# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# /// script
# dependencies = [
# "trl @ git+https://github.com/huggingface/trl.git",
# "peft",
# "math-verify",
# "latex2sympy2_extended",
# ]
# ///
"""
pip install math_verify
# For Qwen/Qwen2.5-VL-3B-Instruct
accelerate launch \
--config_file examples/accelerate_configs/deepspeed_zero3.yaml \
examples/scripts/gspo_vlm.py \
--model_name_or_path Qwen/Qwen2.5-VL-3B-Instruct \
--output_dir gspo-Qwen2.5-VL-3B-Instruct \
--learning_rate 1e-5 \
--torch_dtype bfloat16 \
--max_prompt_length 2048 \
--max_completion_length 1024 \
--use_peft \
--lora_target_modules "q_proj", "v_proj" \
--log_completions \
--per_device_train_batch_size 8 \
--num_generations 8 \
--bf16 True \
--importance_sampling_level sequence \
--epsilon 3e-4 \
--epsilon_high 4e-4 \
--beta 0.0 \
--loss_type grpo \
--gradient_accumulation_steps 2 \
--steps_per_generation 8
"""
import torch
from datasets import load_dataset
from latex2sympy2_extended import NormalizationConfig
from math_verify import LatexExtractionConfig, parse, verify
from trl import (
GRPOConfig,
GRPOTrainer,
ModelConfig,
ScriptArguments,
TrlParser,
get_kbit_device_map,
get_peft_config,
get_quantization_config,
)
from trl.rewards import think_format_reward
if __name__ == "__main__":
parser = TrlParser((ScriptArguments, GRPOConfig, ModelConfig))
script_args, training_args, model_args = parser.parse_args_and_config()
################
# Model & Processor
################
torch_dtype = (
model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
)
quantization_config = get_quantization_config(model_args)
training_args.model_init_kwargs = dict(
revision=model_args.model_revision,
attn_implementation=model_args.attn_implementation,
torch_dtype=torch_dtype,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
################
# Dataset
################
dataset = load_dataset("lmms-lab/multimodal-open-r1-8k-verified", split="train")
dataset = dataset.train_test_split(test_size=100, seed=42)
SYSTEM_PROMPT = (
"A conversation between user and assistant. The user asks a question, and the assistant solves it. The "
"assistant first thinks about the reasoning process in the mind and then provides the user with the answer. "
"The reasoning process and answer are enclosed within tags, i.e., \nThis is my "
"reasoning.\n\nThis is my answer."
)
def make_conversation(example):
prompt = [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": example["problem"]},
]
return {"prompt": prompt}
dataset = dataset.map(make_conversation)
# Filter have big images
def filter_big_images(example):
image = example["image"]
return image.size[0] < 512 and image.size[1] < 512
dataset = dataset.filter(filter_big_images)
def convert_to_rgb(example):
image = example["image"]
if image.mode != "RGB":
image = image.convert("RGB")
example["image"] = image
return example
dataset = dataset.map(convert_to_rgb)
train_dataset = dataset["train"]
eval_dataset = dataset["test"] if training_args.eval_strategy != "no" else None
################
# Reward Function for Training
################
def accuracy_reward(completions, solution: list[str], **kwargs):
"""Reward function that checks if the completion matches the ground truth.
- If both gold and prediction are parseable → use math verification.
- If not parseable → compare as normalized text.
"""
rewards = []
contents = [completion[0]["content"] for completion in completions]
for content, sol in zip(contents, solution):
try:
gold_parsed = parse(sol, extraction_mode="first_match")
except Exception:
gold_parsed = []
if len(gold_parsed) != 0:
# Try parsing predicted answer too
try:
answer_parsed = parse(
content,
extraction_config=[
LatexExtractionConfig(
normalization_config=NormalizationConfig(
nits=False,
malformed_operators=False,
basic_latex=True,
boxed="all",
units=True,
),
boxed_match_priority=0,
try_extract_without_anchor=False,
)
],
extraction_mode="first_match",
)
reward = float(verify(gold_parsed, answer_parsed))
except Exception as e:
print(f"verify failed: {e}, answer: {content}, gold: {sol}")
reward = None
else:
# fallback to text match
reward = float(content.strip().lower() == sol.strip().lower())
rewards.append(reward)
return rewards
################
# Training
################
trainer = GRPOTrainer(
model=model_args.model_name_or_path,
args=training_args,
reward_funcs=[think_format_reward, accuracy_reward],
train_dataset=train_dataset,
eval_dataset=eval_dataset,
peft_config=get_peft_config(model_args),
)
trainer.train()
# Save and push to hub
trainer.save_model(training_args.output_dir)
if training_args.push_to_hub:
trainer.push_to_hub(dataset_name=script_args.dataset_name)