File size: 92,824 Bytes
a080fe0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tempfile
import unittest
from unittest.mock import patch

import torch
from datasets import load_dataset
from parameterized import parameterized
from transformers import (
    AutoModelForCausalLM,
    AutoModelForImageTextToText,
    AutoModelForSequenceClassification,
    AutoTokenizer,
)
from transformers.testing_utils import require_liger_kernel, require_peft, require_vision
from transformers.utils import is_peft_available

from trl import GRPOConfig, GRPOTrainer
from trl.trainer.grpo_trainer import (
    RepeatSampler,
    shuffle_sequence_dict,
    split_pixel_values_by_grid,
    split_tensor_dict,
    truncate_with_protected_tokens,
    unsplit_pixel_values_by_grid,
)

from .testing_utils import require_vllm


if is_peft_available():
    from peft import LoraConfig, PeftModel


class SplitTensorDictTester(unittest.TestCase):
    def test_split_equal_chunks(self):
        x = torch.arange(12).reshape(6, 2)
        y = torch.arange(6).reshape(6, 1)
        tensor_dict = {"x": x, "y": y}

        result = split_tensor_dict(tensor_dict, 3)

        expected_x_chunks = torch.chunk(x, 3, dim=0)
        expected_y_chunks = torch.chunk(y, 3, dim=0)
        self.assertEqual(len(result), 3)
        for i in range(3):
            self.assertTrue(torch.equal(result[i]["x"], expected_x_chunks[i]))
            self.assertTrue(torch.equal(result[i]["y"], expected_y_chunks[i]))

    def test_with_none_tensor(self):
        x = torch.arange(12).reshape(6, 2)
        tensor_dict = {"x": x, "y": None}

        result = split_tensor_dict(tensor_dict, 2)

        expected_x_chunks = torch.chunk(x, 2, dim=0)
        self.assertEqual(len(result), 2)
        for i in range(2):
            self.assertTrue(torch.equal(result[i]["x"], expected_x_chunks[i]))
            self.assertIsNone(result[i]["y"])


class ShuffleSequenceDictTester(unittest.TestCase):
    def test_shuffle_preserves_shape(self):
        x = torch.arange(6).reshape(3, 2)
        y = torch.arange(3).reshape(3, 1)
        tensor_dict = {"x": x.clone(), "y": y.clone()}

        shuffled = shuffle_sequence_dict(tensor_dict)

        self.assertEqual(shuffled["x"].shape, x.shape)
        self.assertEqual(shuffled["y"].shape, y.shape)

    def test_shuffle_consistent_across_tensors(self):
        # Use known patterns to check alignment
        x = torch.tensor([[10, 11], [20, 21], [30, 31]])
        y = torch.tensor([[1], [2], [3]])
        tensor_dict = {"x": x.clone(), "y": y.clone()}

        shuffled = shuffle_sequence_dict(tensor_dict)

        # Build a reverse map from shuffled x rows to y values
        for i in range(3):
            x_row = shuffled["x"][i]
            y_val = shuffled["y"][i].item()

            if torch.equal(x_row, torch.tensor([10, 11])):
                self.assertEqual(y_val, 1)
            elif torch.equal(x_row, torch.tensor([20, 21])):
                self.assertEqual(y_val, 2)
            elif torch.equal(x_row, torch.tensor([30, 31])):
                self.assertEqual(y_val, 3)
            else:
                self.fail("Unexpected x row in shuffled output.")

    def test_none_tensor_remains_none(self):
        x = torch.arange(6).reshape(3, 2)
        tensor_dict = {"x": x.clone(), "y": None}

        shuffled = shuffle_sequence_dict(tensor_dict)

        self.assertIsNone(shuffled["y"])
        self.assertEqual(shuffled["x"].shape, x.shape)

    def test_shuffle_with_list(self):
        x = torch.tensor([[10, 11], [20, 21], [30, 31]])
        y = ["a", "b", "c"]

        sequence_dict = {"x": x.clone(), "y": y}

        shuffled = shuffle_sequence_dict(sequence_dict)

        # Check that the list y is shuffled in the same order as x
        for i in range(3):
            x_row = shuffled["x"][i]
            y_val = shuffled["y"][i]

            if torch.equal(x_row, torch.tensor([10, 11])):
                self.assertEqual(y_val, "a")
            elif torch.equal(x_row, torch.tensor([20, 21])):
                self.assertEqual(y_val, "b")
            elif torch.equal(x_row, torch.tensor([30, 31])):
                self.assertEqual(y_val, "c")
            else:
                self.fail("Unexpected x row in shuffled output.")


class RepeatRandomSamplerTester(unittest.TestCase):
    def test_sampler(self):
        dataset = ["a", "b", "c", "d", "e", "f", "g"]
        sampler = RepeatSampler(dataset, mini_repeat_count=2)
        # Should output something like [4, 4, 3, 3, 0, 0, 1, 1, 2, 2, 6, 6, 5, 5]
        sampled = list(sampler)
        # Check that the length is doubled
        assert len(sampled) == 2 * len(dataset)
        # Check that all indexes are present
        assert set(sampled) == set(range(len(dataset)))
        # Check that each element is repeated twice
        assert all(sampled[i] == sampled[i + 1] for i in range(0, len(sampled), 2))

    def test_sampler_no_shuffle(self):
        dataset = ["a", "b", "c", "d", "e", "f", "g"]
        sampler = RepeatSampler(dataset, mini_repeat_count=2, shuffle=False)
        sampled = list(sampler)
        expected = [0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6]
        self.assertEqual(sampled, expected)

    def test_sampler_no_repeat(self):
        dataset = ["a", "b", "c", "d", "e", "f", "g"]
        sampler = RepeatSampler(dataset, mini_repeat_count=1)
        # Should output something like [4, 3, 0, 1, 2, 6, 5]
        sampled = list(sampler)
        # Check that the length is the same
        assert len(sampled) == len(dataset)
        # Check that all indexes are present
        assert set(sampled) == set(range(len(dataset)))

    def test_sampler_with_batch_size(self):
        dataset = ["a", "b", "c", "d", "e", "f", "g", "h"]
        sampler = RepeatSampler(dataset, mini_repeat_count=1, batch_size=2, repeat_count=2)
        # Should output something like [4, 3, 4, 3, 0, 1, 0, 1, 2, 6, 2, 6, 5, 7, 5, 7]
        sampled = list(sampler)
        # Check that the length is doubled
        assert len(sampled) == 2 * len(dataset)
        # Check that all indexes are present
        assert set(sampled) == set(range(len(dataset)))
        # Check that each element is repeated as expected
        assert all(sampled[i : i + 1] == sampled[i + 2 : i + 3] for i in range(0, len(sampled), 4))

    def test_sampler_with_batch_size_and_drop(self):
        dataset = ["a", "b", "c", "d", "e", "f", "g"]
        sampler = RepeatSampler(dataset, mini_repeat_count=1, batch_size=2, repeat_count=2)
        # Should output something like [4, 3, 4, 3, 0, 1, 0, 1, 2, 6, 2, 6]
        sampled = list(sampler)
        # Check that the length is doubled
        assert len(sampled) == 2 * (
            len(dataset) - 1
        )  # one element is dropped, because it's not enough to form a batch
        assert len(sampler) == len(sampled)  # the length should be the same as the sampled length
        # Check that the sampled indexes are a subset of the dataset indexes
        assert set(sampled).issubset(set(range(len(dataset))))
        # Check that each element is repeated as expected
        assert all(sampled[i : i + 1] == sampled[i + 2 : i + 3] for i in range(0, len(sampled), 4))

    def test_sampler_with_mini_repeat_count_and_batch_size_1(self):
        dataset = ["a", "b", "c", "d", "e", "f", "g"]
        sampler = RepeatSampler(dataset, mini_repeat_count=2, batch_size=3, repeat_count=2)
        # Should output something like [4, 4, 3, 3, 0, 0, 4, 4, 3, 3, 0, 0,
        #                               1, 1, 2, 2, 6, 6, 1, 1, 2, 2, 6, 6]
        sampled = list(sampler)
        # Check that the length is quadrupled
        assert len(sampled) == 4 * (len(dataset) - 1)  # 1 element is dropped, because it's not enough to form a batch
        assert len(sampler) == len(sampled)  # the length should be the same as the sampled length
        # Check that the sampled indexes are a subset of the dataset indexes
        assert set(sampled).issubset(set(range(len(dataset))))
        # Check that each element is repeated as expected
        assert all(sampled[i] == sampled[i + 1] for i in range(0, len(sampled), 2))
        # Check that the batch is repeated as expected
        assert sampled[0:6] == sampled[6:12]
        assert sampled[12:18] == sampled[18:24]

    def test_sampler_with_mini_repeat_count_and_batch_size_2(self):
        dataset = ["a", "b", "c", "d", "e", "f", "g"]
        sampler = RepeatSampler(dataset, mini_repeat_count=3, batch_size=2, repeat_count=2)
        # Should output something like [4, 4, 4, 3, 3, 3, 4, 4, 4, 3, 3, 3,
        #                               0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1,
        #                               2, 2, 2, 6, 6, 6, 2, 2, 2, 6, 6, 6]
        sampled = list(sampler)
        # Check that the length is sextupled
        assert len(sampled) == 6 * (len(dataset) - 1)  # 1 element is dropped, because it's not enough to form a batch
        assert len(sampler) == len(sampled)  # the length should be the same as the sampled length
        # Check that the sampled indexes are a subset of the dataset indexes
        assert set(sampled).issubset(set(range(len(dataset))))
        # Check that each element is repeated as expected
        assert all(sampled[i] == sampled[i + 1] == sampled[i + 2] for i in range(0, len(sampled), 3))
        # Check that the batch is repeated as expected
        assert sampled[0:6] == sampled[6:12]
        assert sampled[12:18] == sampled[18:24]
        assert sampled[24:30] == sampled[30:36]

    def test_sampler_with_mini_repeat_count_and_batch_size_3(self):
        dataset = ["a", "b", "c", "d", "e", "f", "g"]
        sampler = RepeatSampler(dataset, mini_repeat_count=2, batch_size=2, repeat_count=3)
        # Should output something like [4, 4, 3, 3, 4, 4, 3, 3, 4, 4, 3, 3,
        #                               0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1,
        #                               2, 2, 6, 6, 2, 2, 6, 6, 2, 2, 6, 6]
        sampled = list(sampler)
        # Check that the length is sextupled
        assert len(sampled) == 6 * (len(dataset) - 1)  # 1 element is dropped, because it's not enough to form a batch
        # Check that the sampled indexes are a subset of the dataset indexes
        assert set(sampled).issubset(set(range(len(dataset))))
        # Check that each element is repeated as expected
        assert all(sampled[i] == sampled[i + 1] for i in range(0, len(sampled), 2))
        # Check that the batch is repeated as expected
        assert sampled[0:4] == sampled[4:8] == sampled[8:12]
        assert sampled[12:16] == sampled[16:20] == sampled[20:24]
        assert sampled[24:28] == sampled[28:32] == sampled[32:36]


class TruncateWithProtectedTokensTester(unittest.TestCase):
    def test_basic_example(self):
        """Test the basic example from the problem description."""
        prompt_ids = torch.tensor([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])
        prompt_mask = torch.ones_like(prompt_ids)
        protected_tokens = [2, 3, 6]
        target_length = 3

        new_ids, new_mask = truncate_with_protected_tokens(prompt_ids, prompt_mask, target_length, protected_tokens)

        expected_ids = torch.tensor([[2, 3, 5], [6, 9, 10]])
        expected_mask = torch.ones_like(expected_ids)

        self.assertTrue(torch.equal(new_ids, expected_ids))
        self.assertTrue(torch.equal(new_mask, expected_mask))

    def test_no_truncation_needed(self):
        """Test when target length equals current length."""
        prompt_ids = torch.tensor([[1, 2, 3]])
        prompt_mask = torch.ones_like(prompt_ids)
        protected_tokens = [2]
        target_length = 3

        new_ids, new_mask = truncate_with_protected_tokens(prompt_ids, prompt_mask, target_length, protected_tokens)

        self.assertTrue(torch.equal(new_ids, prompt_ids))
        self.assertTrue(torch.equal(new_mask, prompt_mask))

    def test_no_protected_tokens(self):
        """Test truncation with no protected tokens (normal right truncation)."""
        prompt_ids = torch.tensor([[1, 2, 3, 4, 5]])
        prompt_mask = torch.ones_like(prompt_ids)
        protected_tokens = []
        target_length = 3

        new_ids, new_mask = truncate_with_protected_tokens(prompt_ids, prompt_mask, target_length, protected_tokens)

        expected_ids = torch.tensor([[3, 4, 5]])  # Last 3 tokens
        self.assertTrue(torch.equal(new_ids, expected_ids))

    def test_all_tokens_protected(self):
        """Test when all remaining tokens are protected."""
        prompt_ids = torch.tensor([[1, 2, 3, 4, 5]])
        prompt_mask = torch.ones_like(prompt_ids)
        protected_tokens = [3, 4, 5]
        target_length = 3

        new_ids, new_mask = truncate_with_protected_tokens(prompt_ids, prompt_mask, target_length, protected_tokens)

        expected_ids = torch.tensor([[3, 4, 5]])
        self.assertTrue(torch.equal(new_ids, expected_ids))

    def test_too_many_protected_tokens(self):
        """Test error when too many protected tokens for target length."""
        prompt_ids = torch.tensor([[1, 2, 3, 4, 5]])
        prompt_mask = torch.ones_like(prompt_ids)
        protected_tokens = [1, 2, 3, 4]
        target_length = 3

        with self.assertRaises(ValueError):
            truncate_with_protected_tokens(prompt_ids, prompt_mask, target_length, protected_tokens)

    def test_single_batch_single_token(self):
        """Test edge case with single batch and single token."""
        prompt_ids = torch.tensor([[5]])
        prompt_mask = torch.ones_like(prompt_ids)
        protected_tokens = [5]
        target_length = 1

        new_ids, new_mask = truncate_with_protected_tokens(prompt_ids, prompt_mask, target_length, protected_tokens)

        self.assertTrue(torch.equal(new_ids, prompt_ids))

    def test_mask_preservation(self):
        """Test that mask values are correctly preserved."""
        prompt_ids = torch.tensor([[1, 2, 3, 4, 5]])
        prompt_mask = torch.tensor([[1, 0, 1, 0, 1]])  # Mixed mask values
        protected_tokens = [2, 4]
        target_length = 3

        new_ids, new_mask = truncate_with_protected_tokens(prompt_ids, prompt_mask, target_length, protected_tokens)

        expected_ids = torch.tensor([[2, 4, 5]])
        expected_mask = torch.tensor([[0, 0, 1]])  # Corresponding mask values

        self.assertTrue(torch.equal(new_ids, expected_ids))
        self.assertTrue(torch.equal(new_mask, expected_mask))

    def test_multiple_batches_different_protected(self):
        """Test multiple batches where protected tokens appear differently."""
        prompt_ids = torch.tensor([[1, 2, 3, 4, 5], [2, 6, 7, 8, 9], [10, 11, 12, 2, 13]])
        prompt_mask = torch.ones_like(prompt_ids)
        protected_tokens = [2]
        target_length = 3

        new_ids, new_mask = truncate_with_protected_tokens(prompt_ids, prompt_mask, target_length, protected_tokens)

        expected_ids = torch.tensor(
            [
                [2, 4, 5],  # 2 is protected, keep last 2 non-protected (4,5)
                [2, 8, 9],  # 2 is protected, keep last 2 non-protected (8,9)
                [12, 2, 13],  # 2 is protected, keep last 2 non-protected (12,13)
            ]
        )

        self.assertTrue(torch.equal(new_ids, expected_ids))

    def test_order_preservation(self):
        """Test that relative order is preserved."""
        prompt_ids = torch.tensor([[10, 2, 20, 3, 30, 40]])
        prompt_mask = torch.ones_like(prompt_ids)
        protected_tokens = [2, 3]
        target_length = 4

        new_ids, new_mask = truncate_with_protected_tokens(prompt_ids, prompt_mask, target_length, protected_tokens)

        # Should keep protected tokens 2,3 and last 2 non-protected tokens 30,40
        # Order should be: 2, 3, 30, 40 (maintaining original relative positions)
        expected_ids = torch.tensor([[2, 3, 30, 40]])

        self.assertTrue(torch.equal(new_ids, expected_ids))

    def test_empty_protected_tokens_list(self):
        """Test with empty protected tokens list."""
        prompt_ids = torch.tensor([[1, 2, 3, 4, 5]])
        prompt_mask = torch.ones_like(prompt_ids)
        protected_tokens = []
        target_length = 2

        new_ids, new_mask = truncate_with_protected_tokens(prompt_ids, prompt_mask, target_length, protected_tokens)

        expected_ids = torch.tensor([[4, 5]])  # Last 2 tokens
        self.assertTrue(torch.equal(new_ids, expected_ids))


class GetHighEntropyMaskTester(unittest.TestCase):
    def get_high_entropy_mask(self, entropies, mask, threshold):
        """Helper method to test the get_high_entropy_mask functionality."""
        # Create a mock trainer with minimal setup
        from unittest.mock import Mock

        # Create a mock accelerator
        mock_accelerator = Mock()
        mock_accelerator.num_processes = 1  # Single process for testing

        # Create a minimal trainer instance just to access the method
        trainer = Mock(spec=GRPOTrainer)
        trainer.accelerator = mock_accelerator
        trainer.accelerator.gather = lambda x: x  # Mock gather to return the input directly

        # Call the actual method from GRPOTrainer
        return GRPOTrainer.get_high_entropy_mask(trainer, entropies, mask, threshold)

    def test_compute_entropy_mask_0(self):
        # We have a total of 12 tokens out of which 10 are non-pad.
        # for a top_entropy_quantile of 0.8, we expect the top 20% i.e 2 non-pad tokens corresponding to
        # the highest entropy to be unmasked.
        # In our example these will be the tokens corresponding to the entropies 0.9 and 1.0 since 1.1 and 1.2 are pad
        # tokens they are excluded from the entropy threshold calculation.
        entropies = torch.tensor([[0.1, 0.2, 0.3, 0.4, 0.5, 0.6], [0.7, 0.8, 0.9, 1.0, 1.1, 1.2]])
        mask = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 0, 0]])
        entropy_mask = self.get_high_entropy_mask(entropies, mask, threshold=0.8)
        expected_mask = torch.tensor([[0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0]], dtype=torch.bool)
        torch.testing.assert_close(entropy_mask, expected_mask)

    def test_compute_entropy_mask_1(self):
        # Another example with a different set of entropies and a different mask.
        entropies = torch.tensor([[0.1, 0.2, 0.3, 1.4, 0.5, 0.14], [0.5, 0.6, 0.7, 0.8, 0.9, 1.0]])
        mask = torch.tensor([[1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 0, 0]])
        entropy_mask = self.get_high_entropy_mask(entropies, mask, threshold=0.8)
        expected_mask = torch.tensor([[0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 0]], dtype=torch.bool)
        torch.testing.assert_close(entropy_mask, expected_mask)

    def test_compute_entropy_mask_lower_threshold(self):
        # For a threshold of 0.5 we expect the top half of the non-pad tokens to be unmasked.
        entropies = torch.tensor([[0.1, 0.2, 0.3, 0.4, 0.5, 0.6], [0.7, 0.8, 0.9, 1.0, 1.1, 1.2]])
        mask = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 0, 0]])
        entropy_mask = self.get_high_entropy_mask(entropies, mask, threshold=0.5)
        expected_mask = torch.tensor([[0, 0, 0, 0, 0, 1], [1, 1, 1, 1, 0, 0]], dtype=torch.bool)
        torch.testing.assert_close(entropy_mask, expected_mask)

    def test_compute_entropy_threshold_0(self):
        # If the threshold is 0.0 then we expect the mask to be all ones for non-pad tokens.
        entropies = torch.tensor([[0.1, 0.2, 0.3, 0.4, 0.5, 0.6], [0.7, 0.8, 0.9, 1.0, 1.1, 1.2]])
        mask = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 0, 0]])
        entropy_mask = self.get_high_entropy_mask(entropies, mask, threshold=0.0)
        expected_mask = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 0, 0]], dtype=torch.bool)
        torch.testing.assert_close(entropy_mask, expected_mask)

    def test_compute_entropy_threshold_1(self):
        # If the threshold is 1.0 then we expect the mask to be all zeros BUT ONE VALUE.
        entropies = torch.tensor([[0.1, 0.2, 0.3, 0.4, 0.5, 0.6], [0.7, 0.8, 0.9, 1.0, 1.1, 1.2]])
        mask = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 0, 0]])
        entropy_mask = self.get_high_entropy_mask(entropies, mask, threshold=1.0)
        expected_mask = torch.tensor([[0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]], dtype=torch.bool)
        torch.testing.assert_close(entropy_mask, expected_mask)

    def test_compute_entropy_all_masked(self):
        # If there are no non-pad tokens we expect the mask to be all zeros.
        entropies = torch.tensor([[0.1, 0.2, 0.3, 0.4, 0.5, 0.6], [0.7, 0.8, 0.9, 1.0, 1.1, 1.2]])
        mask = torch.tensor([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]])
        entropy_mask = self.get_high_entropy_mask(entropies, mask, threshold=0.5)
        expected_mask = torch.tensor([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]], dtype=torch.bool)
        torch.testing.assert_close(entropy_mask, expected_mask)


class SplitPixelValuesByGridTester(unittest.TestCase):
    def test_split_correctly_0(self):
        batch = {
            "image_grid_thw": torch.tensor([[1, 2, 2], [1, 1, 4]]),  # Products: [4, 4]
            "pixel_values": torch.arange(8 * 3).reshape(8, 3),  # Shape: [8, 3]
        }
        result = split_pixel_values_by_grid(batch)
        self.assertIsInstance(result["pixel_values"], list)
        self.assertEqual(len(result["pixel_values"]), 2)
        self.assertTrue(torch.equal(result["pixel_values"][0], batch["pixel_values"][:4]))
        self.assertTrue(torch.equal(result["pixel_values"][1], batch["pixel_values"][4:]))

    def test_split_correctly_1(self):
        batch = {
            "image_grid_thw": torch.tensor([[1, 2, 2], [1, 2, 4]]),  # Products: [4, 8]
            "pixel_values": torch.arange(12 * 3).reshape(12, 3),  # Shape: [12, 3]
        }
        result = split_pixel_values_by_grid(batch)
        self.assertIsInstance(result["pixel_values"], list)
        self.assertEqual(len(result["pixel_values"]), 2)
        self.assertTrue(torch.equal(result["pixel_values"][0], batch["pixel_values"][:4]))
        self.assertTrue(torch.equal(result["pixel_values"][1], batch["pixel_values"][4:12]))

    def test_missing_keys(self):
        batch = {"pixel_values": torch.tensor([1.0])}
        result = split_pixel_values_by_grid(batch)
        self.assertEqual(result, batch)

    def test_mismatched_length(self):
        batch = {
            "image_grid_thw": torch.tensor([[2, 1, 1], [2, 1, 1]]),  # Total = 4
            "pixel_values": torch.randn(3, 5),  # Only 3 rows
        }
        with self.assertRaises(ValueError):
            split_pixel_values_by_grid(batch)


class UnsplitPixelValuesByGridTester(unittest.TestCase):
    def test_unsplit_correctly(self):
        split = [torch.randn(4, 5), torch.randn(2, 5)]
        merged = torch.cat(split, dim=0)
        batch = {"pixel_values": split, "other_key": torch.tensor([1])}
        result = unsplit_pixel_values_by_grid(batch)
        self.assertIsInstance(result["pixel_values"], torch.Tensor)
        self.assertTrue(torch.allclose(result["pixel_values"], merged))
        self.assertIn("other_key", result)

    def test_no_op_if_not_list(self):
        original = torch.randn(5, 3)
        batch = {"pixel_values": original}
        result = unsplit_pixel_values_by_grid(batch)
        self.assertTrue(torch.equal(result["pixel_values"], original))


class GRPOTrainerTester(unittest.TestCase):
    def test_init_minimal(self):
        # Test that GRPOTrainer can be instantiated with only model, reward_model and train_dataset
        dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
        GRPOTrainer(
            model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
            reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
            train_dataset=dataset,
        )

    @parameterized.expand([("standard_prompt_only",), ("conversational_prompt_only",)])
    def test_training(self, config_name):
        dataset = load_dataset("trl-internal-testing/zen", config_name, split="train")

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                report_to="none",
            )
            trainer = GRPOTrainer(
                model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
                reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
                args=training_args,
                train_dataset=dataset,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the params have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")

    @parameterized.expand([("bnpo",), ("dr_grpo",)])
    def test_training_loss_types(self, loss_type):
        dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=32,  # reduce the completion length to reduce memory usage
                loss_type=loss_type,
                report_to="none",
            )
            trainer = GRPOTrainer(
                model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
                reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
                args=training_args,
                train_dataset=dataset,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the params have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")

    def test_training_with_eval(self):
        dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only")

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                per_device_eval_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                eval_strategy="steps",
                eval_steps=2,
                report_to="none",
            )
            trainer = GRPOTrainer(
                model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
                reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
                args=training_args,
                train_dataset=dataset["train"],
                eval_dataset=dataset["test"],
            )

            trainer.train()

    def test_training_multiple_iterations(self):
        dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                num_iterations=2,
                report_to="none",
            )
            trainer = GRPOTrainer(
                model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
                reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
                args=training_args,
                train_dataset=dataset,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the params have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")

    @require_peft
    def test_training_peft(self):
        model = AutoModelForCausalLM.from_pretrained("trl-internal-testing/tiny-Qwen2ForCausalLM-2.5")
        base_param_names = [f"base_model.model.{n}" for n, _ in model.named_parameters()]
        dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                report_to="none",
            )
            trainer = GRPOTrainer(
                model=model,
                reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
                args=training_args,
                train_dataset=dataset,
                peft_config=LoraConfig(),
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the peft params have changed and the base model params have not changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                if n in base_param_names:  # We expect the base model params to be the same
                    self.assertTrue(torch.allclose(param, new_param), f"Parameter {n} has changed.")
                elif "base_layer" not in n:  # We expect the peft params to be different (except for the base layer)
                    self.assertFalse(torch.allclose(param, new_param), f"Parameter {n} has not changed.")

    @require_peft
    def test_training_peft_with_gradient_checkpointing(self):
        """Test that training works with PEFT and gradient checkpointing enabled."""
        dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")

        model = AutoModelForCausalLM.from_pretrained(
            "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
            torch_dtype=torch.float32,  # Use float32 for testing to avoid precision issues
            use_cache=False,  # Required for gradient checkpointing
        )

        lora_config = LoraConfig(
            r=8, lora_alpha=32, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none"
        )

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,
                per_device_train_batch_size=3,
                num_generations=3,
                max_completion_length=8,
                gradient_checkpointing=True,  # Enable gradient checkpointing
                report_to="none",
            )
            trainer = GRPOTrainer(
                model=model,
                reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
                args=training_args,
                train_dataset=dataset,
                peft_config=lora_config,
            )

            # Verify gradient checkpointing is enabled
            self.assertIsInstance(trainer.model, PeftModel)

            # Store initial parameters to check which ones change
            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that only LoRA parameters have changed, base model parameters remain unchanged
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                if "lora" in n.lower():  # LoRA parameters should change
                    self.assertFalse(torch.equal(param, new_param), f"LoRA parameter {n} has not changed.")
                else:  # Base model parameters should not change
                    self.assertTrue(torch.equal(param, new_param), f"Base parameter {n} has changed.")

    def test_training_different_reward_model(self):
        # Use a reward model different from the model: different chat template, tokenization, etc.
        dataset = load_dataset("trl-internal-testing/zen", "conversational_prompt_only", split="train")
        reward_model_id = "trl-internal-testing/tiny-LlamaForSequenceClassification-3.2"
        reward_model = AutoModelForSequenceClassification.from_pretrained(reward_model_id)
        reward_tokenizer = AutoTokenizer.from_pretrained(reward_model_id)
        # By default, the trainer uses the eos token as the padding token. However, for Llama models, the eos token
        # appears in the chat template. Using it as a pad token disrupts the reward calculation, as the calculation
        # considers the score of the last token before the first pad token. To ensure correct reward calculations,
        # we use a separate pad token instead.
        reward_tokenizer.pad_token = "<|finetune_right_pad_id|>"

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                report_to="none",
            )
            trainer = GRPOTrainer(
                model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
                reward_funcs=reward_model,
                args=training_args,
                train_dataset=dataset,
                reward_processing_classes=reward_tokenizer,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the params have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")

    def test_training_reward_func_standard(self):
        # Test if trainer can handle reward function with standard format
        dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")

        def reward_func(completions, **kwargs):
            """Reward function that rewards longer completions."""
            return [float(len(completion)) for completion in completions]

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                report_to="none",
            )
            trainer = GRPOTrainer(
                model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
                reward_funcs=reward_func,
                args=training_args,
                train_dataset=dataset,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the params have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")

    def test_training_reward_func_conversational(self):
        # Test if trainer can handle reward function with conversational format
        dataset = load_dataset("trl-internal-testing/zen", "conversational_prompt_only", split="train")

        def reward_func(completions, **kwargs):
            """Reward function that gives higher scores to longer completion content."""
            completion_contents = [completion[0]["content"] for completion in completions]
            return [float(len(content)) for content in completion_contents]

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                report_to="none",
            )
            trainer = GRPOTrainer(
                model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
                reward_funcs=reward_func,
                args=training_args,
                train_dataset=dataset,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the params have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")

    def test_training_multiple_reward_funcs(self):
        # Test that GRPOTrainer can be instantiated with multiple reward functions
        dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")

        def reward_func1(completions, **kwargs):
            """Reward function that rewards longer completions."""
            return [float(len(completion)) for completion in completions]

        def reward_func2(completions, **kwargs):
            """Reward function that rewards completions with more unique letters."""
            return [float(len(set(completion))) for completion in completions]

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                report_to="none",
            )
            trainer = GRPOTrainer(
                model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
                reward_funcs=[reward_func1, reward_func2],
                args=training_args,
                train_dataset=dataset,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the params have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")

    def test_training_multiple_reward_funcs_with_None_output(self):
        """Test that a valid math reward function is processed correctly while the code reward function returns None."""
        dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")

        def applicable_reward_func(completions, **kwargs):
            """A reward function that rewards longer completions."""
            return [float(len(completion)) for completion in completions]

        def non_applicable_reward_func(completions, **kwargs):
            """A reward function that returns None for all inputs, as it is not applicable to this sample."""
            return [None] * len(completions)

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,
                per_device_train_batch_size=3,
                num_generations=3,
                max_completion_length=8,
                report_to="none",
            )

            trainer = GRPOTrainer(
                model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
                reward_funcs=[
                    applicable_reward_func,
                    non_applicable_reward_func,
                ],  # One applicable, one non applicable
                args=training_args,
                train_dataset=dataset,
            )

            previous_trainable_params = {
                n: param.clone() for n, param in trainer.model.named_parameters() if param.requires_grad
            }

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the params have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")

    def test_training_multiple_reward_funcs_with_weights(self):
        """Test that GRPOTrainer can handle multiple reward functions with weights."""
        dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")

        def reward_func1(completions, **kwargs):
            """Reward function that rewards longer completions."""
            return [float(len(completion)) for completion in completions]

        def reward_func2(completions, **kwargs):
            """Reward function that rewards completions with more unique letters."""
            return [float(len(set(completion))) for completion in completions]

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                report_to="none",
                reward_weights=[0.7, 0.3],  # weight of reward_func1 and reward_func2 respectively
            )
            trainer = GRPOTrainer(
                model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
                reward_funcs=[reward_func1, reward_func2],
                args=training_args,
                train_dataset=dataset,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            # Check that training logs contain both reward metrics
            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
            self.assertIn("rewards/reward_func1/mean", trainer.state.log_history[-1])
            self.assertIn("rewards/reward_func1/std", trainer.state.log_history[-1])
            self.assertIn("rewards/reward_func2/mean", trainer.state.log_history[-1])
            self.assertIn("rewards/reward_func2/std", trainer.state.log_history[-1])

            # Check that the params have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")

    def test_training_multiple_mixed_reward_funcs(self):
        # Test if the trainer can handle a mix of reward functions and reward models
        dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")

        def reward_func(completions, **kwargs):
            """Reward function that rewards longer completions."""
            return [float(len(completion)) for completion in completions]

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                report_to="none",
            )
            trainer = GRPOTrainer(
                model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
                reward_funcs=[reward_func, "trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5"],
                args=training_args,
                train_dataset=dataset,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the params have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")

    def test_training_reward_func_additional_column(self):
        # Test if trainer can handle reward function that rely on additional columns in the dataset
        dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")

        # Add a column to the dataset (dummy example, the column could be anything)
        some_values = list(range(len(dataset)))
        dataset = dataset.add_column("some_values", some_values)

        def reward_func(completions, some_values, **kwargs):
            """Reward function that rewards completions with lengths closer to the values in some_values."""
            return [float(abs(len(completion) - value)) for completion, value in zip(completions, some_values)]

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                report_to="none",
            )
            trainer = GRPOTrainer(
                model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
                reward_funcs=reward_func,
                args=training_args,
                train_dataset=dataset,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the params have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")

    def test_training_with_sync_ref_model(self):
        dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                sync_ref_model=True,
                ref_model_sync_steps=2,  # reduce sync steps to ensure a sync happens
                report_to="none",
            )
            trainer = GRPOTrainer(
                model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
                reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
                args=training_args,
                train_dataset=dataset,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the params have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")

    def test_training_beta_non_zero(self):
        dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                beta=0.1,  # set beta to non-zero value to test the case where the reference model is used
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                report_to="none",
            )
            trainer = GRPOTrainer(
                model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
                reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
                args=training_args,
                train_dataset=dataset,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the params have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")

    def test_training_with_entropy_filter(self):
        dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                beta=0.1,  # set beta to non-zero value to test the case where the reference model is used
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                report_to="none",
                top_entropy_quantile=0.2,
            )
            trainer = GRPOTrainer(
                model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
                reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
                args=training_args,
                train_dataset=dataset,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the params have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")

    @unittest.skip("We should add a mock for the vLLM server.")
    @require_peft
    @require_vllm
    def test_training_vllm_and_peft(self):
        """Test that training works with vLLM for generation."""
        model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")  # tiny model is too small for vLLM
        base_param_names = [f"base_model.model.{n}" for n, _ in model.named_parameters()]
        dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                report_to="none",
                use_vllm=True,
            )
            lora_config = LoraConfig(
                target_modules="all-linear",
                # test with non-default modules as it adds extra keys in state_dict that we need to handle
                modules_to_save=["embed_tokens", "lm_head"],
            )
            trainer = GRPOTrainer(
                model=model,
                reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
                args=training_args,
                train_dataset=dataset,
                peft_config=lora_config,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the peft params have changed and the base model params have not changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                if n in base_param_names:  # We expect the base model params to be the same
                    self.assertTrue(torch.allclose(param, new_param), f"Parameter {n} has changed.")
                elif "base_layer" not in n and "original_module" not in n:
                    # We expect the peft params to be different (except for the base layer)
                    self.assertFalse(torch.allclose(param, new_param), f"Parameter {n} has not changed.")

    @require_vllm
    @unittest.skip("We should add a mock for the vLLM server.")
    def test_training_vllm_guided_decoding(self):
        """Test that training works with vLLM for generation with guided decoding."""
        dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                report_to="none",
                use_vllm=True,
                vllm_guided_decoding_regex=r"<reasoning>\n.*\n</reasoning>\n<answer>\n.*\n</answer>",
            )
            trainer = GRPOTrainer(
                model="Qwen/Qwen2.5-0.5B-Instruct",  # tiny model is too small for vLLM
                reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
                args=training_args,
                train_dataset=dataset,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the params have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")

    def test_training_with_additional_generation_kwargs(self):
        """Test that training works with additional generation kwargs."""
        dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                report_to="none",
                top_p=0.9,
                top_k=10,
                min_p=0.01,
                repetition_penalty=1.1,
            )

            trainer = GRPOTrainer(
                model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
                reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
                args=training_args,
                train_dataset=dataset,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the params have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")

    @require_vllm
    @unittest.skip("We should add a mock for the vLLM server.")
    def test_training_vllm_with_additional_generation_kwargs(self):
        """Test that training works with vLLM and additional generation kwargs."""
        dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                report_to="none",
                use_vllm=True,
                top_p=0.9,
                top_k=10,
                min_p=0.01,
                repetition_penalty=1.1,
            )

            trainer = GRPOTrainer(
                model="Qwen/Qwen2.5-0.5B-Instruct",  # tiny model is too small for vLLM
                reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
                args=training_args,
                train_dataset=dataset,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the params have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")

    def test_training_no_scale_rewards(self):
        dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                scale_rewards=False,
                report_to="none",
            )
            trainer = GRPOTrainer(
                model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
                reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
                args=training_args,
                train_dataset=dataset,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the params have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")

    @patch("transformers.generation.utils.GenerationMixin.generate")
    def test_training_with_mask_truncated_completions(self, mock_generate):
        """Test that training works with mask_truncated_completions=True parameter."""

        # We mock the generate method because the model's random weights make it extremely unlikely to produce a
        # sequence containing the EOS token within the allowed max_completion_length. As a result, all tokens are
        # masked in the loss, the model doesn't update, and the final check (which verifies the update) fails.
        def fake_generate(input_ids, **kwargs):
            # pad_token_id = 151643; eos_token_id = 151645
            completions_ids = torch.tensor(
                [
                    [1, 2, 3, 4, 5, 6, 7, 8],  # this one is truncated
                    [9, 10, 11, 151645, 151643, 151643, 151643, 151643],  # this one contains eos
                    [12, 13, 14, 15, 16, 17, 18, 151645],  # particular case, eos is generated just within the limit
                ],
                device=input_ids.device,
            )
            return torch.cat([input_ids, completions_ids], dim=1)

        mock_generate.side_effect = fake_generate

        dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                mask_truncated_completions=True,  # Enable masking of truncated completions
                report_to="none",
            )
            trainer = GRPOTrainer(
                model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
                reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
                args=training_args,
                train_dataset=dataset,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the params have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")

    def test_training_with_mask_truncated_completions_all_masked(self):
        """
        Test that when all generated completions are truncated (i.e., none contain an EOS token), and
        mask_truncated_completions=True, the model receives no effective learning signal and therefore does not update
        its parameters.

        Here, we don't mock the generate method, be we rely on the fact that the model the probability of generating
        the EOS token is extremely low, so all generated completions are truncated.
        """
        dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                mask_truncated_completions=True,  # Enable masking of truncated completions
                report_to="none",
            )
            trainer = GRPOTrainer(
                model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
                reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
                args=training_args,
                train_dataset=dataset,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the params have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertTrue(torch.equal(param, new_param), f"Parameter {n} has changed.")

    def test_training_num_generations_larger_than_batch_size(self):
        dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                num_generations=6,  # the number of generations is larger than the batch size, but
                gradient_accumulation_steps=2,  # gradient accumulation should allow that
                report_to="none",
            )
            trainer = GRPOTrainer(
                model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
                reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
                args=training_args,
                train_dataset=dataset,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the params have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")

    def test_training_delta_clipping(self):
        dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                delta=2.0,  # set delta to a non-None value
                report_to="none",
            )
            trainer = GRPOTrainer(
                model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
                reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
                args=training_args,
                train_dataset=dataset,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the params have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")

    def test_training_multiple_dataloader_workers(self):
        dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                dataloader_num_workers=2,  # use multiple dataloader workers
                report_to="none",
            )
            trainer = GRPOTrainer(
                model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
                reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
                args=training_args,
                train_dataset=dataset,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the params have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")

    def test_training_with_generation_kwargs(self):
        dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                generation_kwargs={"do_sample": True, "top_k": 50, "length_penalty": -0.1},  # Add some gen kwargs
                report_to="none",
            )
            trainer = GRPOTrainer(
                model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
                reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
                args=training_args,
                train_dataset=dataset,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the params have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")

    def test_training_with_reward_func_accessing_trainer_state(self):
        dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")

        def reward_func(completions, **kwargs):
            trainer_state = kwargs.get("trainer_state")
            assert trainer_state is not None
            # transformers.TrainerState instance should have a `global_step` property.
            assert hasattr(trainer_state, "global_step")
            return [float(len(set(completion))) for completion in completions]

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                per_device_train_batch_size=2,
                num_generations=2,
                max_completion_length=8,
                report_to="none",
            )
            trainer = GRPOTrainer(
                model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
                reward_funcs=reward_func,
                args=training_args,
                train_dataset=dataset,
            )
            trainer.train()

    def test_prepare_input_called_with_correct_data(self):
        dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,  # increase the learning rate to speed up the test
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                gradient_accumulation_steps=3,  # can be anything in this test
                # steps_per_generation*per_device_train_batch_size=24 is divisible by num_generations=4
                steps_per_generation=4,
                num_generations=4,
                per_device_train_batch_size=6,  # reduce the batch size to reduce memory usage
                num_iterations=2,
                shuffle_dataset=False,
                report_to="none",
            )
            trainer = GRPOTrainer(
                model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
                reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
                args=training_args,
                train_dataset=dataset,
            )
            # steps_per_generation=4, per_device_train_batch_size=6 and num_generations=4, so we expect a
            # generation batch of 24 samples (steps_per_generation * per_device_train_batch_size), containing 6
            # different prompts (steps_per_generation * per_device_train_batch_size // num_generations), each repeated
            # 4 times (num_generations).
            expected_first_generation_batch = (
                [{"prompt": "Beautiful is better than"}] * 4
                + [{"prompt": "Explicit is"}] * 4
                + [{"prompt": "Simple is better"}] * 4
                + [{"prompt": "Complex"}] * 4
                + [{"prompt": "Flat is better than"}] * 4
                + [{"prompt": "Sparse is better"}] * 4
            )
            expected_second_generation_batch = (
                [{"prompt": "Readability"}] * 4
                + [{"prompt": "Special cases aren't special"}] * 4
                + [{"prompt": "Although practicality beats"}] * 4
                + [{"prompt": "Errors should never"}] * 4
                + [{"prompt": "Unless explicitly"}] * 4
                + [{"prompt": "In the face of ambiguity, refuse"}] * 4
            )

            with patch.object(GRPOTrainer, "training_step", wraps=trainer.training_step) as mock_prepare:
                trainer.train()
                # 3 epochs * 2 iterations * 2 generation batches to cover the dataset * 4 steps_per_generation
                self.assertEqual(mock_prepare.call_count, 48)
                for i in range(0, 8):  # Generation batch repeated 8 times (steps_per_generation*num_iterations)
                    assert mock_prepare.call_args_list[i].args[1] == expected_first_generation_batch
                for i in range(8, 16):
                    assert mock_prepare.call_args_list[i].args[1] == expected_second_generation_batch

    @parameterized.expand(
        [
            ("trl-internal-testing/tiny-Gemma3ForConditionalGeneration",),
            ("trl-internal-testing/tiny-LlavaNextForConditionalGeneration",),
            ("trl-internal-testing/tiny-Qwen2_5_VLForConditionalGeneration",),
            ("trl-internal-testing/tiny-Qwen2VLForConditionalGeneration",),
            # ("trl-internal-testing/tiny-SmolVLMForConditionalGeneration",), seems not to support bf16 properly
        ]
    )
    @require_vision
    def test_training_vlm(self, model_id):
        dataset = load_dataset("trl-internal-testing/zen-image", "conversational_prompt_only", split="train")

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                max_prompt_length=None,  # disable prompt truncation, because usually, models don't support it
                report_to="none",
            )
            trainer = GRPOTrainer(
                model=model_id,
                reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
                args=training_args,
                train_dataset=dataset,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the params have changed
            # Because of the way the tiny models are initialized, the gradient does not flow properly through the
            # vision parts of the model, so we skip them. Ideally, we should fix the init of these models.
            params_to_skip = (
                "model.vision_tower.",
                "model.multi_modal_projector.",
                "model.vision_model.",
                "model.connector.modality_projection.",
            )
            for n, param in previous_trainable_params.items():
                if n.startswith(params_to_skip):
                    continue
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")

    @require_vision
    def test_training_vlm_beta_non_zero(self):
        dataset = load_dataset("trl-internal-testing/zen-image", "conversational_prompt_only", split="train")

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                beta=0.1,  # set beta to non-zero value to test the case where the reference model is used
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                report_to="none",
            )
            trainer = GRPOTrainer(
                model="trl-internal-testing/tiny-Qwen2_5_VLForConditionalGeneration",
                reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
                args=training_args,
                train_dataset=dataset,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the params have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")

    @require_vision
    @require_peft
    def test_training_vlm_peft(self):
        model = AutoModelForImageTextToText.from_pretrained(
            "trl-internal-testing/tiny-Qwen2_5_VLForConditionalGeneration"
        )
        base_param_names = [f"base_model.model.{n}" for n, _ in model.named_parameters()]
        dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                report_to="none",
            )
            trainer = GRPOTrainer(
                model=model,
                reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
                args=training_args,
                train_dataset=dataset,
                peft_config=LoraConfig(target_modules=["q_proj", "v_proj"]),
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the peft params have changed and the base model params have not changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                if n in base_param_names:  # We expect the base model params to be the same
                    self.assertTrue(torch.allclose(param, new_param), f"Parameter {n} has changed.")
                elif "base_layer" not in n:  # We expect the peft params to be different (except for the base layer)
                    self.assertFalse(torch.allclose(param, new_param), f"Parameter {n} has not changed.")

    @require_vision
    def test_training_vlm_and_importance_sampling(self):
        dataset = load_dataset("trl-internal-testing/zen-image", "conversational_prompt_only", split="train")

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                steps_per_generation=2,  # increase the steps per generation to trigger IS
                report_to="none",
            )
            trainer = GRPOTrainer(
                model="trl-internal-testing/tiny-Qwen2_5_VLForConditionalGeneration",
                reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
                args=training_args,
                train_dataset=dataset,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the params have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")

    @require_vision
    @require_liger_kernel
    def test_training_vlm_and_liger(self):
        dataset = load_dataset("trl-internal-testing/zen-image", "conversational_prompt_only", split="train")

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                use_liger_loss=True,  # Enable Liger loss
                report_to="none",
            )
            trainer = GRPOTrainer(
                model="trl-internal-testing/tiny-Qwen2_5_VLForConditionalGeneration",
                reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
                args=training_args,
                train_dataset=dataset,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the params have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")

    @require_vision
    def test_training_vlm_and_prompt_truncation(self):
        # If not handled properly, prompt truncation may truncate image token
        dataset = load_dataset("trl-internal-testing/zen-image", "conversational_prompt_only", split="train")

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                max_prompt_length=18,
                report_to="none",
            )
            trainer = GRPOTrainer(
                model="trl-internal-testing/tiny-Qwen2_5_VLForConditionalGeneration",
                reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
                args=training_args,
                train_dataset=dataset,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the params have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")

    def test_training_sequence_importance_sampling(self):
        dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GRPOConfig(
                output_dir=tmp_dir,
                learning_rate=0.1,  # increase the learning rate to speed up the test
                per_device_train_batch_size=3,  # reduce the batch size to reduce memory usage
                num_generations=3,  # reduce the number of generations to reduce memory usage
                max_completion_length=8,  # reduce the completion length to reduce memory usage
                num_iterations=2,  # the importance sampling weights won't be 0 in this case
                importance_sampling_level="sequence",
                report_to="none",
            )
            trainer = GRPOTrainer(
                model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
                reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
                args=training_args,
                train_dataset=dataset,
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])

            # Check that the params have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")


if __name__ == "__main__":
    unittest.main()