from the source tokenizer (important for generation) tokenizer.eos_token = tokenizer_source.eos_token model.config.eos_token_id = tokenizer.eos_token_id model.generation_config.eos_token_id = tokenizer.eos_token_id # Resize model embeddings to include any new tokens, optionally rounding up to a multiple model.resize_token_embeddings( # After studying many tokenizers, we found that len(tokenizer.vocab) is the most reliable way to get the vocab # size. Avoid using tokenizer.vocab_size or tokenizer.vocab_size + len(tokenizer.added_tokens_encoder), # as handling of special and added tokens varies across tokenizers. new_num_tokens=len(tokenizer.vocab), pad_to_multiple_of=resize_to_multiple_of if resize_to_multiple_of is not None else None, ) # After resizing, the embedding matrix size may exceed the vocabulary size. Add dummy tokens to the tokenizer to # ensure vocabulary size matches the embedding matrix dimensions. idx = 0 while model.vocab_size > len(tokenizer.vocab): dummy_token = AddedToken(f"") is_added = tokenizer.add_tokens(dummy_token) idx += 1 if is_added == 1: added_tokens.append(dummy_token) # Verify that vocabulary size now matches embedding dimensions if len(tokenizer.vocab) != model.vocab_size: raise RuntimeError( f"Vocabulary size mismatch after resizing: tokenizer vocab size is {len(tokenizer.vocab)}, but model " f"embedding size is {model.vocab_size}. This indicates an internal error in the token alignment process." ) added_tokens = [token.content for token in added_tokens] added_tokens = tokenizer.convert_tokens_to_ids(added_tokens) return model, tokenizer, added_tokens def remove_hooks(model: "DeepSpeedEngine") -> None: """Removes the optimizer hooks from a DeepSpeed ZeRO-3 model.""" if not hasattr(model, "optimizer"): # before the first training step, the model has no optimizer return if model.optimizer is not None and hasattr(model.optimizer, "parameter_offload"): optimizer_offload = model.optimizer.parameter_offload elif model.optimizer is not None: optimizer_offload = model.optimizer else: raise RuntimeError("The model optimizer is None, which is not yet supported.") for param in iter_params(optimizer_offload.module, recurse=True): param.ds_active_sub_modules.clear() for hook in optimizer_offload.forward_hooks: hook.remove() for hook in optimizer_offload.backward_hooks: hook.remove() optimizer_offload.forward_hooks = [] optimizer_offload.backward_hooks = [] def get_all_parameters(sub_module, recurse=False): return itertools.chain(sub_module.named_parameters(recurse=recurse), sub_module.ds_external_parameters()) def iter_params(module, recurse=False): return [param for _, param in get_all_parameters(module, recurse)] def add_hooks(model: "DeepSpeedEngine") -> None: """Adds the optimizer hooks from a DeepSpeed ZeRO-3 model.""" import deepspeed if not hasattr(model, "optimizer"): # before the first training step, the model has no optimizer return if model.optimizer is not None and hasattr(model.optimizer, "parameter_offload"): optimizer_offload = model.optimizer.parameter_offload elif model.optimizer is not None: optimizer_offload = model.optimizer else: raise RuntimeError("The model optimizer is None, which is not yet supported.") if version.parse(deepspeed.__version__) >= version.parse("0.16.4"): # Account for renaming in https://github.com/deepspeedai/DeepSpeed/pull/6847 optimizer_offload._register_deepspeed_module(optimizer_offload.module) else: optimizer_offload._register_hooks_recursively(optimizer_offload.module) @contextmanager def unwrap_model_for_generation( model: Union["DistributedDataParallel", "DeepSpeedEngine"], accelerator: "Accelerator", gather_deepspeed3_params: bool = True, ): """ Context manager to unwrap distributed or accelerated models for generation tasks. Args: model (`Union[DistributedDataParallel, DeepSpeedEngine]`): Model to be unwrapped. accelerator (`~accelerate.Accelerator`): Accelerator instance managing the model. gather_deepspeed3_params (`bool`, *optional*, defaults to `True`): Whether to gather weights for DeepSpeed ZeRO Stage 3 models. If `False`, skips parameter gathering, which can be more memory-efficient but may lead to slower generation times. Yields: Unwrapped model. Example: ```python with unwrap_model_for_generation(model, accelerator) as unwrapped_model: generated_outputs = unwrapped_model.generate(input_ids) ``` """ unwrapped_model = accelerator.unwrap_model(model) if accelerator.state.deepspeed_plugin is not None and accelerator.state.deepspeed_plugin.zero_stage == 3: if not gather_deepspeed3_params: yield accelerator.unwrap_model(model) else: import deepspeed with deepspeed.zero.GatheredParameters(model.parameters()): remove_hooks(model) yield accelerator.unwrap_model(model) add_hooks(model) else: yield unwrapped_model def prepare_deepspeed(model: "Module", accelerator: "Accelerator"): """Prepares the model for DeepSpeed inference or evaluation by initializing it with the appropriate configuration. Adapted from accelerate: https://github.com/huggingface/accelerate/blob/739b135f8367becb67ffaada12fe76e3aa60fefd/src/accelerate/accelerator.py#L1473 """ import deepspeed # local import (instead of top-level) to avoid DS init interfering with other backends (like vllm): https://github.com/deepspeedai/DeepSpeed/issues/7252 deepspeed_plugin = accelerator.state.deepspeed_plugin config_kwargs = deepcopy(deepspeed_plugin.deepspeed_config) stage = config_kwargs["zero_optimization"]["stage"] if model is not None: hidden_size = ( max(model.config.hidden_sizes) if getattr(model.config, "hidden_sizes", None) else getattr(model.config, "hidden_size", None) ) if hidden_size is not None and stage == 3: # Note that `stage3_prefetch_bucket_size` can produce DeepSpeed messages like: `Invalidate trace cache # @ step 0: expected module 1, but got module 0` # This is expected and is not an error, see: https://github.com/microsoft/DeepSpeed/discussions/4081 config_kwargs.update( { "zero_optimization.reduce_bucket_size": hidden_size * hidden_size, "zero_optimization.stage3_param_persistence_threshold": 10 * hidden_size, "zero_optimization.stage3_prefetch_bucket_size": 0.9 * hidden_size * hidden_size, } ) # If ZeRO-3 is used, we shard both the active and reference model. # Otherwise, we assume the reference model fits in memory and is initialized on each device with ZeRO # disabled (stage 0) if stage != 3: config_kwargs["zero_optimization"]["stage"] = 0 model, *_ = deepspeed.initialize(model=model, config=config_kwargs) model.eval() return model def prepare_fsdp(model, accelerator): # Adapted from accelerate: https://github.com/huggingface/accelerate/blob/739b135f8367becb67ffaada12fe76e3aa60fefd/src/accelerate/accelerator.py#L1421 from torch.distributed.fsdp import FSDPModule from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP # Check if the model is already a FSDP model due to `Manual Wrapping` and if so, # don't wrap it again if not (isinstance(model, FSDP) or isinstance(model, FSDPModule)): accelerator.state.fsdp_plugin.set_auto_wrap_policy(model) fsdp_plugin = accelerator.state.fsdp_plugin kwargs = { "sharding_strategy": fsdp_plugin.sharding_strategy or fsdp_plugin.reshard_after_forward, "cpu_offload": fsdp_plugin.cpu_offload, "auto_wrap_policy": fsdp_plugin.auto_wrap_policy, "mixed_precision": fsdp_plugin.mixed_precision_policy, "sync_module_states": fsdp_plugin.sync_module_states, "backward_prefetch": fsdp_plugin.backward_prefetch, "forward_prefetch": fsdp_plugin.forward_prefetch, "use_orig_params": fsdp_plugin.use_orig_params, "param_init_fn": fsdp_plugin.param_init_fn, "ignored_modules": fsdp_plugin.ignored_modules, "limit_all_gathers": fsdp_plugin.limit_all_gathers, "device_id": accelerator.device, } model = FSDP(model, **kwargs) model.eval() return model class _ForwardRedirection: """Implements the `forward-redirection`. Taken from Pytorch-lightning: https://github.com/Lightning-AI/pytorch-lightning/blob/02311d03fb982560246eead7c08104481fac9579/src/lightning/pytorch/strategies/strategy.py#L602 A method call to a wrapped module gets rerouted through the wrapper's `forward` method instead. """ def __call__( self, wrapper_module: nn.Module, original_module: nn.Module, method: callable, *args: Any, **kwargs: Any ): """Reroutes a method call through the `wrapper_module`'s `forward` method. Args: wrapper_module: The module that has `original_module` wrapped. original_module: The module that was wrapped inside `wrapper_module`. method_name: The name of the method that should be called on the `original_module` after inputs get redirected through the `wrapper_module`'s `forward` method. *args: The positional arguments to the method `method_name`. They will get passed to a patched `forward` method instead. **kwargs: The keyword arguments to the method `method_name`. They will get passed to a patched `forward` method instead. """ original_forward = original_module.forward def wrapped_forward(*_args: Any, **_kwargs: Any) -> Any: # Unpatch ourselves immediately before calling the method `method_name` # because itself may want to call the real `forward` original_module.forward = original_forward # type: ignore[method-assign] # Call the actual method e.g. `.training_step(...)` out = method(*_args, **_kwargs) self.on_after_inner_forward(wrapper_module, original_module) return out # Patch the original_module's forward so we can redirect the arguments back to the real method original_module.forward = wrapped_forward # type: ignore[method-assign] wrapper_output = wrapper_module(*args, **kwargs) self.on_after_outer_forward(wrapper_module, original_module) return wrapper_output def on_after_inner_forward(self, wrapper_module: nn.Module, original_module: nn.Module) -> None: pass def on_after_outer_forward(self, wrapper_module: nn.Module, original_module: nn.Module) -> None: pass