Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import torch | |
| from time import gmtime, strftime | |
| import os, sys, shutil | |
| from argparse import ArgumentParser | |
| from src.utils.preprocess import CropAndExtract | |
| from src.test_audio2coeff import Audio2Coeff | |
| from src.facerender.animate import AnimateFromCoeff | |
| from src.generate_batch import get_data | |
| from src.generate_facerender_batch import get_facerender_data | |
| from modules.text2speech import text2speech | |
| class SadTalker(): | |
| def __init__(self, checkpoint_path='checkpoints'): | |
| if torch.cuda.is_available() : | |
| device = "cuda" | |
| else: | |
| device = "cpu" | |
| current_code_path = sys.argv[0] | |
| modules_path = os.path.split(current_code_path)[0] | |
| current_root_path = './' | |
| os.environ['TORCH_HOME']=os.path.join(current_root_path, 'checkpoints') | |
| path_of_lm_croper = os.path.join(current_root_path, 'checkpoints', 'shape_predictor_68_face_landmarks.dat') | |
| path_of_net_recon_model = os.path.join(current_root_path, 'checkpoints', 'epoch_20.pth') | |
| dir_of_BFM_fitting = os.path.join(current_root_path, 'checkpoints', 'BFM_Fitting') | |
| wav2lip_checkpoint = os.path.join(current_root_path, 'checkpoints', 'wav2lip.pth') | |
| audio2pose_checkpoint = os.path.join(current_root_path, 'checkpoints', 'auido2pose_00140-model.pth') | |
| audio2pose_yaml_path = os.path.join(current_root_path, 'config', 'auido2pose.yaml') | |
| audio2exp_checkpoint = os.path.join(current_root_path, 'checkpoints', 'auido2exp_00300-model.pth') | |
| audio2exp_yaml_path = os.path.join(current_root_path, 'config', 'auido2exp.yaml') | |
| free_view_checkpoint = os.path.join(current_root_path, 'checkpoints', 'facevid2vid_00189-model.pth.tar') | |
| mapping_checkpoint = os.path.join(current_root_path, 'checkpoints', 'mapping_00229-model.pth.tar') | |
| facerender_yaml_path = os.path.join(current_root_path, 'config', 'facerender.yaml') | |
| #init model | |
| print(path_of_lm_croper) | |
| self.preprocess_model = CropAndExtract(path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting, device) | |
| print(audio2pose_checkpoint) | |
| self.audio_to_coeff = Audio2Coeff(audio2pose_checkpoint, audio2pose_yaml_path, | |
| audio2exp_checkpoint, audio2exp_yaml_path, wav2lip_checkpoint, device) | |
| print(free_view_checkpoint) | |
| self.animate_from_coeff = AnimateFromCoeff(free_view_checkpoint, mapping_checkpoint, | |
| facerender_yaml_path, device) | |
| self.device = device | |
| def test(self, source_image, driven_audio, result_dir): | |
| time_tag = strftime("%Y_%m_%d_%H.%M.%S") | |
| save_dir = os.path.join(result_dir, time_tag) | |
| os.makedirs(save_dir, exist_ok=True) | |
| input_dir = os.path.join(save_dir, 'input') | |
| os.makedirs(input_dir, exist_ok=True) | |
| print(source_image) | |
| pic_path = os.path.join(input_dir, os.path.basename(source_image)) | |
| shutil.move(source_image, input_dir) | |
| if os.path.isfile(driven_audio): | |
| audio_path = os.path.join(input_dir, os.path.basename(driven_audio)) | |
| shutil.move(driven_audio, input_dir) | |
| else: | |
| text2speech | |
| os.makedirs(save_dir, exist_ok=True) | |
| pose_style = 0 | |
| #crop image and extract 3dmm from image | |
| first_frame_dir = os.path.join(save_dir, 'first_frame_dir') | |
| os.makedirs(first_frame_dir, exist_ok=True) | |
| first_coeff_path, crop_pic_path = self.preprocess_model.generate(pic_path, first_frame_dir) | |
| if first_coeff_path is None: | |
| raise AttributeError("No face is detected") | |
| #audio2ceoff | |
| batch = get_data(first_coeff_path, audio_path, self.device) | |
| coeff_path = self.audio_to_coeff.generate(batch, save_dir, pose_style) | |
| #coeff2video | |
| batch_size = 4 | |
| data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path, batch_size) | |
| self.animate_from_coeff.generate(data, save_dir) | |
| video_name = data['video_name'] | |
| print(f'The generated video is named {video_name} in {save_dir}') | |
| return os.path.join(save_dir, video_name+'.mp4'), os.path.join(save_dir, video_name+'.mp4') | |
