import gradio as gr from transformers import AutoTokenizer, AutoModelForSequenceClassification # Load the model and tokenizer from Hugging Face model_name = "vsk21/spam_or_ham_bert-base-uncased" # Replace with your model's name model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Define the prediction function def classify_email(text): inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) outputs = model(**inputs) predictions = outputs.logits.argmax(axis=-1).item() return "Spam" if predictions == 1 else "Ham" # Create Gradio interface interface = gr.Interface(fn=classify_email, inputs="text", outputs="text", title="Email Classification", description="Enter an email message to classify it as Spam or Ham.") # Launch the interface interface.launch()