import gradio as gr from transformers import AutoTokenizer, AutoModelForSequenceClassification # Load model and tokenizer from Hugging Face model_name = "visalkao/sentiment-analysis-french" # Replace with your model's name model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Prediction function def classify_email(text): inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) outputs = model(**inputs) predictions = outputs.logits.argmax(axis=-1).item() return "Avis négatif" if predictions == 0 else "Avis positif" css = """ .centered-col { margin: 0 auto; width: 30%; } """ with gr.Blocks(css=css) as demo: # Title and description gr.Markdown("## Analyse du sentiment des avis des clients") gr.Markdown("Écrire un avis sur un produit.") # Input row with gr.Row(): with gr.Column(elem_classes="centered-col"): input_text = gr.Textbox(label="Input", placeholder="Avis...") # Output row with gr.Row(): with gr.Column(elem_classes="centered-col"): output_text = gr.Textbox(label="Output") # Submit button (full-width by default) btn = gr.Button("Envoyer") btn.click(fn=classify_email, inputs=input_text, outputs=output_text) demo.launch()