Spaces:
Paused
Paused
File size: 7,164 Bytes
a080fe0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# /// script
# dependencies = [
# "trl @ git+https://github.com/huggingface/trl.git",
# "peft",
# "math-verify",
# "latex2sympy2_extended",
# ]
# ///
"""
pip install math_verify
# For Qwen/Qwen2.5-VL-3B-Instruct
accelerate launch \
--config_file examples/accelerate_configs/deepspeed_zero3.yaml \
examples/scripts/grpo_vlm.py \
--model_name_or_path Qwen/Qwen2.5-VL-3B-Instruct \
--output_dir grpo-Qwen2.5-VL-3B-Instruct \
--learning_rate 1e-5 \
--gradient_checkpointing \
--torch_dtype bfloat16 \
--max_prompt_length 2048 \
--max_completion_length 1024 \
--use_vllm \
--vllm_mode colocate \
--use_peft \
--lora_target_modules "q_proj", "v_proj" \
--log_completions
# For HuggingFaceTB/SmolVLM2-2.2B-Instruct
pip install num2words
accelerate launch \
--config_file examples/accelerate_configs/deepspeed_zero3.yaml \
examples/scripts/grpo_vlm.py \
--model_name_or_path HuggingFaceTB/SmolVLM2-2.2B-Instruct \
--output_dir grpo-SmolVLM2-2.2B-Instruct \
--learning_rate 1e-5 \
--torch_dtype bfloat16 \
--max_prompt_length 2048 \
--max_completion_length 1024 \
--use_peft \
--lora_target_modules "q_proj", "v_proj" \
--log_completions \
--per_device_train_batch_size 1 \
--gradient_accumulation_steps 2 \
--num_generations 2 \
--bf16 True
"""
import torch
from datasets import load_dataset
from latex2sympy2_extended import NormalizationConfig
from math_verify import LatexExtractionConfig, parse, verify
from trl import (
GRPOConfig,
GRPOTrainer,
ModelConfig,
ScriptArguments,
TrlParser,
get_kbit_device_map,
get_peft_config,
get_quantization_config,
)
from trl.rewards import think_format_reward
if __name__ == "__main__":
parser = TrlParser((ScriptArguments, GRPOConfig, ModelConfig))
script_args, training_args, model_args = parser.parse_args_and_config()
################
# Model & Processor
################
torch_dtype = (
model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
)
quantization_config = get_quantization_config(model_args)
training_args.model_init_kwargs = dict(
revision=model_args.model_revision,
attn_implementation=model_args.attn_implementation,
torch_dtype=torch_dtype,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
################
# Dataset
################
dataset = load_dataset("lmms-lab/multimodal-open-r1-8k-verified", split="train")
dataset = dataset.train_test_split(test_size=100, seed=42)
SYSTEM_PROMPT = (
"A conversation between user and assistant. The user asks a question, and the assistant solves it. The "
"assistant first thinks about the reasoning process in the mind and then provides the user with the answer. "
"The reasoning process and answer are enclosed within <think></think> tags, i.e., <think>\nThis is my "
"reasoning.\n</think>\nThis is my answer."
)
def make_conversation(example):
prompt = [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": example["problem"]},
]
return {"prompt": prompt}
dataset = dataset.map(make_conversation)
# Filter have big images
def filter_big_images(example):
image = example["image"]
return image.size[0] < 512 and image.size[1] < 512
dataset = dataset.filter(filter_big_images)
def convert_to_rgb(example):
image = example["image"]
if image.mode != "RGB":
image = image.convert("RGB")
example["image"] = image
return example
dataset = dataset.map(convert_to_rgb)
train_dataset = dataset["train"]
eval_dataset = dataset["test"] if training_args.eval_strategy != "no" else None
################
# Reward Function for Training
################
def accuracy_reward(completions, solution: list[str], **kwargs):
"""Reward function that checks if the completion matches the ground truth.
- If both gold and prediction are parseable β use math verification.
- If not parseable β compare as normalized text.
"""
rewards = []
contents = [completion[0]["content"] for completion in completions]
for content, sol in zip(contents, solution):
try:
gold_parsed = parse(sol, extraction_mode="first_match")
except Exception:
gold_parsed = []
if len(gold_parsed) != 0:
# Try parsing predicted answer too
try:
answer_parsed = parse(
content,
extraction_config=[
LatexExtractionConfig(
normalization_config=NormalizationConfig(
nits=False,
malformed_operators=False,
basic_latex=True,
boxed="all",
units=True,
),
boxed_match_priority=0,
try_extract_without_anchor=False,
)
],
extraction_mode="first_match",
)
reward = float(verify(gold_parsed, answer_parsed))
except Exception as e:
print(f"verify failed: {e}, answer: {content}, gold: {sol}")
reward = None
else:
# fallback to text match
reward = float(content.strip().lower() == sol.strip().lower())
rewards.append(reward)
return rewards
################
# Training
################
trainer = GRPOTrainer(
model=model_args.model_name_or_path,
args=training_args,
reward_funcs=[think_format_reward, accuracy_reward],
train_dataset=train_dataset,
eval_dataset=eval_dataset,
peft_config=get_peft_config(model_args),
)
trainer.train()
# Save and push to hub
trainer.save_model(training_args.output_dir)
if training_args.push_to_hub:
trainer.push_to_hub(dataset_name=script_args.dataset_name)
|