# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
from contextlib import contextmanager
from copy import deepcopy
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Literal, Optional, Union
import torch.nn as nn
from packaging import version
from transformers import AddedToken, AutoTokenizer, PreTrainedModel, PreTrainedTokenizer
from .modeling_value_head import AutoModelForCausalLMWithValueHead, AutoModelForSeq2SeqLMWithValueHead
SUPPORTED_ARCHITECTURES = (
AutoModelForCausalLMWithValueHead,
AutoModelForSeq2SeqLMWithValueHead,
)
if TYPE_CHECKING:
from accelerate import Accelerator
from deepspeed.runtime.engine import DeepSpeedEngine
from torch.nn import Module
from torch.nn.parallel.distributed import DistributedDataParallel
# TODO: Add Abstract Base Class if more formats are added
@dataclass
class ChatMlSpecialTokens:
"""Dataclass for special tokens used in ChatML, including system, user, assistant, bos, eos, and pad tokens."""
bos_token: str = "<|im_start|>"
eos_token: str = "<|im_end|>"
pad_token: str = "<|im_end|>"
@property
def system(self):
return f"{self.bos_token}system"
@property
def user(self):
return f"{self.bos_token}user"
@property
def assistant(self):
return f"{self.bos_token}assistant"
@property
def chat_template(self):
return (
"{% for message in messages %}"
f"{{{{'{self.bos_token}' + message['role'] + '\n' + message['content'] + '{self.eos_token}' + '\n'}}}}"
"{% endfor %}"
"{% if add_generation_prompt %}"
f"{{{{ '{self.assistant}\n' }}}}"
"{% endif %}"
)
FORMAT_MAPPING = {"chatml": ChatMlSpecialTokens}
def setup_chat_format(
model: PreTrainedModel,
tokenizer: PreTrainedTokenizer,
format: Optional[Literal["chatml"]] = "chatml",
resize_to_multiple_of: Optional[int] = None,
) -> tuple[PreTrainedModel, PreTrainedTokenizer]:
"""
Setup chat format by adding special tokens to the tokenizer, setting the correct format, and extending the
embedding layer of the model based on the new special tokens.
We recommend using [`clone_chat_template`] instead of this function.
If the model already has a chat template, this will throw an error. If you want to overwrite it, please set
`tokenizer.chat_template` to `None`.
Args:
model (`~transformers.PreTrainedModel`): The model to be modified.
tokenizer (`~transformers.PreTrainedTokenizer`): The tokenizer to be modified.
format (`Optional[Literal["chatml"]]`): The format to be set. Defaults to "chatml".
resize_to_multiple_of (`int` or `None`): Number to resize the embedding layer to. Defaults to None.
Returns:
model (`~transformers.PreTrainedModel`):
The modified model.
tokenizer (`~transformers.PreTrainedTokenizer`):
The modified tokenizer.
"""
# check if model already had a chat template
if tokenizer.chat_template is not None:
raise ValueError(
"Chat template is already added to the tokenizer. If you want to overwrite it, please set it to None"
)
# check if format available and retrieve
if format not in FORMAT_MAPPING:
raise ValueError(f"Format {format} not available. Please use one of {FORMAT_MAPPING.keys()}")
chat_format = FORMAT_MAPPING[format]()
# set special tokens and them
tokenizer.eos_token = chat_format.eos_token
tokenizer.pad_token = chat_format.pad_token
tokenizer.bos_token = chat_format.bos_token
tokenizer.add_special_tokens({"additional_special_tokens": [chat_format.bos_token, chat_format.eos_token]})
# set chat format for tokenizer
tokenizer.chat_template = chat_format.chat_template
# resize embedding layer to a multiple of 64, https://x.com/karpathy/status/1621578354024677377
model.resize_token_embeddings(
# After studying many tokenizers, we found that len(tokenizer.vocab) is the most reliable way to get the vocab
# size. Avoid using tokenizer.vocab_size or tokenizer.vocab_size + len(tokenizer.added_tokens_encoder),
# as handling of special and added tokens varies across tokenizers.
new_num_tokens=len(tokenizer.vocab),
pad_to_multiple_of=resize_to_multiple_of if resize_to_multiple_of is not None else None,
)
# Update the model config to use the new eos & bos tokens
if getattr(model, "config", None) is not None:
model.config.pad_token_id = tokenizer.pad_token_id
model.config.bos_token_id = tokenizer.bos_token_id
model.config.eos_token_id = tokenizer.eos_token_id
# Update the generation config to use the new eos & bos token
if getattr(model, "generation_config", None) is not None:
model.generation_config.bos_token_id = tokenizer.bos_token_id
model.generation_config.eos_token_id = tokenizer.eos_token_id
model.generation_config.pad_token_id = tokenizer.pad_token_id
return model, tokenizer
def clone_chat_template(
model: PreTrainedModel,
tokenizer: PreTrainedTokenizer,
source_tokenizer_path: str,
resize_to_multiple_of: Optional[int] = 64,
) -> tuple[PreTrainedModel, PreTrainedTokenizer, list[int]]:
"""
Clones a chat template from a source tokenizer to the target tokenizer and updates the model accordingly.
This function:
- Copies the chat template from a source tokenizer to the target tokenizer.
- Adds any new tokens from the source tokenizer to the target tokenizer.
- Sets and synchronizes the EOS token across the tokenizer and model.
- Resizes the model's token embeddings to match the new vocabulary size, optionally rounding it up to a multiple of
a specified value. In such cases, dummy tokens are added to the tokenizer to ensure the vocabulary size matches
the embedding dimensions.
Args:
model (`PreTrainedModel`):
Model to update.
tokenizer (`PreTrainedTokenizer`):
Tokenizer to update.
source_tokenizer_path (`str`):
Path or identifier of the pretrained tokenizer to clone from.
resize_to_multiple_of (`int` or `None`, *optional*, defaults to `64`):
The embedding layer will be resized to the new vocabulary size. If this is not `None`, it will round up the
new vocabulary size to the nearest multiple of this value.
Returns:
model (`PreTrainedModel`):
Updated model with resized token embeddings and EOS token configured.
tokenizer (`~transformers.PreTrainedTokenizer`):
Updated tokenizer with the chat template and special tokens applied.
added_tokens (`list[int]`):
List of tokens that were added to the tokenizer from the source tokenizer.
Example:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from trl import clone_chat_template
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-1B")
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B")
model, tokenizer, added_tokens = clone_chat_template(model, tokenizer, "Qwen/Qwen3-0.6B")
```
"""
# Load the source tokenizer containing the desired chat template
tokenizer_source = AutoTokenizer.from_pretrained(source_tokenizer_path)
# Copy the chat template from the source tokenizer
tokenizer.chat_template = tokenizer_source.get_chat_template()
# Ensure all added tokens from the source are available in the target tokenizer
added_tokens = [
token for token in tokenizer_source.added_tokens_decoder.values() if token.content not in tokenizer.vocab
]
tokenizer.add_tokens(added_tokens)
# Set the EOS token from the source tokenizer (important for generation)
tokenizer.eos_token = tokenizer_source.eos_token
model.config.eos_token_id = tokenizer.eos_token_id
model.generation_config.eos_token_id = tokenizer.eos_token_id
# Resize model embeddings to include any new tokens, optionally rounding up to a multiple
model.resize_token_embeddings(
# After studying many tokenizers, we found that len(tokenizer.vocab) is the most reliable way to get the vocab
# size. Avoid using tokenizer.vocab_size or tokenizer.vocab_size + len(tokenizer.added_tokens_encoder),
# as handling of special and added tokens varies across tokenizers.
new_num_tokens=len(tokenizer.vocab),
pad_to_multiple_of=resize_to_multiple_of if resize_to_multiple_of is not None else None,
)
# After resizing, the embedding matrix size may exceed the vocabulary size. Add dummy tokens to the tokenizer to
# ensure vocabulary size matches the embedding matrix dimensions.
idx = 0
while model.vocab_size > len(tokenizer.vocab):
dummy_token = AddedToken(f"")
is_added = tokenizer.add_tokens(dummy_token)
idx += 1
if is_added == 1:
added_tokens.append(dummy_token)
# Verify that vocabulary size now matches embedding dimensions
if len(tokenizer.vocab) != model.vocab_size:
raise RuntimeError(
f"Vocabulary size mismatch after resizing: tokenizer vocab size is {len(tokenizer.vocab)}, but model "
f"embedding size is {model.vocab_size}. This indicates an internal error in the token alignment process."
)
added_tokens = [token.content for token in added_tokens]
added_tokens = tokenizer.convert_tokens_to_ids(added_tokens)
return model, tokenizer, added_tokens
def remove_hooks(model: "DeepSpeedEngine") -> None:
"""Removes the optimizer hooks from a DeepSpeed ZeRO-3 model."""
if not hasattr(model, "optimizer"): # before the first training step, the model has no optimizer
return
if model.optimizer is not None and hasattr(model.optimizer, "parameter_offload"):
optimizer_offload = model.optimizer.parameter_offload
elif model.optimizer is not None:
optimizer_offload = model.optimizer
else:
raise RuntimeError("The model optimizer is None, which is not yet supported.")
for param in iter_params(optimizer_offload.module, recurse=True):
param.ds_active_sub_modules.clear()
for hook in optimizer_offload.forward_hooks:
hook.remove()
for hook in optimizer_offload.backward_hooks:
hook.remove()
optimizer_offload.forward_hooks = []
optimizer_offload.backward_hooks = []
def get_all_parameters(sub_module, recurse=False):
return itertools.chain(sub_module.named_parameters(recurse=recurse), sub_module.ds_external_parameters())
def iter_params(module, recurse=False):
return [param for _, param in get_all_parameters(module, recurse)]
def add_hooks(model: "DeepSpeedEngine") -> None:
"""Adds the optimizer hooks from a DeepSpeed ZeRO-3 model."""
import deepspeed
if not hasattr(model, "optimizer"): # before the first training step, the model has no optimizer
return
if model.optimizer is not None and hasattr(model.optimizer, "parameter_offload"):
optimizer_offload = model.optimizer.parameter_offload
elif model.optimizer is not None:
optimizer_offload = model.optimizer
else:
raise RuntimeError("The model optimizer is None, which is not yet supported.")
if version.parse(deepspeed.__version__) >= version.parse("0.16.4"):
# Account for renaming in https://github.com/deepspeedai/DeepSpeed/pull/6847
optimizer_offload._register_deepspeed_module(optimizer_offload.module)
else:
optimizer_offload._register_hooks_recursively(optimizer_offload.module)
@contextmanager
def unwrap_model_for_generation(
model: Union["DistributedDataParallel", "DeepSpeedEngine"],
accelerator: "Accelerator",
gather_deepspeed3_params: bool = True,
):
"""
Context manager to unwrap distributed or accelerated models for generation tasks.
Args:
model (`Union[DistributedDataParallel, DeepSpeedEngine]`):
Model to be unwrapped.
accelerator (`~accelerate.Accelerator`):
Accelerator instance managing the model.
gather_deepspeed3_params (`bool`, *optional*, defaults to `True`):
Whether to gather weights for DeepSpeed ZeRO Stage 3 models. If `False`, skips parameter gathering, which
can be more memory-efficient but may lead to slower generation times.
Yields:
Unwrapped model.
Example:
```python
with unwrap_model_for_generation(model, accelerator) as unwrapped_model:
generated_outputs = unwrapped_model.generate(input_ids)
```
"""
unwrapped_model = accelerator.unwrap_model(model)
if accelerator.state.deepspeed_plugin is not None and accelerator.state.deepspeed_plugin.zero_stage == 3:
if not gather_deepspeed3_params:
yield accelerator.unwrap_model(model)
else:
import deepspeed
with deepspeed.zero.GatheredParameters(model.parameters()):
remove_hooks(model)
yield accelerator.unwrap_model(model)
add_hooks(model)
else:
yield unwrapped_model
def prepare_deepspeed(model: "Module", accelerator: "Accelerator"):
"""Prepares the model for DeepSpeed inference or evaluation by initializing it with the appropriate configuration.
Adapted from accelerate:
https://github.com/huggingface/accelerate/blob/739b135f8367becb67ffaada12fe76e3aa60fefd/src/accelerate/accelerator.py#L1473
"""
import deepspeed # local import (instead of top-level) to avoid DS init interfering with other backends (like vllm): https://github.com/deepspeedai/DeepSpeed/issues/7252
deepspeed_plugin = accelerator.state.deepspeed_plugin
config_kwargs = deepcopy(deepspeed_plugin.deepspeed_config)
stage = config_kwargs["zero_optimization"]["stage"]
if model is not None:
hidden_size = (
max(model.config.hidden_sizes)
if getattr(model.config, "hidden_sizes", None)
else getattr(model.config, "hidden_size", None)
)
if hidden_size is not None and stage == 3:
# Note that `stage3_prefetch_bucket_size` can produce DeepSpeed messages like: `Invalidate trace cache
# @ step 0: expected module 1, but got module 0`
# This is expected and is not an error, see: https://github.com/microsoft/DeepSpeed/discussions/4081
config_kwargs.update(
{
"zero_optimization.reduce_bucket_size": hidden_size * hidden_size,
"zero_optimization.stage3_param_persistence_threshold": 10 * hidden_size,
"zero_optimization.stage3_prefetch_bucket_size": 0.9 * hidden_size * hidden_size,
}
)
# If ZeRO-3 is used, we shard both the active and reference model.
# Otherwise, we assume the reference model fits in memory and is initialized on each device with ZeRO
# disabled (stage 0)
if stage != 3:
config_kwargs["zero_optimization"]["stage"] = 0
model, *_ = deepspeed.initialize(model=model, config=config_kwargs)
model.eval()
return model
def prepare_fsdp(model, accelerator):
# Adapted from accelerate: https://github.com/huggingface/accelerate/blob/739b135f8367becb67ffaada12fe76e3aa60fefd/src/accelerate/accelerator.py#L1421
from torch.distributed.fsdp import FSDPModule
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
# Check if the model is already a FSDP model due to `Manual Wrapping` and if so,
# don't wrap it again
if not (isinstance(model, FSDP) or isinstance(model, FSDPModule)):
accelerator.state.fsdp_plugin.set_auto_wrap_policy(model)
fsdp_plugin = accelerator.state.fsdp_plugin
kwargs = {
"sharding_strategy": fsdp_plugin.sharding_strategy or fsdp_plugin.reshard_after_forward,
"cpu_offload": fsdp_plugin.cpu_offload,
"auto_wrap_policy": fsdp_plugin.auto_wrap_policy,
"mixed_precision": fsdp_plugin.mixed_precision_policy,
"sync_module_states": fsdp_plugin.sync_module_states,
"backward_prefetch": fsdp_plugin.backward_prefetch,
"forward_prefetch": fsdp_plugin.forward_prefetch,
"use_orig_params": fsdp_plugin.use_orig_params,
"param_init_fn": fsdp_plugin.param_init_fn,
"ignored_modules": fsdp_plugin.ignored_modules,
"limit_all_gathers": fsdp_plugin.limit_all_gathers,
"device_id": accelerator.device,
}
model = FSDP(model, **kwargs)
model.eval()
return model
class _ForwardRedirection:
"""Implements the `forward-redirection`.
Taken from Pytorch-lightning:
https://github.com/Lightning-AI/pytorch-lightning/blob/02311d03fb982560246eead7c08104481fac9579/src/lightning/pytorch/strategies/strategy.py#L602
A method call to a wrapped module gets rerouted through the wrapper's `forward` method instead.
"""
def __call__(
self, wrapper_module: nn.Module, original_module: nn.Module, method: callable, *args: Any, **kwargs: Any
):
"""Reroutes a method call through the `wrapper_module`'s `forward` method.
Args:
wrapper_module: The module that has `original_module` wrapped.
original_module: The module that was wrapped inside `wrapper_module`.
method_name: The name of the method that should be called on the `original_module` after inputs get
redirected through the `wrapper_module`'s `forward` method.
*args: The positional arguments to the method `method_name`. They will get passed to a patched
`forward` method instead.
**kwargs: The keyword arguments to the method `method_name`. They will get passed to a patched
`forward` method instead.
"""
original_forward = original_module.forward
def wrapped_forward(*_args: Any, **_kwargs: Any) -> Any:
# Unpatch ourselves immediately before calling the method `method_name`
# because itself may want to call the real `forward`
original_module.forward = original_forward # type: ignore[method-assign]
# Call the actual method e.g. `.training_step(...)`
out = method(*_args, **_kwargs)
self.on_after_inner_forward(wrapper_module, original_module)
return out
# Patch the original_module's forward so we can redirect the arguments back to the real method
original_module.forward = wrapped_forward # type: ignore[method-assign]
wrapper_output = wrapper_module(*args, **kwargs)
self.on_after_outer_forward(wrapper_module, original_module)
return wrapper_output
def on_after_inner_forward(self, wrapper_module: nn.Module, original_module: nn.Module) -> None:
pass
def on_after_outer_forward(self, wrapper_module: nn.Module, original_module: nn.Module) -> None:
pass