Monit & Visal commited on
Commit
342796f
·
1 Parent(s): dbece43
Files changed (2) hide show
  1. app.py +42 -0
  2. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
3
+
4
+ # Load model and tokenizer from Hugging Face
5
+ model_name = "visalkao/sentiment-analysis-french" # Replace with your model's name
6
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+
9
+ # Prediction function
10
+ def classify_email(text):
11
+ inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
12
+ outputs = model(**inputs)
13
+ predictions = outputs.logits.argmax(axis=-1).item()
14
+ return "Avis négatif" if predictions == 0 else "Avis positif"
15
+
16
+
17
+ css = """
18
+ .centered-col {
19
+ margin: 0 auto;
20
+ width: 30%;
21
+ }
22
+ """
23
+ with gr.Blocks(css=css) as demo:
24
+ # Title and description
25
+ gr.Markdown("## Analyse du sentiment des avis des clients")
26
+ gr.Markdown("Écrire un avis sur un produit.")
27
+
28
+ # Input row
29
+ with gr.Row():
30
+ with gr.Column(elem_classes="centered-col"):
31
+ input_text = gr.Textbox(label="Input", placeholder="Avis...")
32
+
33
+ # Output row
34
+ with gr.Row():
35
+ with gr.Column(elem_classes="centered-col"):
36
+ output_text = gr.Textbox(label="Output")
37
+
38
+ # Submit button (full-width by default)
39
+ btn = gr.Button("Envoyer")
40
+ btn.click(fn=classify_email, inputs=input_text, outputs=output_text)
41
+
42
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ gradio
2
+ transformers
3
+ torch