trl-4-dnd / trl /trainer /grpo_trainer.py
vishaljoshi24's picture
Initial Commit
a080fe0
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import inspect
import os
import re
import textwrap
import warnings
from collections import defaultdict, deque
from collections.abc import Sequence, Sized
from contextlib import nullcontext
from functools import partial
from pathlib import Path
from typing import Any, Callable, Optional, Union
import datasets
import torch
import torch.utils.data
import transformers
from accelerate.utils import broadcast_object_list, gather, gather_object, is_peft_model, set_seed
from datasets import Dataset, IterableDataset
from torch import nn
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.utils.data import DataLoader, Sampler
from transformers import (
AutoConfig,
AutoModelForSequenceClassification,
AutoProcessor,
AutoTokenizer,
GenerationConfig,
PreTrainedModel,
PreTrainedTokenizerBase,
ProcessorMixin,
Trainer,
TrainerCallback,
is_wandb_available,
)
from transformers.trainer_utils import seed_worker
from transformers.utils import is_datasets_available, is_flash_attn_2_available, is_peft_available, is_rich_available
from ..data_utils import apply_chat_template, is_conversational, maybe_apply_chat_template
from ..extras.profiling import profiling_context, profiling_decorator
from ..extras.vllm_client import VLLMClient
from ..import_utils import is_liger_kernel_available, is_vllm_available
from ..models import prepare_deepspeed, prepare_fsdp, unwrap_model_for_generation
from ..models.utils import _ForwardRedirection
from .callbacks import SyncRefModelCallback
from .grpo_config import GRPOConfig
from .utils import (
disable_dropout_in_model,
entropy_from_logits,
generate_model_card,
get_comet_experiment_url,
pad,
print_prompt_completions_sample,
selective_log_softmax,
)
if is_peft_available():
from peft import PeftConfig, get_peft_model
if is_liger_kernel_available():
from liger_kernel.chunked_loss import LigerFusedLinearGRPOLoss
if is_vllm_available():
from vllm import LLM, SamplingParams
from vllm.sampling_params import GuidedDecodingParams
if is_wandb_available():
import wandb
# What we call a reward function is a callable that takes a list of prompts and completions and returns a list of
# rewards. When it's a string, it's a model ID, so it's loaded as a pretrained model.
RewardFunc = Union[str, PreTrainedModel, Callable[[list, list], list[float]]]
class RepeatSampler(Sampler):
"""
Sampler that repeats the indices of a dataset in a structured manner.
Args:
data_source (`Sized`):
Dataset to sample from.
mini_repeat_count (`int`):
Number of times to repeat each index per batch.
batch_size (`int`, *optional*, defaults to `1`):
Number of unique indices per batch.
repeat_count (`int`, *optional*, defaults to `1`):
Number of times to repeat the full sampling process.
shuffle (`bool`, *optional*, defaults to `True`):
Whether to shuffle the dataset.
seed (`int` or `None`, *optional*, defaults to `None`):
Random seed for reproducibility (only affects this sampler).
Example:
```python
>>> sampler = RepeatSampler(
... ["a", "b", "c", "d", "e", "f", "g"], mini_repeat_count=2, batch_size=3, repeat_count=4
... )
>>> list(sampler)
[4, 4, 3, 3, 0, 0,
4, 4, 3, 3, 0, 0,
4, 4, 3, 3, 0, 0,
4, 4, 3, 3, 0, 0,
1, 1, 2, 2, 6, 6,
1, 1, 2, 2, 6, 6,
1, 1, 2, 2, 6, 6,
1, 1, 2, 2, 6, 6]
```
```txt
mini_repeat_count = 3
- - -
[0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, |
4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, |
8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, |
repeat_count = 2
0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, |
4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, |
8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, ...] |
--------- --------- --------- ---------
--------- --------- --------- ---------
--------- --------- --------- ---------
batch_size = 12
```
"""
def __init__(
self,
data_source: Sized,
mini_repeat_count: int,
batch_size: int = 1,
repeat_count: int = 1,
shuffle: bool = True,
seed: Optional[int] = None,
):
self.data_source = data_source
self.mini_repeat_count = mini_repeat_count
self.batch_size = batch_size
self.repeat_count = repeat_count
self.num_samples = len(data_source)
self.shuffle = shuffle
self.seed = seed
if shuffle:
self.generator = torch.Generator() # Create a local random generator
if seed is not None:
self.generator.manual_seed(seed)
def __iter__(self):
if self.shuffle:
# E.g., [2, 4, 3, 1, 0, 6, 5] (num_samples = 7)
indexes = torch.randperm(self.num_samples, generator=self.generator).tolist()
else:
indexes = list(range(self.num_samples))
# [2, 4, 3, 1, 0, 6, 5]
# -> [[2, 4, 3], [1, 0, 6], [5]] (batch_size = 3)
indexes = [indexes[i : i + self.batch_size] for i in range(0, len(indexes), self.batch_size)]
# [[2, 4, 3], [1, 0, 6], [5]]
# -> [[2, 4, 3], [1, 0, 6]]
indexes = [chunk for chunk in indexes if len(chunk) == self.batch_size]
for chunk in indexes:
for _ in range(self.repeat_count):
for index in chunk:
for _ in range(self.mini_repeat_count):
yield index
def __len__(self) -> int:
return (self.num_samples // self.batch_size) * self.batch_size * self.mini_repeat_count * self.repeat_count
# torch.nanstd doesn't exist, so we define it here
def nanstd(tensor: torch.Tensor) -> torch.Tensor:
"""
Compute the standard deviation of a tensor, ignoring NaNs. This function only supports 1D tensors.
Args:
tensor (`torch.Tensor`):
Input tensor of shape `(N,)`.
Returns:
`torch.Tensor`:
Standard deviation of the tensor, ignoring NaNs.
"""
variance = torch.nanmean((tensor - torch.nanmean(tensor, keepdim=True)) ** 2) # Compute variance ignoring NaNs
count = torch.sum(~torch.isnan(tensor)) # Count of non-NaN values
variance *= count / (count - 1) # Bessel's correction
return torch.sqrt(variance)
def split_tensor_dict(
tensor_dict: dict[str, Optional[torch.Tensor]], num_chunks: int
) -> list[dict[str, Optional[torch.Tensor]]]:
"""
Splits a dictionary of tensors along the first dimension into `num_chunks` equal parts.
Example:
```python
>>> x = torch.arange(12).reshape(6, 2)
>>> y = torch.arange(6).reshape(6, 1)
>>> tensor_dict = {"x": x, "y": y}
>>> split_tensor_dict(tensor_dict, 3)
[
{"x": tensor([[0, 1], [2, 3]]), "y": tensor([[0], [1]])},
{"x": tensor([[4, 5], [6, 7]]), "y": tensor([[2], [3]])},
{"x": tensor([[ 8, 9], [10, 11]]), "y": tensor([[4], [5]])}
]
```
"""
first_tensor = next(tensor for tensor in tensor_dict.values() if tensor is not None)
chunk_size = first_tensor.shape[0] // num_chunks
return [
{
key: tensor[i * chunk_size : (i + 1) * chunk_size] if tensor is not None else None
for key, tensor in tensor_dict.items()
}
for i in range(num_chunks)
]
def shuffle_sequence_dict(seq_dict: dict[str, Optional[Sequence]]) -> dict[str, Optional[Sequence]]:
"""
Shuffles all sequence-like values in a dictionary along the first dimension in unison.
Example:
```python
>>> x = torch.arange(6).reshape(3, 2)
>>> y = ["a", "b", "c"]
>>> seq_dict = {"x": x, "y": y}
>>> shuffle_sequence_dict(seq_dict)
{'x': tensor([[2, 3],
[0, 1],
[4, 5]]),
'y': ['b', 'a', 'c']}
```
"""
# Determine batch size from the first non-None sequence
batch_size = len(next(v for v in seq_dict.values() if v is not None))
permutation = torch.randperm(batch_size)
def permute(v: Optional[Sequence]) -> Optional[Sequence]:
if v is None:
return None
if isinstance(v, torch.Tensor):
return v[permutation]
return [v[i] for i in permutation]
return {key: permute(val) for key, val in seq_dict.items()}
def nanmin(tensor: torch.Tensor) -> torch.Tensor:
"""
Compute the minimum value of a tensor, ignoring NaNs. This function only supports 1D tensors.
Args:
tensor (`torch.Tensor`): Input tensor of shape `(N,)`.
Returns:
`torch.Tensor`: Minimum value of the tensor, ignoring NaNs. Returns NaN if all values are NaN.
"""
if torch.isnan(tensor).all():
return torch.tensor(float("nan"), dtype=tensor.dtype, device=tensor.device)
return torch.min(tensor[~torch.isnan(tensor)])
def nanmax(tensor: torch.Tensor) -> torch.Tensor:
"""
Compute the maximum value of a tensor, ignoring NaNs. This function only supports 1D tensors.
Args:
tensor (`torch.Tensor`): Input tensor of shape `(N,)`.
Returns:
`torch.Tensor`: Maximum value of the tensor, ignoring NaNs. Returns NaN if all values are NaN.
"""
if torch.isnan(tensor).all():
return torch.tensor(float("nan"), dtype=tensor.dtype, device=tensor.device)
return torch.max(tensor[~torch.isnan(tensor)])
def identity(x):
"""Do we really need docs for this?"""
return x
def split_pixel_values_by_grid(batch: dict[str, torch.Tensor]) -> dict[str, Union[torch.Tensor, list[torch.Tensor]]]:
"""
Splits `batch["pixel_values"]` into a list of tensors based on the product of each row in
`batch["image_grid_thw"]`, while keeping other entries unchanged.
"""
if "image_grid_thw" not in batch or "pixel_values" not in batch:
return batch
lengths = batch["image_grid_thw"].prod(dim=1).tolist() # [batch_size]
pixel_values = batch["pixel_values"] # [total, feature_dim]
if sum(lengths) != pixel_values.size(0):
raise ValueError(f"Mismatch: sum(lengths) = {sum(lengths)} != pixel_values.size(0) = {pixel_values.size(0)}")
split_values = list(torch.split(batch["pixel_values"], lengths, dim=0))
return {**batch, "pixel_values": split_values}
def unsplit_pixel_values_by_grid(batch: dict[str, Union[torch.Tensor, list[torch.Tensor]]]) -> dict[str, torch.Tensor]:
"""
Opposite of `split_pixel_values_by_grid`. Merges a list of tensors in `batch["pixel_values"]`
back into a single tensor along the first dimension.
"""
pixel_values = batch.get("pixel_values")
if isinstance(pixel_values, list):
merged = torch.cat(pixel_values, dim=0)
return {**batch, "pixel_values": merged}
else:
return batch
def truncate_with_protected_tokens(
ids: torch.Tensor, mask: torch.Tensor, target_length: int, protected_tokens: list[int]
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Truncate tensors to target length while preserving protected tokens.
Args:
ids (`torch.Tensor`):
Input tensor of token IDs, shape (batch_size, sequence_length).
mask (`torch.Tensor`):
Input tensor of attention masks, shape (batch_size, sequence_length).
target_length (`int`):
Desired length of the output sequences.
protected_tokens (`list[int]`):
List of token IDs that should be preserved in the output.
"""
protected_set = set(protected_tokens)
def process_sequence(ids, mask):
# Create boolean masks
is_protected = torch.tensor([x.item() in protected_set for x in ids])
is_non_protected = ~is_protected
# Count tokens
num_protected = is_protected.sum().item()
num_non_protected_needed = target_length - num_protected
if num_non_protected_needed < 0:
raise ValueError(
f"target_length ({target_length}) is too small for the protected tokens ({num_protected} tokens). "
f"Please increase target length to at least {num_protected} or disable truncation."
)
# Select which non-protected tokens to keep (rightmost ones)
non_protected_indices = torch.where(is_non_protected)[0]
keep_non_protected = torch.zeros_like(is_non_protected)
if num_non_protected_needed > 0:
keep_indices = non_protected_indices[-num_non_protected_needed:]
keep_non_protected[keep_indices] = True
# Final mask: protected OR selected non-protected
keep_mask = is_protected | keep_non_protected
return ids[keep_mask], mask[keep_mask]
# Process each sequence in the batch
truncated_seq = []
truncated_mask = []
for i in range(ids.shape[0]):
new_ids, new_mask = process_sequence(ids[i], mask[i])
truncated_seq.append(new_ids)
truncated_mask.append(new_mask)
return torch.stack(truncated_seq), torch.stack(truncated_mask)
class GRPOTrainer(Trainer):
"""
Trainer for the Group Relative Policy Optimization (GRPO) method. This algorithm was initially proposed in the
paper [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language
Models](https://huggingface.co/papers/2402.03300).
Example:
```python
from datasets import load_dataset
from trl import GRPOTrainer
dataset = load_dataset("trl-lib/tldr", split="train")
def reward_func(completions, **kwargs):
# Dummy reward function that rewards completions with more unique letters.
return [float(len(set(completion))) for completion in completions]
trainer = GRPOTrainer(
model="Qwen/Qwen2-0.5B-Instruct",
reward_funcs=reward_func,
train_dataset=dataset,
)
trainer.train()
```
Args:
model (`Union[str, PreTrainedModel]`):
Model to be trained. Can be either:
- A string, being the *model id* of a pretrained model hosted inside a model repo on huggingface.co, or a
path to a *directory* containing model weights saved using
[`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is loaded
using [`~transformers.AutoModelForCausalLM.from_pretrained`] with the keyword arguments in
`args.model_init_kwargs`.
- A [`~transformers.PreTrainedModel`] object. Only causal language models are supported.
reward_funcs (`Union[RewardFunc, list[RewardFunc]]`):
Reward functions to be used for computing the rewards. To compute the rewards, we call all the reward
functions with the prompts and completions and sum the rewards. Can be either:
- A single reward function, such as:
- A string: The *model ID* of a pretrained model hosted inside a model repo on huggingface.co, or a
path to a *directory* containing model weights saved using
[`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is loaded
using [`~transformers.AutoModelForSequenceClassification.from_pretrained`] with `num_labels=1` and the
keyword arguments in `args.model_init_kwargs`.
- A [`~transformers.PreTrainedModel`] object: Only sequence classification models are supported.
- A custom reward function: The function is provided with the prompts and the generated completions,
plus any additional columns in the dataset. It should return a list of rewards. Custom reward
functions can also return `None` when the reward is not applicable to those samples. This is useful
for multi-task training where different reward functions apply to different types of samples. When a
reward function returns `None` for a sample, that reward function is excluded from the reward
calculation for that sample. For more details, see [Using a custom reward
function](#using-a-custom-reward-function).
The trainer's state is also passed to the reward function. The trainer's state is an instance of
[`~transformers.TrainerState`] and can be accessed by accessing the `trainer_state` argument to the
reward function's signature.
- A list of reward functions, where each item can independently be any of the above types. Mixing different
types within the list (e.g., a string model ID and a custom reward function) is allowed.
args ([`GRPOConfig`], *optional*, defaults to `None`):
Configuration for this trainer. If `None`, a default configuration is used.
train_dataset ([`~datasets.Dataset`] or [`~datasets.IterableDataset`]):
Dataset to use for training. It must include a column `"prompt"`. Any additional columns in the dataset is
ignored. The format of the samples can be either:
- [Standard](dataset_formats#standard): Each sample contains plain text.
- [Conversational](dataset_formats#conversational): Each sample contains structured messages (e.g., role
and content).
eval_dataset ([`~datasets.Dataset`], [`~datasets.IterableDataset`] or `dict[str, Union[Dataset, IterableDataset]]`):
Dataset to use for evaluation. It must meet the same requirements as `train_dataset`.
processing_class ([`~transformers.PreTrainedTokenizerBase`] or [`~transformers.ProcessorMixin`], *optional*, defaults to `None`):
Processing class used to process the data. The padding side must be set to "left". If `None`, the
processing class is loaded from the model's name with [`~transformers.AutoProcessor.from_pretrained`]. A
padding token, `tokenizer.pad_token`, must be set. If the processing class has not set a padding token,
`tokenizer.eos_token` will be used as the default.
reward_processing_classes (`Union[PreTrainedTokenizerBase, list[PreTrainedTokenizerBase]]`, *optional*, defaults to `None`):
Processing classes corresponding to the reward functions specified in `reward_funcs`. Can be either:
- A single processing class: Used when `reward_funcs` contains only one reward function.
- A list of processing classes: Must match the order and length of the reward functions in `reward_funcs`.
If set to `None`, or if an element of the list corresponding to a [`~transformers.PreTrainedModel`] is
`None`, the tokenizer for the model is automatically loaded using
[`~transformers.AutoTokenizer.from_pretrained`]. For elements in `reward_funcs` that are custom reward
functions (not [`~transformers.PreTrainedModel`]), the corresponding entries in `reward_processing_classes`
are ignored.
callbacks (list of [`~transformers.TrainerCallback`], *optional*, defaults to `None`):
List of callbacks to customize the training loop. Will add those to the list of default callbacks detailed
in [here](https://huggingface.co/docs/transformers/main_classes/callback).
If you want to remove one of the default callbacks used, use the [`~transformers.Trainer.remove_callback`]
method.
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`, *optional*, defaults to `(None, None)`):
A tuple containing the optimizer and the scheduler to use. Will default to an instance of [`AdamW`] on your
model and a scheduler given by [`get_linear_schedule_with_warmup`] controlled by `args`.
peft_config ([`~peft.PeftConfig`], *optional*, defaults to `None`):
PEFT configuration used to wrap the model. If `None`, the model is not wrapped.
"""
_tag_names = ["trl", "grpo"]
def __init__(
self,
model: Union[str, PreTrainedModel],
reward_funcs: Union[RewardFunc, list[RewardFunc]],
args: Optional[GRPOConfig] = None,
train_dataset: Optional[Union[Dataset, IterableDataset]] = None,
eval_dataset: Optional[Union[Dataset, IterableDataset, dict[str, Union[Dataset, IterableDataset]]]] = None,
processing_class: Optional[Union[PreTrainedTokenizerBase, ProcessorMixin]] = None,
reward_processing_classes: Optional[Union[PreTrainedTokenizerBase, list[PreTrainedTokenizerBase]]] = None,
callbacks: Optional[list[TrainerCallback]] = None,
optimizers: tuple[Optional[torch.optim.Optimizer], Optional[torch.optim.lr_scheduler.LambdaLR]] = (None, None),
peft_config: Optional["PeftConfig"] = None,
):
# Args
if args is None:
model_name = model if isinstance(model, str) else model.config._name_or_path
model_name = model_name.split("/")[-1]
args = GRPOConfig(f"{model_name}-GRPO")
# Models
# Trained model
model_init_kwargs = args.model_init_kwargs or {}
if isinstance(model, str):
model_id = model
torch_dtype = model_init_kwargs.get("torch_dtype")
if isinstance(torch_dtype, torch.dtype) or torch_dtype == "auto" or torch_dtype is None:
pass # torch_dtype is already a torch.dtype or "auto" or None
elif isinstance(torch_dtype, str): # it's a str, but not "auto"
torch_dtype = getattr(torch, torch_dtype)
model_init_kwargs["torch_dtype"] = torch_dtype
else:
raise ValueError(
"Invalid `torch_dtype` passed to `GRPOConfig`. Expected either 'auto' or a string representing "
f"a `torch.dtype` (e.g., 'float32'), but got {torch_dtype}."
)
# Disable caching if gradient checkpointing is enabled (not supported)
config = AutoConfig.from_pretrained(model_id)
architecture = getattr(transformers, config.architectures[0])
model = architecture.from_pretrained(model_id, **model_init_kwargs)
else:
model_id = model.config._name_or_path
if args.model_init_kwargs is not None:
raise ValueError(
"You passed `model_init_kwargs` to the `GRPOConfig`, but your model is already instantiated. "
"This argument can only be used when the `model` argument is a string."
)
# Some models (SmolVLM/Idefics3) don't support `logits_to_keep` argument and error out if we pass it
# Inspect the forward method before we wrap the model with PEFT
self.model_kwarg_keys = (
inspect.signature(model.forward).parameters.keys()
if not hasattr(model, "get_base_model")
else inspect.signature(model.get_base_model().forward).parameters.keys()
)
if peft_config is not None:
if not is_peft_available():
raise ImportError("PEFT is required to use `peft_config`. Run `pip install peft`.")
model = get_peft_model(model, peft_config)
# Enable gradient checkpointing if requested
if args.gradient_checkpointing:
model = self._enable_gradient_checkpointing(model, args)
# Processing class
if processing_class is None:
processing_class = AutoProcessor.from_pretrained(model.config._name_or_path)
# Handle pad token for processors or tokenizers
if isinstance(processing_class, ProcessorMixin):
tokenizer = processing_class.tokenizer
elif isinstance(processing_class, PreTrainedTokenizerBase):
tokenizer = processing_class
else:
raise TypeError("The `processing_class` must be either a `PreTrainedTokenizerBase` or a `ProcessorMixin`")
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
self.pad_token = tokenizer.pad_token
self.pad_token_id = tokenizer.pad_token_id
self.eos_token_id = tokenizer.eos_token_id
self.image_token = getattr(processing_class, "image_token", None)
self.image_token_id = getattr(processing_class, "image_token_id", None)
self.vision_start_token_id = getattr(model.config, "vision_start_token_id", None)
self.vision_end_token_id = getattr(model.config, "vision_end_token_id", None)
# Reward functions
if not isinstance(reward_funcs, list):
reward_funcs = [reward_funcs]
self.reward_func_names = []
for i, reward_func in enumerate(reward_funcs):
if isinstance(reward_func, str):
reward_funcs[i] = AutoModelForSequenceClassification.from_pretrained(
reward_func, num_labels=1, **model_init_kwargs
)
if isinstance(reward_funcs[i], nn.Module): # Use Module over PretrainedModel for compat w/ compiled models
self.reward_func_names.append(reward_funcs[i].config._name_or_path.split("/")[-1])
else:
self.reward_func_names.append(reward_funcs[i].__name__)
self.reward_funcs = reward_funcs
# Reward weights
if args.reward_weights is not None:
if len(args.reward_weights) != len(reward_funcs):
raise ValueError(
f"Number of reward weights ({len(args.reward_weights)}) must match number of reward "
f"functions ({len(reward_funcs)})"
)
self.reward_weights = torch.tensor(args.reward_weights, dtype=torch.float32)
else:
self.reward_weights = torch.ones(len(reward_funcs), dtype=torch.float32)
# Reward processing class
if reward_processing_classes is None:
reward_processing_classes = [None] * len(reward_funcs)
elif not isinstance(reward_processing_classes, list):
reward_processing_classes = [reward_processing_classes]
else:
if len(reward_processing_classes) != len(reward_funcs):
raise ValueError("The number of reward processing classes must match the number of reward functions.")
for i, (reward_processing_class, reward_func) in enumerate(zip(reward_processing_classes, reward_funcs)):
if isinstance(reward_func, PreTrainedModel):
if reward_processing_class is None:
reward_processing_class = AutoTokenizer.from_pretrained(reward_func.config._name_or_path)
if reward_processing_class.pad_token_id is None:
reward_processing_class.pad_token = reward_processing_class.eos_token
# The reward model computes the reward for the latest non-padded token in the input sequence.
# So it's important to set the pad token ID to the padding token ID of the processing class.
reward_func.config.pad_token_id = reward_processing_class.pad_token_id
reward_processing_classes[i] = reward_processing_class
self.reward_processing_classes = reward_processing_classes
# Training arguments
self.max_prompt_length = args.max_prompt_length
self.max_completion_length = args.max_completion_length # = |o_i| in the GRPO paper
self.num_generations = args.num_generations # = G in the GRPO paper
self.temperature = args.temperature
self.top_p = args.top_p
self.top_k = args.top_k
self.min_p = args.min_p
self.repetition_penalty = args.repetition_penalty
self.use_transformers_paged = args.use_transformers_paged
self.use_vllm = args.use_vllm
self.vllm_mode = args.vllm_mode
self.vllm_gpu_memory_utilization = args.vllm_gpu_memory_utilization # only applies to colocation mode
self.vllm_tensor_parallel_size = args.vllm_tensor_parallel_size # only applies to colocation mode
self.use_liger_loss = args.use_liger_loss
self.loss_type = args.loss_type
self.scale_rewards = args.scale_rewards
self.importance_sampling_level = args.importance_sampling_level
self.mask_truncated_completions = args.mask_truncated_completions
self.top_entropy_quantile = args.top_entropy_quantile
if self.use_liger_loss and self.top_entropy_quantile < 1.0:
raise NotImplementedError(
"Liger Kernels don't currently support masking token positions based on entropy."
)
if self.use_liger_loss and not self.importance_sampling_level == "token":
raise NotImplementedError(
"Liger Kernels currently only support token-level importance sampling. Please set"
"`importance_sampling_level` to 'token'."
)
# Datasets
self.shuffle_dataset = args.shuffle_dataset
if (
isinstance(train_dataset, IterableDataset)
or isinstance(eval_dataset, IterableDataset)
or (
isinstance(eval_dataset, dict) and any(isinstance(ds, IterableDataset) for ds in eval_dataset.values())
)
):
# See https://github.com/huggingface/trl/issues/3213
raise NotImplementedError(
"Iterable datasets are not yet supported in GRPOTrainer. Please use a standard dataset instead."
)
# Multi-step
self.num_iterations = args.num_iterations # = 𝜇 in the GRPO paper
self.epsilon_low = args.epsilon
self.epsilon_high = args.epsilon_high if args.epsilon_high is not None else args.epsilon
# Tracks the number of iterations (forward + backward passes), including those within a grad accum cycle
self._step = 0
# Buffer the batch to reuse generated outputs across multiple updates. For more details, see
# `_get_train_sampler` and `_prepare_inputs`.
self._buffered_inputs = None
# The trainer estimates the number of FLOPs (floating-point operations) using the number of elements in the
# input tensor associated with the key "input_ids". However, in GRPO, the sampled data does not include the
# "input_ids" key. Instead, the available keys is "prompt". As a result, the trainer issues the warning:
# "Could not estimate the number of tokens of the input, floating-point operations will not be computed." To
# suppress this warning, we set the "estimate_tokens" key in the model's "warnings_issued" dictionary to True.
# This acts as a flag to indicate that the warning has already been issued.
model.warnings_issued["estimate_tokens"] = True
super().__init__(
model=model,
args=args,
data_collator=identity, # No data collation is needed in GRPO
train_dataset=train_dataset,
eval_dataset=eval_dataset,
processing_class=processing_class,
callbacks=callbacks,
optimizers=optimizers,
)
# Reference model
self.beta = args.beta
if self.beta == 0.0:
# If beta is 0.0, the reference model is not needed
self.ref_model = None
elif is_peft_model(model):
# If PEFT is used, the reference model is not needed since the adapter can be disabled
# to revert to the initial model.
self.ref_model = None
else:
# For deepspeed, fsdp or non-distributed models, create a reference model from scratch
config = AutoConfig.from_pretrained(model_id)
architecture = getattr(transformers, config.architectures[0])
self.ref_model = architecture.from_pretrained(model_id, **model_init_kwargs)
# Disable dropout in the models
if args.disable_dropout:
disable_dropout_in_model(model)
if self.ref_model is not None:
disable_dropout_in_model(self.ref_model)
# Liger loss
if self.use_liger_loss:
if not is_liger_kernel_available():
raise ImportError(
"Liger is required to use `liger_loss` as the GRPO loss. Run `pip install liger-kernel`."
)
# redirect the model.module forward to the model forward to ensure pre-forward hooks are called
self._forward_redirection = _ForwardRedirection()
self.liger_grpo_loss = LigerFusedLinearGRPOLoss(
beta=self.beta,
epsilon_low=self.epsilon_low,
epsilon_high=self.epsilon_high,
temperature=self.temperature,
use_ref_model=self.beta != 0.0,
loss_type=self.loss_type,
max_completion_length=self.max_completion_length,
)
# Initialize the metrics
self._metrics = {"train": defaultdict(list), "eval": defaultdict(list)}
self._total_train_tokens = 0
self.log_completions = args.log_completions
self.wandb_log_unique_prompts = args.wandb_log_unique_prompts
self.num_completions_to_print = args.num_completions_to_print
# Keep logs sized to the generation batch to record only outputs from the latest model update.
self._logs = {
"image": deque(maxlen=args.generation_batch_size),
"prompt": deque(maxlen=args.generation_batch_size),
"completion": deque(maxlen=args.generation_batch_size),
"rewards": defaultdict(lambda: deque(maxlen=args.generation_batch_size)),
"advantages": deque(maxlen=args.generation_batch_size),
}
# Ensure each process receives a unique seed to prevent duplicate completions when generating with
# transformers if num_generations exceeds per_device_train_batch_size. We could skip it if we use vLLM, but
# it's safer to set it in all cases.
set_seed(args.seed, device_specific=True)
if self.use_vllm:
if not is_vllm_available():
raise ImportError(
"vLLM is not available and `use_vllm` is set to True. Please install vLLM with "
"`pip install vllm` to use it."
)
if self.vllm_mode == "server" and self.accelerator.is_main_process:
if args.vllm_server_base_url is not None:
base_url = args.vllm_server_base_url
else:
base_url = f"http://{args.vllm_server_host}:{args.vllm_server_port}"
self.vllm_client = VLLMClient(base_url=base_url, connection_timeout=args.vllm_server_timeout)
self.vllm_client.init_communicator(device=torch.cuda.current_device())
elif self.vllm_mode == "colocate":
# Make sure vllm_tensor_parallel_size group size evenly divides the world size - each group should have
# the same number of ranks
if not self.accelerator.num_processes % self.vllm_tensor_parallel_size == 0:
raise ValueError(
f"vllm_tensor_parallel_size ({self.vllm_tensor_parallel_size}) must divide world size "
f"({self.accelerator.num_processes}) evenly."
)
if self.vllm_tensor_parallel_size > 1:
# Create subgroups of ranks for TP, each group with `vllm_tensor_parallel_size` ranks.
# For example, if world_size=8 and vllm_tensor_parallel_size=2 → groups: [0,1], [2,3], [4,5], [6,7]
self.tp_group, _ = torch.distributed.new_subgroups_by_enumeration(
[
list(range(i * self.vllm_tensor_parallel_size, (i + 1) * self.vllm_tensor_parallel_size))
for i in range(self.accelerator.num_processes // self.vllm_tensor_parallel_size)
]
)
# vLLM requires the environment variables to be set for distributed training.
os.environ["RANK"] = str(self.accelerator.process_index)
os.environ["LOCAL_RANK"] = str(self.accelerator.local_process_index)
os.environ["WORLD_SIZE"] = str(self.accelerator.num_processes)
os.environ["MASTER_ADDR"] = os.environ.get("MASTER_ADDR", "localhost")
os.environ["MASTER_PORT"] = os.environ.get("MASTER_PORT", "12345")
if self.max_prompt_length is not None and self.max_completion_length is not None:
max_model_len = self.max_prompt_length + self.max_completion_length
else:
max_model_len = None
self.llm = LLM(
model=model.name_or_path,
tensor_parallel_size=args.vllm_tensor_parallel_size,
gpu_memory_utilization=self.vllm_gpu_memory_utilization,
max_num_seqs=self.args.per_device_train_batch_size
* self.vllm_tensor_parallel_size
* self.args.steps_per_generation,
max_model_len=max_model_len,
distributed_executor_backend="external_launcher",
# Feed identical seed for tp groups to ensure sampling results are the same across workers
seed=self.accelerator.process_index // self.vllm_tensor_parallel_size,
# Latest vLLM v1 memory profiler is misled by the high default value (i.e., 32768) - thinking there's not enough memory
max_num_batched_tokens=4096,
model_impl=self.args.vllm_model_impl,
)
# vLLM specific sampling arguments
self.guided_decoding_regex = args.vllm_guided_decoding_regex
self._last_loaded_step = -1 # tag to avoid useless loading during grad accumulation
# When using vLLM, the main process is responsible for loading the model weights. This can cause process
# desynchronization and seems to lead to DeepSpeed hanging during initialization. To prevent this, we
# synchronize all processes after vLLM has been fully initialized.
self.accelerator.wait_for_everyone()
else:
generation_kwargs = {
"max_new_tokens": self.max_completion_length,
"do_sample": True,
"pad_token_id": tokenizer.pad_token_id,
"bos_token_id": tokenizer.bos_token_id,
"eos_token_id": tokenizer.eos_token_id,
"temperature": self.temperature,
"top_p": self.top_p,
"top_k": self.top_k,
"min_p": self.min_p,
"repetition_penalty": self.repetition_penalty,
"cache_implementation": args.cache_implementation,
}
if args.use_transformers_paged:
generation_kwargs["max_batch_tokens"] = 512
generation_kwargs["num_blocks"] = 1024
generation_kwargs["block_size"] = 128
if args.generation_kwargs is not None:
generation_kwargs.update(args.generation_kwargs)
self.generation_config = GenerationConfig(**generation_kwargs)
# Gradient accumulation requires scaled loss. Normally, loss scaling in the parent class depends on whether the
# model accepts loss-related kwargs. Since we compute our own loss, this check is irrelevant. We set
# self.model_accepts_loss_kwargs to False to enable scaling.
self.model_accepts_loss_kwargs = False
# Add tags to the model
self.model.add_model_tags(self._tag_names)
if self.ref_model is not None:
if self.is_deepspeed_enabled:
self.ref_model = prepare_deepspeed(self.ref_model, self.accelerator)
elif self.is_fsdp_enabled:
self.ref_model = prepare_fsdp(self.ref_model, self.accelerator)
else:
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
if args.sync_ref_model:
self.add_callback(SyncRefModelCallback(ref_model=self.ref_model, accelerator=self.accelerator))
for i, reward_func in enumerate(self.reward_funcs):
if isinstance(reward_func, PreTrainedModel):
if self.is_deepspeed_enabled:
self.reward_funcs[i] = prepare_deepspeed(reward_func, self.accelerator)
else:
# set device placement to True to make `prepare_model` move `reward_func` to device when using fsdp
self.reward_funcs[i] = self.accelerator.prepare_model(
reward_func, evaluation_mode=True, device_placement=True
)
def _set_signature_columns_if_needed(self):
# If `self.args.remove_unused_columns` is True, non-signature columns are removed.
# By default, this method sets `self._signature_columns` to the model's expected inputs.
# In GRPOTrainer, we preprocess data, so using the model's signature columns doesn't work.
# Instead, we set them to the columns expected by the `training_step` method, hence the override.
if self._signature_columns is None:
self._signature_columns = ["prompt", "image"]
# This method overrides `Trainer.get_train_dataloader` to support our custom batching strategy.
# Instead of returning a standard per-step batch (i.e., `per_device_batch_size), our dataloader loads an
# *generation* batch (i.e., `per_device_batch_size × steps_per_generation`). This allows us to generate completions
# once every steps_per_generation step—rather than once per accumulation step—which is significantly more
# efficient. The only change from the original implementation is multiplying the batch size by
# `steps_per_generation`. Thus, `_prepare_inputs` is called with this *generation* batch, and it handles the
# splitting internally.
# Maintenance note: This method is a copy-paste of the original `Trainer.get_train_dataloader` with only one line
# modification. As a result, some parts of the method aren't relevant to GRPO, but we keep them to stay one line
# apart from the super method, ensuring easier maintenance in the future.
def get_train_dataloader(self):
if self.train_dataset is None:
raise ValueError("Trainer: training requires a train_dataset.")
train_dataset = self.train_dataset
data_collator = self.data_collator
if is_datasets_available() and isinstance(train_dataset, datasets.Dataset):
train_dataset = self._remove_unused_columns(train_dataset, description="training")
else:
data_collator = self._get_collator_with_removed_columns(data_collator, description="training")
dataloader_params = {
"batch_size": self._train_batch_size * self.args.steps_per_generation, # < this is the change
"collate_fn": data_collator,
"num_workers": self.args.dataloader_num_workers,
"pin_memory": self.args.dataloader_pin_memory,
"persistent_workers": self.args.dataloader_persistent_workers,
}
if not isinstance(train_dataset, torch.utils.data.IterableDataset):
dataloader_params["sampler"] = self._get_train_sampler()
dataloader_params["drop_last"] = self.args.dataloader_drop_last
dataloader_params["worker_init_fn"] = partial(
seed_worker, num_workers=self.args.dataloader_num_workers, rank=self.args.process_index
)
dataloader_params["prefetch_factor"] = self.args.dataloader_prefetch_factor
return self.accelerator.prepare(DataLoader(train_dataset, **dataloader_params))
def _get_train_sampler(self, dataset: Optional[Dataset] = None) -> Sampler:
# Returns a sampler that
# 1. ensures each prompt is repeated across multiple processes. This guarantees that identical prompts are
# distributed to different GPUs, allowing rewards to be computed and normalized correctly within each prompt
# group. Using the same seed across processes ensures consistent prompt assignment, preventing discrepancies
# in group formation.
# 2. repeats the batch multiple times to allow reusing generations across multiple updates. Refer to
# _prepare_inputs to see how the generations are stored and reused.
# In the following figure, the values are the prompt indices. The first row shows the first sampled batch, the
# second row shows the second sampled batch, and so on.
#
# | GPU 0 | GPU 1 |
#
# global_step step <-───> num_generations=2
# <-───────> per_device_train_batch_size=3
# grad_accum ▲ ▲ 0 0 0 0 1 1 2 2 <- Generate for the first `steps_per_generation` (prompts 0 to 11); store the completions; use the first slice to compute the loss
# =2 ▼ | 0 1 3 3 4 4 5 5 <- Take the stored generations and use the second slice to compute the loss
# |
# | 1 2 6 6 7 7 8 8 <- Take the stored generations and use the third slice to compute the loss
# steps_per_gen=4 ▼ 1 3 9 9 10 10 11 11 <- Take the stored generations and use the fourth slice to compute the loss
#
# 2 4 12 12 13 13 14 14 <- Generate for the second `steps_per_generation` (prompts 12 to 23); store the completions; use the first slice to compute the loss
# 2 5 15 15 16 16 17 17 <- Take the stored generations and use the second slice to compute the loss
# ...
if dataset is None:
dataset = self.train_dataset
return RepeatSampler(
data_source=dataset,
mini_repeat_count=self.num_generations,
batch_size=self.args.generation_batch_size // self.num_generations,
repeat_count=self.num_iterations * self.args.steps_per_generation,
shuffle=self.shuffle_dataset,
seed=self.args.seed,
)
def _get_eval_sampler(self, eval_dataset) -> Sampler:
# See _get_train_sampler for an explanation of the sampler.
return RepeatSampler(
data_source=eval_dataset,
mini_repeat_count=self.num_generations,
seed=self.args.seed,
)
def _enable_gradient_checkpointing(self, model: PreTrainedModel, args: GRPOConfig) -> PreTrainedModel:
"""Enables gradient checkpointing for the model."""
# Ensure use_cache is disabled
model.config.use_cache = False
# Enable gradient checkpointing on the base model for PEFT
if is_peft_model(model):
model.base_model.gradient_checkpointing_enable()
# Enable gradient checkpointing for non-PEFT models
else:
model.gradient_checkpointing_enable()
gradient_checkpointing_kwargs = args.gradient_checkpointing_kwargs or {}
use_reentrant = (
"use_reentrant" not in gradient_checkpointing_kwargs or gradient_checkpointing_kwargs["use_reentrant"]
)
if use_reentrant:
model.enable_input_require_grads()
return model
@profiling_decorator
def _get_last_hidden_state(
self,
unwrapped_model,
input_ids,
attention_mask,
logits_to_keep,
pixel_values=None,
image_grid_thw=None,
pixel_attention_mask=None,
image_sizes=None,
):
if is_peft_model(unwrapped_model):
unwrapped_model = unwrapped_model.base_model.model
# Build model inputs - check if the model supports logits_to_keep (some models and VLMs don't)
model_inputs = {"input_ids": input_ids, "attention_mask": attention_mask}
# For Qwen models:
if image_grid_thw is not None and pixel_values is not None:
model_inputs["image_grid_thw"] = image_grid_thw
# For Gemma, SmolVLM2, LLaVa-Next etc.:
if pixel_values is not None:
model_inputs["pixel_values"] = pixel_values
# For SmolVLM2
if pixel_attention_mask is not None:
model_inputs["pixel_attention_mask"] = pixel_attention_mask
# For LLaVa-Next
if image_sizes is not None:
model_inputs["image_sizes"] = image_sizes
# Only add logits_to_keep if the model supports it
if "logits_to_keep" in self.model_kwarg_keys:
# We add 1 to `logits_to_keep` because the last logits of the sequence is later excluded
model_inputs["logits_to_keep"] = logits_to_keep + 1
last_hidden_state = unwrapped_model.model(**model_inputs).last_hidden_state
# Exclude the last value: it corresponds to the next token pred
last_hidden_state = last_hidden_state[:, :-1, :] # (B, L-1, H)
# Only keep the last logits_to_keep. For model that support logits_to_keep, this is a no-op.
last_hidden_state = last_hidden_state[:, -logits_to_keep:, :] # (B, logits_to_keep, H)
return last_hidden_state
def get_high_entropy_mask(
self, entropies: torch.Tensor, mask: torch.Tensor, threshold: float, accelerator=None
) -> torch.Tensor:
"""
Returns a binary mask identifying tokens whose entropy exceeds a given quantile threshold.
Args:
entropies (`torch.Tensor`):
Tensor of shape (batch_size, seq_len) with per-token entropy values.
mask (`torch.Tensor`):
Binary mask of the same shape as `entropies`, where `1` indicates valid tokens and `0` padding.
threshold (`float`):
Quantile threshold between `0.0` and `1.0` to select high-entropy tokens.
Returns:
`torch.Tensor`:
Boolean mask of shape (batch_size, seq_len), where `True` indicates tokens with entropy >= threshold and
`False` otherwise.
"""
non_pad_entropies = entropies[mask.bool()].float()
if non_pad_entropies.numel() == 0:
return torch.zeros_like(entropies, dtype=torch.bool)
all_non_pad_entropies = self.accelerator.gather(non_pad_entropies)
# Filter out any empty tensors that might result from processes with no valid tokens
entropy_threshold = torch.quantile(all_non_pad_entropies, threshold)
masked_entropies = entropies * mask.float()
entropy_mask = masked_entropies >= entropy_threshold
return entropy_mask & mask.bool() # ensure padding tokens are always masked out
@profiling_decorator
def _get_per_token_logps_and_entropies(
self,
model,
input_ids,
attention_mask,
logits_to_keep,
batch_size=None,
compute_entropy=False,
pixel_values=None,
image_grid_thw=None,
pixel_attention_mask=None,
image_sizes=None,
) -> dict[str, Optional[torch.Tensor]]:
"""Compute log-probs and (optionally) entropies for each token."""
batch_size = batch_size or input_ids.size(0) # Chunk inputs into smaller batches to reduce memory peak
all_logps = []
all_entropies = []
for start in range(0, input_ids.size(0), batch_size):
input_ids_batch = input_ids[start : start + batch_size]
attention_mask_batch = attention_mask[start : start + batch_size]
# Build model inputs - check if the model supports logits_to_keep (some models and VLMs don't)
model_inputs = {"input_ids": input_ids_batch, "attention_mask": attention_mask_batch}
if image_grid_thw is not None and pixel_values is not None:
model_inputs["image_grid_thw"] = image_grid_thw[start : start + batch_size]
start_pixel_idx = image_grid_thw[:start].prod(-1).sum().item()
end_pixel_idx = image_grid_thw[: start + batch_size].prod(-1).sum().item()
model_inputs["pixel_values"] = pixel_values[start_pixel_idx:end_pixel_idx]
elif pixel_values is not None:
model_inputs["pixel_values"] = pixel_values[start : start + batch_size]
if pixel_attention_mask is not None:
model_inputs["pixel_attention_mask"] = pixel_attention_mask[start : start + batch_size]
if image_sizes is not None:
model_inputs["image_sizes"] = image_sizes[start : start + batch_size]
# Only add logits_to_keep if the model supports it
if "logits_to_keep" in self.model_kwarg_keys:
# We add 1 to `logits_to_keep` because the last logits of the sequence is later excluded
model_inputs["logits_to_keep"] = logits_to_keep + 1
logits = model(**model_inputs).logits
# Exclude the last value: it corresponds to the next token pred
logits = logits[:, :-1, :] # (B, L-1, H)
# Only keep the last logits_to_keep. For model that support logits_to_keep, this is a no-op.
logits = logits[:, -logits_to_keep:, :] # (B, logits_to_keep, H)
# Divide logits by sampling temperature.
# See https://huggingface.co/blog/the_n_implementation_details_of_rlhf_with_ppo#policy-training-implementation-details
logits = logits / self.temperature
completion_ids = input_ids_batch[:, -logits_to_keep:]
logps = selective_log_softmax(logits, completion_ids) # compute logprobs
all_logps.append(logps)
if compute_entropy:
with torch.no_grad():
entropies = entropy_from_logits(logits)
all_entropies.append(entropies)
logps = torch.cat(all_logps, dim=0)
entropies = torch.cat(all_entropies, dim=0) if compute_entropy else None
return logps, entropies
def _fix_param_name_to_vllm(self, name, extra_prefixes: Optional[list[str]] = None):
extra_prefixes = extra_prefixes or []
prefixes = ["_checkpoint_wrapped_module."] + extra_prefixes
for prefix in prefixes:
name = name.replace(prefix, "")
return name
def _sync_fsdp1_params_to_vllm(self, module: nn.Module, prefix: str = "", visited=None):
"""Memory-efficient post-order traversal of FSDP modules to extract full parameters and sync with vLLM."""
# For FSDP1, we need to recurse into children and also use summon_full_params
if visited is None:
visited = set()
for child_name, child_module in module.named_children():
child_prefix = f"{prefix}.{child_name}" if prefix else child_name
self._sync_fsdp1_params_to_vllm(
child_module, prefix=child_prefix, visited=visited
) # recurse into the child
if isinstance(module, FSDP):
with FSDP.summon_full_params(module, recurse=False, writeback=False):
for param_name, param in module.named_parameters():
full_name = f"{prefix}.{param_name}" if prefix else param_name
full_name = self._fix_param_name_to_vllm(full_name, extra_prefixes=["_fsdp_wrapped_module."])
if full_name in visited:
continue # skip FSDP subtrees already traversed
visited.add(full_name)
if self.vllm_mode == "server" and self.accelerator.is_main_process:
self.vllm_client.update_named_param(full_name, param.data)
elif self.vllm_mode == "colocate":
llm_model = self.llm.llm_engine.model_executor.driver_worker.model_runner.model
llm_model.load_weights([(full_name, param.data)])
def _sync_fsdp2_params_to_vllm(self, module: nn.Module):
# For FSDP2, module.state_dict() already covers all parameters, so no need for recursion
for name, param in module.state_dict().items():
if param.is_cpu:
param = param.to(torch.device("cuda"))
param = param.full_tensor()
if self.vllm_mode == "server" and self.accelerator.is_main_process:
self.vllm_client.update_named_param(name, param)
elif self.vllm_mode == "colocate":
llm_model = self.llm.llm_engine.model_executor.driver_worker.model_runner.model
llm_model.load_weights([(name, param)])
@profiling_decorator
def _move_model_to_vllm(self):
# For DeepSpeed ZeRO-3 and FSDP, we need to gather all parameters before operations
deepspeed_plugin = self.accelerator.state.deepspeed_plugin
zero_stage_3 = deepspeed_plugin is not None and deepspeed_plugin.zero_stage == 3
if zero_stage_3:
import deepspeed
gather_if_zero3 = deepspeed.zero.GatheredParameters
else:
gather_if_zero3 = nullcontext
if is_peft_model(self.model):
# With PEFT and FSDP/DeepSpeed ZeRO Stage 3, we must gather the full model at once before merging, as
# merging adapters in a sharded manner is not supported.
# TODO: does this work with FSDP?
with gather_if_zero3(list(self.model.parameters())):
self.model.merge_adapter()
# Update vLLM weights while parameters are gathered
if self.is_fsdp_enabled: # note if using FSDP, gather_if_zero3 is nullcontext
# Update vLLM weights while parameters are gathered
# For PEFT with FSDP we need to use the memory efficient post-order traversal
fsdp_plugin = getattr(self.accelerator.state, "fsdp_plugin", None)
fsdp_version = getattr(fsdp_plugin, "fsdp_version", 1) if fsdp_plugin else 1
if fsdp_version == 1:
self._sync_fsdp1_params_to_vllm(
self.model
) # use memory-efficient post-order traversal for FSDP
elif fsdp_version == 2:
self._sync_fsdp2_params_to_vllm(self.model)
else:
# DeepSpeed ZeRO-3 with PEFT
for name, param in self.model.named_parameters():
# When using PEFT, we need to recover the original parameter name and discard some parameters
name = name.removeprefix("base_model.model.").replace(".base_layer", "")
if self.model.prefix in name:
continue
# When module to save, remove its prefix and discard the original module
if "original_module" in name:
continue
name = self._fix_param_name_to_vllm(name, extra_prefixes=["modules_to_save.default."])
if self.vllm_mode == "server" and self.accelerator.is_main_process:
self.vllm_client.update_named_param(name, param.data)
elif self.vllm_mode == "colocate":
llm_model = self.llm.llm_engine.model_executor.driver_worker.model_runner.model
llm_model.load_weights([(name, param.data)])
# Unmerge adapters while parameters are still gathered
self.model.unmerge_adapter()
# Parameters will automatically be repartitioned when exiting the context
else:
# For non-PEFT models, simply gather (if needed) and update each parameter individually.
if self.is_fsdp_enabled:
fsdp_plugin = getattr(self.accelerator.state, "fsdp_plugin", None)
fsdp_version = getattr(fsdp_plugin, "fsdp_version", 1) if fsdp_plugin else 1
if fsdp_version == 1:
self._sync_fsdp1_params_to_vllm(self.model) # use memory-efficient post-order traversal for FSDP
elif fsdp_version == 2:
self._sync_fsdp2_params_to_vllm(self.model)
else:
for name, param in self.model.named_parameters():
name = self._fix_param_name_to_vllm(name)
with gather_if_zero3([param]):
if self.vllm_mode == "server" and self.accelerator.is_main_process:
self.vllm_client.update_named_param(name, param.data)
elif self.vllm_mode == "colocate":
llm_model = self.llm.llm_engine.model_executor.driver_worker.model_runner.model
llm_model.load_weights([(name, param.data)])
# Reset cache on vLLM
if self.vllm_mode == "server" and self.accelerator.is_main_process:
self.vllm_client.reset_prefix_cache()
elif self.vllm_mode == "colocate":
self.llm.reset_prefix_cache()
@profiling_decorator
def _prepare_inputs(
self, generation_batch: dict[str, Union[torch.Tensor, Any]]
) -> dict[str, Union[torch.Tensor, Any]]:
# Prepares inputs for model training/evaluation by managing completion generation and batch handling.
# During training:
# - Receives the local generation batch (Per-GPU batch size × steps per generation)
# from the modified training dataloader instead of the standard local batch
# - Generates completions once for the entire generation batch and splits it into batches of size
# `per_device_train_batch_size`
# - Buffers these completions and returns the appropriate slice for the current accumulation step
# - Optimizes by regenerating completions only periodically (every steps_per_generation * num_iterations)
# During evaluation:
# - The input is treated as a standard local batch (no accumulation, no multiple iterations)
# - Completions are generated for each batch without buffering or reuse
# Returns a single local batch in both cases.
mode = "train" if self.model.training else "eval"
if mode == "train":
generate_every = self.args.steps_per_generation * self.num_iterations
if self._step % generate_every == 0 or self._buffered_inputs is None:
# self._buffered_inputs=None can occur when resuming from a checkpoint
generation_batch = self._generate_and_score_completions(generation_batch)
generation_batch = split_pixel_values_by_grid(generation_batch)
generation_batch = shuffle_sequence_dict(generation_batch)
generation_batches = split_tensor_dict(generation_batch, self.args.steps_per_generation)
self._buffered_inputs = [unsplit_pixel_values_by_grid(batch) for batch in generation_batches]
inputs = self._buffered_inputs[self._step % self.args.steps_per_generation]
self._step += 1
else:
# In evaluation, there is neither batch grouping for generation, nor multiple iterations, hence
# local generation batch == local eval batch
inputs = self._generate_and_score_completions(generation_batch)
return inputs
@profiling_decorator
def _calculate_rewards(self, inputs, prompts, completions, completion_ids_list):
device = self.accelerator.device
rewards_per_func = torch.zeros(len(prompts), len(self.reward_funcs), device=device)
# Repeat all input columns (but "prompt", "completion", and "completion_ids") to match the num of generations
keys = [key for key in inputs[0] if key not in ["prompt", "completion", "completion_ids"]]
reward_kwargs = {key: [example[key] for example in inputs] for key in keys}
# This allows for dynamic reward shaping based on training progress.
reward_kwargs["trainer_state"] = self.state
for i, (reward_func, reward_processing_class, reward_func_name) in enumerate(
zip(self.reward_funcs, self.reward_processing_classes, self.reward_func_names)
):
with profiling_context(self, reward_func_name):
if isinstance(reward_func, nn.Module): # Module (no PretrainedModel) for compat with compiled models
if is_conversational(inputs[0]):
messages = [{"messages": p + c} for p, c in zip(prompts, completions)]
texts = [apply_chat_template(x, reward_processing_class)["text"] for x in messages]
else:
texts = [p + c for p, c in zip(prompts, completions)]
reward_inputs = reward_processing_class(
text=texts, return_tensors="pt", padding=True, padding_side="right", add_special_tokens=False
)
reward_inputs = super()._prepare_inputs(reward_inputs)
with torch.inference_mode():
rewards_per_func[:, i] = reward_func(**reward_inputs).logits[:, 0] # Shape (B*G,)
else:
output_reward_func = reward_func(
prompts=prompts, completions=completions, completion_ids=completion_ids_list, **reward_kwargs
)
# Convert None values to NaN
output_reward_func = [reward if reward is not None else torch.nan for reward in output_reward_func]
rewards_per_func[:, i] = torch.tensor(output_reward_func, dtype=torch.float32, device=device)
# If all reward functions return None for a given row, issue a detailed warning
if torch.isnan(rewards_per_func).all(dim=1).any():
nan_row_idx = torch.isnan(rewards_per_func).all(dim=1).nonzero(as_tuple=True)[0][0]
row_reward_kwargs = {key: value[nan_row_idx] for key, value in reward_kwargs.items()}
row_reward_kwargs["prompt"] = prompts[nan_row_idx]
row_reward_kwargs["completion"] = completions[nan_row_idx]
warnings.warn(
f"All reward functions returned None for the following kwargs: {row_reward_kwargs}. "
"Please ensure that at least one reward function returns a valid reward."
)
# Gather the reward per function: this part is crucial, because the rewards are normalized per group and the
# completions may be distributed across processes
rewards_per_func = gather(rewards_per_func)
return rewards_per_func
def _generate_and_score_completions(
self, inputs: list[dict[str, Union[torch.Tensor, Any]]]
) -> dict[str, Union[torch.Tensor, Any]]:
device = self.accelerator.device
mode = "train" if self.model.training else "eval"
prompts = [x["prompt"] for x in inputs]
# We don't yet support visual reward models/function, so we keep a copy of the original text-only prompts for
# later use in the reward computation. If images are present, we insert {"type": "image"} as required by the
# VLM chat template.
original_prompts = copy.deepcopy(prompts)
# If the prompts are conversational and the inputs contain images, we need to convert the prompts from
# [{"role": "user", "content": "What color is the sky?"}] to
# [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "What color is the sky?"}]}]
kwargs = {}
has_images = "image" in inputs[0]
if has_images:
images = [example.get("image") for example in inputs]
kwargs = {"images": [[img] for img in images]}
for prompt in prompts:
if isinstance(prompt, list):
for message in prompt:
if not isinstance(message, dict):
continue
content = message.get("content")
role = message.get("role")
if isinstance(content, str):
if role == "user":
message["content"] = [{"type": "image"}, {"type": "text", "text": content}]
elif role == "system":
message["content"] = [{"type": "text", "text": content}]
prompts_text = [maybe_apply_chat_template(example, self.processing_class)["prompt"] for example in inputs]
prompt_inputs = self.processing_class(
text=prompts_text,
return_tensors="pt",
padding=True,
padding_side="left",
add_special_tokens=False,
**kwargs,
)
prompt_inputs = super()._prepare_inputs(prompt_inputs)
prompt_ids, prompt_mask = prompt_inputs["input_ids"], prompt_inputs["attention_mask"]
if self.max_prompt_length is not None:
# If max_prompt_length is set, we trim the prompt to keep only the last `max_prompt_length` tokens.
# Then we decode those tokens back into text. We manually remove leading pad tokens from the decoded text,
# because we can't use `skip_special_tokens=True` (some special tokens are still needed for generation).
protected = [self.image_token_id, self.vision_start_token_id, self.vision_end_token_id]
protected = [token for token in protected if token is not None]
prompt_ids, prompt_mask = truncate_with_protected_tokens(
prompt_ids, prompt_mask, self.max_prompt_length, protected
)
prompts_text = self.processing_class.batch_decode(
prompt_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False
)
prompts_text = [re.sub(rf"^({re.escape(self.pad_token)})+", "", text) for text in prompts_text]
# The chat template inserts a single image token into the prompt text. However, when this text is later
# tokenized, the single image token string is expanded into multiple image token IDs, depending on the
# image size. Since we're detokenizing here, we may see repeated image tokens in the decoded text. We
# collapse them back into a single token string to match the original template.
if self.image_token is not None:
prompts_text = [
re.sub(rf"({re.escape(self.image_token)})+", self.image_token, text) for text in prompts_text
]
# Generate completions using either vLLM or regular generation
if self.use_vllm:
# First, update the vLLM weights if needed
if self.state.global_step != self._last_loaded_step:
self._move_model_to_vllm()
self._last_loaded_step = self.state.global_step
# Generate completions using vLLM: gather all prompts and use them in a single call in the main process
if self.vllm_mode == "server":
all_prompts_text = gather_object(prompts_text)
if has_images:
all_images = gather_object(images)
if self.accelerator.is_main_process:
# Since 'prompts' contains 'num_generations' duplicates, we first take unique prompts, and generate
# num_generations outputs for each one. This is faster than generating outputs for each duplicate
# prompt individually.
ordered_set_of_prompts = all_prompts_text[:: self.num_generations]
if has_images:
ordered_set_of_images = all_images[:: self.num_generations]
else:
ordered_set_of_images = None
with profiling_context(self, "vLLM.generate"):
completion_ids = self.vllm_client.generate(
prompts=ordered_set_of_prompts,
images=ordered_set_of_images,
n=self.num_generations,
repetition_penalty=self.repetition_penalty,
temperature=self.temperature,
top_p=self.top_p,
top_k=-1 if self.top_k is None else self.top_k,
min_p=0.0 if self.min_p is None else self.min_p,
max_tokens=self.max_completion_length,
guided_decoding_regex=self.guided_decoding_regex,
generation_kwargs=self.args.generation_kwargs,
)
else:
completion_ids = [None] * len(all_prompts_text)
# Broadcast the completions from the main process to all processes, ensuring each process receives its
# corresponding slice.
completion_ids = broadcast_object_list(completion_ids, from_process=0)
process_slice = slice(
self.accelerator.process_index * len(prompts),
(self.accelerator.process_index + 1) * len(prompts),
)
completion_ids = completion_ids[process_slice]
# Generate completions using colocated vLLM instances: each device holds vLLM copy and work on their own batch of prompts
elif self.vllm_mode == "colocate":
if self.guided_decoding_regex:
guided_decoding = GuidedDecodingParams(regex=self.guided_decoding_regex)
else:
guided_decoding = None
generation_kwargs = {
"n": 1, # vLLM on each GPU generates only 1 in colocate mode
"repetition_penalty": self.repetition_penalty,
"temperature": self.temperature,
"top_p": self.top_p,
"top_k": -1 if self.top_k is None else self.top_k,
"min_p": 0.0 if self.min_p is None else self.min_p,
"max_tokens": self.max_completion_length,
"guided_decoding": guided_decoding,
}
if self.args.generation_kwargs is not None:
generation_kwargs.update(self.args.generation_kwargs)
sampling_params = SamplingParams(**generation_kwargs)
if self.vllm_tensor_parallel_size > 1:
# Gather prompts from all ranks in the TP group and flatten.
# Each rank starts with its own prompts; after gathering, all ranks see the full group set.
orig_size = len(prompts_text)
gathered_prompts = [None for _ in range(self.vllm_tensor_parallel_size)]
torch.distributed.all_gather_object(gathered_prompts, prompts_text, group=self.tp_group)
all_prompts_text = [p for sublist in gathered_prompts for p in sublist]
if has_images:
gathered_images = [None for _ in range(self.vllm_tensor_parallel_size)]
torch.distributed.all_gather_object(gathered_images, images, group=self.tp_group)
all_images = [img for sublist in gathered_images for img in sublist]
else:
all_images = None
else:
all_prompts_text = prompts_text
all_images = images if has_images else None
if has_images and all_images:
vllm_inputs = []
for prompt, image in zip(all_prompts_text, all_images):
if image is not None:
vllm_inputs.append({"prompt": prompt, "multi_modal_data": {"image": image}})
else:
vllm_inputs.append(prompt)
else:
vllm_inputs = all_prompts_text
with profiling_context(self, "vLLM.generate"):
all_outputs = self.llm.generate(vllm_inputs, sampling_params=sampling_params, use_tqdm=False)
completion_ids = [output.token_ids for outputs in all_outputs for output in outputs.outputs]
if self.vllm_tensor_parallel_size > 1:
# Slice completions for this rank within its TP group.
# Each rank generates all outputs — we keep only our share.
local_rank_in_group = torch.distributed.get_rank(group=self.tp_group)
tp_slice = slice(local_rank_in_group * orig_size, (local_rank_in_group + 1) * orig_size)
completion_ids = completion_ids[tp_slice]
# Pad the completions, and concatenate them with the prompts
completion_ids = [torch.tensor(ids, device=device) for ids in completion_ids]
completion_ids = pad(completion_ids, padding_value=self.pad_token_id)
prompt_completion_ids = torch.cat([prompt_ids, completion_ids], dim=1)
elif self.use_transformers_paged:
# Re-process inputs for paged generation if needed
# Note: images are already validated and preprocessed above
paged_prompt_inputs = self.processing_class(text=prompts_text, **kwargs)
previous_attn = self.model_wrapped.config._attn_implementation
if is_flash_attn_2_available():
self.model_wrapped.config._attn_implementation = "paged_attention"
else:
self.model_wrapped.config._attn_implementation = "sdpa_paged"
with (
profiling_context(self, "transformers.generate_batch"),
unwrap_model_for_generation(
self.model_wrapped, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation
) as unwrapped_model,
torch.no_grad(),
FSDP.summon_full_params(self.model_wrapped, recurse=False) if self.is_fsdp_enabled else nullcontext(),
):
# Cast to the appropriate dtype based on training configuration
if self.args.bf16:
unwrapped_model.to(torch.bfloat16)
elif self.args.fp16:
unwrapped_model.to(torch.float16)
with torch.inference_mode():
all_outputs = unwrapped_model.generate_batch(
paged_prompt_inputs.input_ids, generation_config=self.generation_config, progress_bar=False
)
completion_ids = [output.generated_tokens for output in all_outputs.values()]
completion_ids = [torch.tensor(ids, device=device) for ids in completion_ids]
completion_ids = pad(completion_ids, padding_value=self.pad_token_id, padding_side="right")
prompt_ids = [torch.tensor(ids, device=device) for ids in paged_prompt_inputs.input_ids]
prompt_ids = pad(prompt_ids, padding_value=self.pad_token_id, padding_side="left")
prompt_completion_ids = torch.cat([prompt_ids, completion_ids], dim=1)
# Restore the original attention implementation, training mode
self.model_wrapped.config._attn_implementation = previous_attn
else:
# Regular generation path
with (
profiling_context(self, "transformers.generate"),
unwrap_model_for_generation(
self.model_wrapped, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation
) as unwrapped_model,
torch.no_grad(),
FSDP.summon_full_params(self.model_wrapped, recurse=False) if self.is_fsdp_enabled else nullcontext(),
):
prompt_inputs["input_ids"], prompt_inputs["attention_mask"] = prompt_ids, prompt_mask
prompt_completion_ids = unwrapped_model.generate(
**prompt_inputs, generation_config=self.generation_config, disable_compile=True
)
# Compute prompt length and extract completion ids
prompt_length = prompt_ids.size(1)
prompt_ids = prompt_completion_ids[:, :prompt_length]
completion_ids = prompt_completion_ids[:, prompt_length:]
# Mask everything after the first EOS token
is_eos = completion_ids == self.eos_token_id
eos_idx = torch.full((is_eos.size(0),), is_eos.size(1), dtype=torch.long, device=device)
eos_idx[is_eos.any(dim=1)] = is_eos.int().argmax(dim=1)[is_eos.any(dim=1)]
sequence_indices = torch.arange(is_eos.size(1), device=device).expand(is_eos.size(0), -1)
completion_mask = (sequence_indices <= eos_idx.unsqueeze(1)).int()
# Convert tensor to a list of lists of token IDs. This will be passed to the reward function, avoiding the need
# to re-tokenize completions if the reward is computed from tokens.
completion_ids_list = [
[id.item() for id, m in zip(row, mask_row) if m] for row, mask_row in zip(completion_ids, completion_mask)
]
# Sum along sequence dimension (dim=1) to get completion length per sequence, used for logging
completion_lengths = completion_mask.sum(1)
# If mask_truncated_completions is enabled, zero out truncated completions in completion_mask
if self.mask_truncated_completions:
truncated_completions = ~is_eos.any(dim=1)
completion_mask = completion_mask * (~truncated_completions).unsqueeze(1).int()
# Concatenate prompt_mask with completion_mask for logit computation
attention_mask = torch.cat([prompt_mask, completion_mask], dim=1) # (B, P+C)
logits_to_keep = completion_ids.size(1) # we only need to compute the logits for the completion tokens
batch_size = self.args.per_device_train_batch_size if mode == "train" else self.args.per_device_eval_batch_size
with torch.no_grad():
# If the generation and optimization steps are misaligned—i.e., if generation does not occur at the end of
# a full optimizer step (when gradient_accumulation_steps is not a multiple of generate_every)—then the
# samples may come from an earlier version of the model. In that case, we need to track old_per_token_logps
# for importance sampling. If the steps are aligned, importance sampling isn't necessary and we set
# old_per_token_logps to None.
generate_every = self.args.steps_per_generation * self.num_iterations # generation frequency
if self.args.gradient_accumulation_steps % generate_every != 0:
old_per_token_logps, _ = self._get_per_token_logps_and_entropies(
self.model,
prompt_completion_ids,
attention_mask,
logits_to_keep,
batch_size,
pixel_values=prompt_inputs.get("pixel_values"),
image_grid_thw=prompt_inputs.get("image_grid_thw"),
pixel_attention_mask=prompt_inputs.get("pixel_attention_mask"),
image_sizes=prompt_inputs.get("image_sizes"),
)
else:
old_per_token_logps = None
# Compute the per-token log probabilities for the reference model
if self.beta != 0.0:
if self.ref_model is not None:
ref_per_token_logps, _ = self._get_per_token_logps_and_entropies(
self.ref_model,
prompt_completion_ids,
attention_mask,
logits_to_keep,
batch_size=batch_size,
pixel_values=prompt_inputs.get("pixel_values"),
image_grid_thw=prompt_inputs.get("image_grid_thw"),
pixel_attention_mask=prompt_inputs.get("pixel_attention_mask"),
image_sizes=prompt_inputs.get("image_sizes"),
)
else:
with self.accelerator.unwrap_model(self.model).disable_adapter():
ref_per_token_logps, _ = self._get_per_token_logps_and_entropies(
self.model,
prompt_completion_ids,
attention_mask,
logits_to_keep,
batch_size=batch_size,
pixel_values=prompt_inputs.get("pixel_values"),
image_grid_thw=prompt_inputs.get("image_grid_thw"),
pixel_attention_mask=prompt_inputs.get("pixel_attention_mask"),
image_sizes=prompt_inputs.get("image_sizes"),
)
else:
ref_per_token_logps = None
# Decode the generated completions
completions_text = self.processing_class.batch_decode(completion_ids, skip_special_tokens=True)
if is_conversational(inputs[0]):
completions = []
for prompt, completion in zip(prompts, completions_text):
bootstrap = prompt.pop()["content"] if prompt[-1]["role"] == "assistant" else ""
completions.append([{"role": "assistant", "content": bootstrap + completion}])
else:
completions = completions_text
# Calculate rewards for each reward function. rewards_per_func aggregates rewards across all processes. This is
# important because rewards will be normalized per group, and completions are distributed. We will later slice
# rewards_per_func to extract each process's subset.
rewards_per_func = self._calculate_rewards(inputs, original_prompts, completions, completion_ids_list)
# Apply weights to each reward function's output and sum
rewards = (rewards_per_func * self.reward_weights.to(device).unsqueeze(0)).nansum(dim=1)
# Compute grouped-wise rewards
mean_grouped_rewards = rewards.view(-1, self.num_generations).mean(dim=1)
std_grouped_rewards = rewards.view(-1, self.num_generations).std(dim=1)
is_std_zero = torch.isclose(std_grouped_rewards, torch.zeros_like(std_grouped_rewards))
# Normalize the rewards to compute the advantages
mean_grouped_rewards = mean_grouped_rewards.repeat_interleave(self.num_generations, dim=0)
std_grouped_rewards = std_grouped_rewards.repeat_interleave(self.num_generations, dim=0)
advantages = rewards - mean_grouped_rewards
if self.scale_rewards:
advantages = advantages / (std_grouped_rewards + 1e-4)
# Slice to keep only the local part of the data
process_slice = slice(
self.accelerator.process_index * len(prompts),
(self.accelerator.process_index + 1) * len(prompts),
)
all_process_advantages = advantages.clone() # keep the aggregated advantages for logging
advantages = advantages[process_slice]
# Log the metrics
if mode == "train":
self.state.num_input_tokens_seen += self.accelerator.gather(attention_mask.sum()).sum().item()
self._metrics[mode]["num_tokens"] = [self.state.num_input_tokens_seen]
# Log completion lengths, mean, min, max
agg_completion_lengths = self.accelerator.gather(completion_lengths)
self._metrics[mode]["completions/mean_length"].append(agg_completion_lengths.float().mean().item())
self._metrics[mode]["completions/min_length"].append(agg_completion_lengths.float().min().item())
self._metrics[mode]["completions/max_length"].append(agg_completion_lengths.float().max().item())
# Identify sequences that terminated with EOS and log their lengths
agg_terminated_with_eos = self.accelerator.gather(is_eos.any(dim=1))
term_completion_lengths = agg_completion_lengths[agg_terminated_with_eos]
clipped_completions_ratio = 1 - len(term_completion_lengths) / len(agg_completion_lengths)
self._metrics[mode]["completions/clipped_ratio"].append(clipped_completions_ratio)
if len(term_completion_lengths) == 0: # edge case where no terminated sequences are found
term_completion_lengths = torch.zeros(1, device=device)
self._metrics[mode]["completions/mean_terminated_length"].append(term_completion_lengths.float().mean().item())
self._metrics[mode]["completions/min_terminated_length"].append(term_completion_lengths.float().min().item())
self._metrics[mode]["completions/max_terminated_length"].append(term_completion_lengths.float().max().item())
# Calculate mean reward per function, but only for samples where the function was applied (non-NaN values)
for i, reward_func_name in enumerate(self.reward_func_names):
mean_rewards = torch.nanmean(rewards_per_func[:, i]).item()
self._metrics[mode][f"rewards/{reward_func_name}/mean"].append(mean_rewards)
std_rewards = nanstd(rewards_per_func[:, i]).item()
self._metrics[mode][f"rewards/{reward_func_name}/std"].append(std_rewards)
self._metrics[mode]["reward"].append(mean_grouped_rewards.mean().item())
self._metrics[mode]["reward_std"].append(std_grouped_rewards.mean().item())
self._metrics[mode]["frac_reward_zero_std"].append(is_std_zero.float().mean().item())
# Log prompt and completion texts
self._logs["prompt"].extend(gather_object(prompts_text))
self._logs["completion"].extend(gather_object(completions_text))
for i, name in enumerate(self.reward_func_names):
self._logs["rewards"][name].extend(rewards_per_func[:, i].tolist())
self._logs["advantages"].extend(all_process_advantages.tolist())
if has_images:
self._logs["image"].extend(gather_object(images))
output = {
"prompt_ids": prompt_ids,
"prompt_mask": prompt_mask,
"completion_ids": completion_ids,
"completion_mask": completion_mask,
"advantages": advantages,
}
if old_per_token_logps is not None:
output["old_per_token_logps"] = old_per_token_logps
if ref_per_token_logps is not None:
output["ref_per_token_logps"] = ref_per_token_logps
if "pixel_values" in prompt_inputs:
output["pixel_values"] = prompt_inputs["pixel_values"]
if "image_grid_thw" in prompt_inputs:
output["image_grid_thw"] = prompt_inputs["image_grid_thw"]
if "pixel_attention_mask" in prompt_inputs:
output["pixel_attention_mask"] = prompt_inputs["pixel_attention_mask"]
if "image_sizes" in prompt_inputs:
output["image_sizes"] = prompt_inputs["image_sizes"]
return output
def compute_liger_loss(self, unwrapped_model, inputs):
# Compute the per-token log probabilities for the model
prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"]
completion_ids, completion_mask = inputs["completion_ids"], inputs["completion_mask"]
input_ids = torch.cat([prompt_ids, completion_ids], dim=1)
attention_mask = torch.cat([prompt_mask, completion_mask], dim=1)
logits_to_keep = completion_ids.size(1) # we only need to compute the logits for the completion tokens
# Get the last hidden state of the model
last_hidden_state = self._get_last_hidden_state(
unwrapped_model,
input_ids,
attention_mask,
logits_to_keep,
inputs.get("pixel_values"),
inputs.get("image_grid_thw"),
inputs.get("pixel_attention_mask"),
inputs.get("image_sizes"),
)
# compute loss and metrics using liger grpo loss
loss, metrics = self.liger_grpo_loss(
_input=last_hidden_state,
lin_weight=unwrapped_model.lm_head.weight,
selected_token_ids=completion_ids,
attention_mask=completion_mask,
advantages=inputs["advantages"],
bias=unwrapped_model.lm_head.bias,
old_per_token_logps=inputs.get("old_per_token_logps"),
ref_per_token_logps=inputs.get("ref_per_token_logps"),
)
# Extract metrics from the liger_grpo_loss output
# KL divergence is the first metric when beta is non-zero
mean_kl = metrics[0] if self.beta != 0.0 else None
clip_ratio = metrics[-1]
mode = "train" if self.model.training else "eval"
if self.beta != 0.0:
self._metrics[mode]["kl"].append(self.accelerator.gather(mean_kl).mean().item())
self._metrics[mode]["clip_ratio"].append(self.accelerator.gather(clip_ratio).mean().item())
return loss
@profiling_decorator
def compute_loss(self, model, inputs, return_outputs=False, num_items_in_batch=None):
if return_outputs:
raise ValueError("The GRPOTrainer does not support returning outputs")
if self.use_liger_loss:
# Compute the loss using the liger grpo loss
unwrapped_model = self.accelerator.unwrap_model(model)
return self._forward_redirection(model, unwrapped_model, self.compute_liger_loss, unwrapped_model, inputs)
else:
return self._compute_loss(model, inputs)
def _compute_loss(self, model, inputs):
# Compute the per-token log probabilities for the model
prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"]
completion_ids, completion_mask = inputs["completion_ids"], inputs["completion_mask"]
input_ids = torch.cat([prompt_ids, completion_ids], dim=1)
attention_mask = torch.cat([prompt_mask, completion_mask], dim=1)
logits_to_keep = completion_ids.size(1) # we only need to compute the logits for the completion tokens
# Compute the per_token_logps and the entropy at each position in the completion
per_token_logps, entropies = self._get_per_token_logps_and_entropies(
model,
input_ids,
attention_mask,
logits_to_keep,
compute_entropy=True,
pixel_values=inputs.get("pixel_values"),
image_grid_thw=inputs.get("image_grid_thw"),
pixel_attention_mask=inputs.get("pixel_attention_mask"),
image_sizes=inputs.get("image_sizes"),
)
if self.top_entropy_quantile < 1.0:
entropy_mask = self.get_high_entropy_mask(entropies, completion_mask, 1 - self.top_entropy_quantile)
else:
entropy_mask = None
# Compute the KL divergence between the model and the reference model
if self.beta != 0.0:
ref_per_token_logps = inputs["ref_per_token_logps"]
per_token_kl = (
torch.exp(ref_per_token_logps - per_token_logps) - (ref_per_token_logps - per_token_logps) - 1
)
# Compute the loss
advantages = inputs["advantages"]
# When using num_iterations == 1 and steps_per_generation <= gradient_accumulation_steps
# old_per_token_logps == per_token_logps, so we can skip it's computation
# (see _generate_and_score_completions) and use per_token_logps.detach() instead.
old_per_token_logps = inputs.get("old_per_token_logps")
old_per_token_logps = per_token_logps.detach() if old_per_token_logps is None else old_per_token_logps
log_ratio = per_token_logps - old_per_token_logps
if self.importance_sampling_level == "token":
log_importance_weights = log_ratio
elif self.importance_sampling_level == "sequence":
log_importance_weights = (log_ratio * completion_mask).sum(-1) / completion_mask.sum(-1).clamp(min=1.0)
log_importance_weights = log_importance_weights.unsqueeze(-1)
else:
raise ValueError(
f"Unknown importance sampling level: {self.importance_sampling_level}. Possible values are 'token' "
"and 'sequence'."
)
# From here, log_importance_weights (and all subsequent tensors, coef_1, coef_2, etc.) shape depends on
# importance_sampling_level: "token" level: (B, T); "sequence" level: (B, 1)
coef_1 = torch.exp(log_importance_weights)
coef_2 = torch.clamp(coef_1, 1 - self.epsilon_low, 1 + self.epsilon_high)
# Two-sided clipping
if self.args.delta is not None:
coef_1 = torch.clamp(coef_1, max=self.args.delta)
per_token_loss1 = coef_1 * advantages.unsqueeze(1)
per_token_loss2 = coef_2 * advantages.unsqueeze(1)
per_token_loss = -torch.min(per_token_loss1, per_token_loss2)
if entropy_mask is not None:
per_token_loss = per_token_loss * entropy_mask
if self.beta != 0.0:
per_token_loss = per_token_loss + self.beta * per_token_kl
if self.loss_type == "grpo":
loss = ((per_token_loss * completion_mask).sum(-1) / completion_mask.sum(-1).clamp(min=1.0)).mean()
elif self.loss_type == "bnpo":
loss = (per_token_loss * completion_mask).sum() / completion_mask.sum().clamp(min=1.0)
elif self.loss_type == "dr_grpo":
loss = (per_token_loss * completion_mask).sum() / (per_token_loss.size(0) * self.max_completion_length)
else:
raise ValueError(f"Unknown loss type: {self.loss_type}")
# Log the metrics
mode = "train" if self.model.training else "eval"
completion_token_count = completion_mask.sum().clamp(min=1.0)
def masked_batch_mean(x):
if x.shape[1] == 1: # when importance_sampling_level == "sequence"
return x.mean()
else:
return (x * completion_mask).sum() / completion_token_count
if self.beta != 0.0:
mean_kl = masked_batch_mean(per_token_kl)
self._metrics[mode]["kl"].append(self.accelerator.gather(mean_kl).nanmean().item())
mean_entropy = masked_batch_mean(entropies)
self._metrics[mode]["entropy"].append(self.accelerator.gather(mean_entropy).nanmean().item())
# Compute the clipped probability ratios
is_low_clipped = (coef_1 < 1 - self.epsilon_low) & (advantages.unsqueeze(1) < 0)
is_high_clipped = (coef_1 > 1 + self.epsilon_high) & (advantages.unsqueeze(1) > 0)
is_region_clipped = is_low_clipped | is_high_clipped
low_clip = masked_batch_mean(is_low_clipped.float())
high_clip = masked_batch_mean(is_high_clipped.float())
clip_ratio = masked_batch_mean(is_region_clipped.float())
gathered_low_clip = self.accelerator.gather(low_clip)
self._metrics[mode]["clip_ratio/low_mean"].append(gathered_low_clip.nanmean().item())
self._metrics[mode]["clip_ratio/low_min"].append(nanmin(gathered_low_clip).item())
gathered_high_clip = self.accelerator.gather(high_clip)
self._metrics[mode]["clip_ratio/high_mean"].append(gathered_high_clip.nanmean().item())
self._metrics[mode]["clip_ratio/high_max"].append(nanmax(gathered_high_clip).item())
gathered_clip_ratio = self.accelerator.gather(clip_ratio)
self._metrics[mode]["clip_ratio/region_mean"].append(gathered_clip_ratio.nanmean().item())
return loss
def prediction_step(self, model, inputs, prediction_loss_only, ignore_keys: Optional[list[str]] = None):
inputs = self._prepare_inputs(inputs)
with torch.no_grad():
with self.compute_loss_context_manager():
loss = self.compute_loss(model, inputs)
loss = loss.mean().detach()
return loss, None, None
def log(self, logs: dict[str, float], start_time: Optional[float] = None) -> None:
mode = "train" if self.model.training else "eval"
metrics = {key: sum(val) / len(val) for key, val in self._metrics[mode].items()} # average the metrics
# This method can be called both in training and evaluation. When called in evaluation, the keys in `logs`
# start with "eval_". We need to add the prefix "eval_" to the keys in `metrics` to match the format.
if mode == "eval":
metrics = {f"eval_{key}": val for key, val in metrics.items()}
logs = {**logs, **metrics}
super().log(logs, start_time)
self._metrics[mode].clear()
if self.accelerator.is_main_process and self.log_completions:
if is_rich_available():
print_prompt_completions_sample(
self._logs["prompt"],
self._logs["completion"],
self._logs["rewards"],
self._logs["advantages"],
self.state.global_step,
self.num_completions_to_print,
)
if self.args.report_to and "wandb" in self.args.report_to and wandb.run is not None:
import pandas as pd
table = {
"step": [str(self.state.global_step)] * len(self._logs["prompt"]),
"prompt": self._logs["prompt"],
"completion": self._logs["completion"],
**self._logs["rewards"],
"advantage": self._logs["advantages"],
}
if self._logs["image"]:
table["image"] = []
for img in self._logs["image"]:
if img is not None:
# Convert images to wandb Image objects for proper visualization
table["image"].append(wandb.Image(img))
else:
table["image"].append(None)
df = pd.DataFrame(table)
if self.wandb_log_unique_prompts:
df = df.drop_duplicates(subset=["prompt"])
wandb.log({"completions": wandb.Table(dataframe=df)})
# Ensure the model card is saved along with the checkpoint
def _save_checkpoint(self, model, trial):
if self.args.hub_model_id is None:
model_name = Path(self.args.output_dir).name
else:
model_name = self.args.hub_model_id.split("/")[-1]
self.create_model_card(model_name=model_name)
super()._save_checkpoint(model, trial)
def create_model_card(
self,
model_name: Optional[str] = None,
dataset_name: Optional[str] = None,
tags: Union[str, list[str], None] = None,
):
"""
Creates a draft of a model card using the information available to the `Trainer`.
Args:
model_name (`str` or `None`, *optional*, defaults to `None`):
Name of the model.
dataset_name (`str` or `None`, *optional*, defaults to `None`):
Name of the dataset used for training.
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
Tags to be associated with the model card.
"""
if not self.is_world_process_zero():
return
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
base_model = self.model.config._name_or_path
else:
base_model = None
# normalize `tags` to a mutable set
if tags is None:
tags = set()
elif isinstance(tags, str):
tags = {tags}
else:
tags = set(tags)
if hasattr(self.model.config, "unsloth_version"):
tags.add("unsloth")
tags.update(self._tag_names)
citation = textwrap.dedent(
"""\
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
"""
)
model_card = generate_model_card(
base_model=base_model,
model_name=model_name,
hub_model_id=self.hub_model_id,
dataset_name=dataset_name,
tags=tags,
wandb_url=wandb.run.url if is_wandb_available() and wandb.run is not None else None,
comet_url=get_comet_experiment_url(),
trainer_name="GRPO",
trainer_citation=citation,
paper_title="DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models",
paper_id="2402.03300",
)
model_card.save(os.path.join(self.args.output_dir, "README.md"))