Spaces:
Sleeping
Sleeping
Vineela Gampa
commited on
Fixing build yet another time
Browse files- backend.py +52 -27
- web/analyzer.html +13 -4
- web/past_data.html +25 -2
- web/script.js +1 -0
backend.py
CHANGED
@@ -24,8 +24,7 @@ from bert import analyze_with_clinicalBert, classify_disease_and_severity, extra
|
|
24 |
from disease_links import diseases as disease_links
|
25 |
from disease_steps import disease_next_steps
|
26 |
from disease_support import disease_doctor_specialty, disease_home_care
|
27 |
-
import
|
28 |
-
from typing import Optional, List
|
29 |
|
30 |
model = genai.GenerativeModel('gemini-1.5-flash')
|
31 |
df = pd.read_csv("measurement.csv")
|
@@ -43,7 +42,21 @@ api = APIRouter(prefix="/api")
|
|
43 |
app.include_router(api)
|
44 |
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
app.mount("/app", StaticFiles(directory="web", html=True), name="web")
|
|
|
47 |
|
48 |
app.add_middleware(
|
49 |
CORSMiddleware,
|
@@ -82,15 +95,13 @@ try:
|
|
82 |
except Exception as e:
|
83 |
raise RuntimeError(f"Failed to configure Firebase: {e}")
|
84 |
|
|
|
|
|
|
|
85 |
|
86 |
class ChatResponse(BaseModel):
|
87 |
answer: str
|
88 |
|
89 |
-
|
90 |
-
class ChatRequest(BaseModel):
|
91 |
-
question: str
|
92 |
-
user_id: Optional[str] = "anonymous"
|
93 |
-
|
94 |
class ReportData(BaseModel):
|
95 |
user_id: str
|
96 |
reportDate: Optional[str] = None
|
@@ -158,16 +169,7 @@ def ocr_text_from_image(image_bytes: bytes) -> str:
|
|
158 |
print(response_text)
|
159 |
|
160 |
return response_text
|
161 |
-
|
162 |
-
@app.post("/chat/", response_model=ChatResponse)
|
163 |
-
async def chat_endpoint(request: ChatRequest):
|
164 |
-
"""
|
165 |
-
Chatbot endpoint that answers questions based on the last analyzed document and user history.
|
166 |
-
"""
|
167 |
-
global EXTRACTED_TEXT_CACHE
|
168 |
-
if not EXTRACTED_TEXT_CACHE:
|
169 |
-
raise HTTPException(status_code=400, detail="Please provide a document context by analyzing text first.")
|
170 |
-
|
171 |
try:
|
172 |
reports_ref = db.collection('users').document(request.user_id).collection('reports')
|
173 |
docs = reports_ref.order_by('timestamp', direction=firestore.Query.DESCENDING).limit(10).stream()
|
@@ -178,8 +180,35 @@ async def chat_endpoint(request: ChatRequest):
|
|
178 |
history_text += f"Report from {report_data.get('timestamp', 'N/A')}:\n{report_data.get('ocr_text', 'No OCR text found')}\n\n"
|
179 |
except Exception as e:
|
180 |
history_text = "No past reports found for this user."
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
full_document_text = EXTRACTED_TEXT_CACHE + "\n\n" + "PAST REPORTS:\n" + history_text
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
try:
|
185 |
full_prompt = system_prompt_chat.format(
|
@@ -205,6 +234,7 @@ async def analyze(
|
|
205 |
filename = file.filename.lower()
|
206 |
detected_diseases = set()
|
207 |
ocr_full = ""
|
|
|
208 |
if filename.endswith(".pdf"):
|
209 |
pdf_bytes = await file.read()
|
210 |
image_bytes_list = extract_images_from_pdf_bytes(pdf_bytes)
|
@@ -225,22 +255,19 @@ async def analyze(
|
|
225 |
return {"message": "Gemini model not available; please use BERT model."}
|
226 |
|
227 |
found_diseases = extract_non_negated_keywords(ocr_full)
|
228 |
-
print(f"CALLING FOUND DISEASES: {found_diseases}")
|
229 |
past = detect_past_diseases(ocr_full)
|
230 |
-
print(f"CALLING PAST DISEASES: {past}")
|
231 |
|
232 |
for disease in found_diseases:
|
233 |
if disease in past:
|
234 |
severity = classify_disease_and_severity(disease)
|
235 |
detected_diseases.add(((f"{disease}(detected as historical condition, but still under risk.)"), severity))
|
236 |
-
print(f"DETECTED DISEASES(PAST): {detected_diseases}")
|
237 |
else:
|
238 |
severity = classify_disease_and_severity(disease)
|
239 |
detected_diseases.add((disease, severity))
|
240 |
-
|
241 |
|
242 |
-
|
243 |
-
print("Detected diseases:",
|
244 |
ranges = analyze_measurements(ocr_full, df)
|
245 |
|
246 |
|
@@ -274,7 +301,6 @@ async def analyze(
|
|
274 |
next_steps_range = disease_next_steps.get(condition.lower(), ['Consult a doctor'])
|
275 |
specialist_range = disease_doctor_specialty.get(condition.lower(), "General Practitioner")
|
276 |
home_care_range = disease_home_care.get(condition.lower(), [])
|
277 |
-
print(f"HELLO!: {measurement}")
|
278 |
|
279 |
condition_version = condition.upper()
|
280 |
severity_version = severity.upper()
|
@@ -288,12 +314,11 @@ async def analyze(
|
|
288 |
"info_link": link_range
|
289 |
})
|
290 |
|
291 |
-
|
292 |
ranges = analyze_measurements(ocr_full, df)
|
293 |
print(analyze_measurements(ocr_full, df))
|
294 |
# print ("Ranges is being printed", ranges)
|
295 |
historical_med_data = detect_past_diseases(ocr_full)
|
296 |
-
print("***End of Code***")
|
297 |
|
298 |
return {
|
299 |
"ocr_text": ocr_full.strip(),
|
|
|
24 |
from disease_links import diseases as disease_links
|
25 |
from disease_steps import disease_next_steps
|
26 |
from disease_support import disease_doctor_specialty, disease_home_care
|
27 |
+
from past_reports import router as reports_router, db_fetch_reports
|
|
|
28 |
|
29 |
model = genai.GenerativeModel('gemini-1.5-flash')
|
30 |
df = pd.read_csv("measurement.csv")
|
|
|
42 |
app.include_router(api)
|
43 |
|
44 |
|
45 |
+
'''app.add_middleware(
|
46 |
+
CORSMiddleware,
|
47 |
+
allow_origins=[
|
48 |
+
"http://localhost:8002"
|
49 |
+
"http://localhost:9000"
|
50 |
+
"http://localhost:5501"
|
51 |
+
],
|
52 |
+
allow_credentials=True,
|
53 |
+
allow_methods=["*"],
|
54 |
+
allow_headers=["*"],
|
55 |
+
)'''
|
56 |
+
|
57 |
+
|
58 |
app.mount("/app", StaticFiles(directory="web", html=True), name="web")
|
59 |
+
app.include_router(reports_router)
|
60 |
|
61 |
app.add_middleware(
|
62 |
CORSMiddleware,
|
|
|
95 |
except Exception as e:
|
96 |
raise RuntimeError(f"Failed to configure Firebase: {e}")
|
97 |
|
98 |
+
class ChatRequest(BaseModel):
|
99 |
+
user_id: Optional[str] = "anonymous"
|
100 |
+
question: str
|
101 |
|
102 |
class ChatResponse(BaseModel):
|
103 |
answer: str
|
104 |
|
|
|
|
|
|
|
|
|
|
|
105 |
class ReportData(BaseModel):
|
106 |
user_id: str
|
107 |
reportDate: Optional[str] = None
|
|
|
169 |
print(response_text)
|
170 |
|
171 |
return response_text
|
172 |
+
def get_past_reports_from_firestore(user_id: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
try:
|
174 |
reports_ref = db.collection('users').document(request.user_id).collection('reports')
|
175 |
docs = reports_ref.order_by('timestamp', direction=firestore.Query.DESCENDING).limit(10).stream()
|
|
|
180 |
history_text += f"Report from {report_data.get('timestamp', 'N/A')}:\n{report_data.get('ocr_text', 'No OCR text found')}\n\n"
|
181 |
except Exception as e:
|
182 |
history_text = "No past reports found for this user."
|
183 |
+
return history_text
|
184 |
+
|
185 |
+
def get_past_reports_from_sqllite(user_id: str):
|
186 |
+
try:
|
187 |
+
reports = db_fetch_reports(user_id=user_id, limit=10, offset=0)
|
188 |
+
|
189 |
+
history_text = ""
|
190 |
+
for report in reports:
|
191 |
+
history_text += f"Report from {report.get('report_date', 'N/A')}:\n{report.get('ocr_text', 'No OCR text found')}\n\n"
|
192 |
+
except Exception as e:
|
193 |
+
history_text = "No past reports found for this user."
|
194 |
+
return history_text
|
195 |
+
|
196 |
+
@app.post("/chat/", response_model=ChatResponse)
|
197 |
+
async def chat_endpoint(request: ChatRequest):
|
198 |
+
"""
|
199 |
+
Chatbot endpoint that answers questions based on the last analyzed document and user history.
|
200 |
+
"""
|
201 |
+
print("Received chat request for user:", request.user_id)
|
202 |
+
#history_text = get_past_reports_from_firestore(request.user_id)
|
203 |
+
history_text = get_past_reports_from_sqllite(request.user_id)
|
204 |
+
|
205 |
full_document_text = EXTRACTED_TEXT_CACHE + "\n\n" + "PAST REPORTS:\n" + history_text
|
206 |
+
|
207 |
+
if not full_document_text:
|
208 |
+
raise HTTPException(status_code=400, detail="No past reports or current data exists for this user")
|
209 |
+
|
210 |
+
|
211 |
+
|
212 |
|
213 |
try:
|
214 |
full_prompt = system_prompt_chat.format(
|
|
|
234 |
filename = file.filename.lower()
|
235 |
detected_diseases = set()
|
236 |
ocr_full = ""
|
237 |
+
print("Received request for file:", filename)
|
238 |
if filename.endswith(".pdf"):
|
239 |
pdf_bytes = await file.read()
|
240 |
image_bytes_list = extract_images_from_pdf_bytes(pdf_bytes)
|
|
|
255 |
return {"message": "Gemini model not available; please use BERT model."}
|
256 |
|
257 |
found_diseases = extract_non_negated_keywords(ocr_full)
|
|
|
258 |
past = detect_past_diseases(ocr_full)
|
|
|
259 |
|
260 |
for disease in found_diseases:
|
261 |
if disease in past:
|
262 |
severity = classify_disease_and_severity(disease)
|
263 |
detected_diseases.add(((f"{disease}(detected as historical condition, but still under risk.)"), severity))
|
|
|
264 |
else:
|
265 |
severity = classify_disease_and_severity(disease)
|
266 |
detected_diseases.add((disease, severity))
|
267 |
+
|
268 |
|
269 |
+
|
270 |
+
print("Detected diseases:", detected_diseases)
|
271 |
ranges = analyze_measurements(ocr_full, df)
|
272 |
|
273 |
|
|
|
301 |
next_steps_range = disease_next_steps.get(condition.lower(), ['Consult a doctor'])
|
302 |
specialist_range = disease_doctor_specialty.get(condition.lower(), "General Practitioner")
|
303 |
home_care_range = disease_home_care.get(condition.lower(), [])
|
|
|
304 |
|
305 |
condition_version = condition.upper()
|
306 |
severity_version = severity.upper()
|
|
|
314 |
"info_link": link_range
|
315 |
})
|
316 |
|
317 |
+
|
318 |
ranges = analyze_measurements(ocr_full, df)
|
319 |
print(analyze_measurements(ocr_full, df))
|
320 |
# print ("Ranges is being printed", ranges)
|
321 |
historical_med_data = detect_past_diseases(ocr_full)
|
|
|
322 |
|
323 |
return {
|
324 |
"ocr_text": ocr_full.strip(),
|
web/analyzer.html
CHANGED
@@ -190,6 +190,8 @@
|
|
190 |
</ul>
|
191 |
</nav>
|
192 |
|
|
|
|
|
193 |
<script>
|
194 |
const hamburger = document.getElementById("hamburger");
|
195 |
const mobileMenu = document.getElementById("mobile-menu");
|
@@ -470,7 +472,7 @@
|
|
470 |
|
471 |
let data;
|
472 |
try {
|
473 |
-
const res = await fetch("
|
474 |
method: "POST",
|
475 |
body: formData,
|
476 |
});
|
@@ -512,11 +514,18 @@
|
|
512 |
}
|
513 |
|
514 |
if (currentUser) {
|
515 |
-
await saveAnalysis(currentUser.uid, {
|
516 |
reportDate: date,
|
517 |
ocr_text: extractedText,
|
518 |
resolutions: recs,
|
519 |
measurements: findings,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
520 |
});
|
521 |
}
|
522 |
|
@@ -525,7 +534,7 @@
|
|
525 |
|
526 |
async function postReportToBackend(report) {
|
527 |
try {
|
528 |
-
const response = await fetch('
|
529 |
method: 'POST',
|
530 |
headers: {
|
531 |
'Content-Type': 'application/json',
|
@@ -559,7 +568,7 @@
|
|
559 |
chat.scrollTop = chat.scrollHeight;
|
560 |
|
561 |
try {
|
562 |
-
const response = await fetch(
|
563 |
method: "POST",
|
564 |
headers: {
|
565 |
"Content-Type": "application/json",
|
|
|
190 |
</ul>
|
191 |
</nav>
|
192 |
|
193 |
+
<!--Shared helpers (API base + query params) -->
|
194 |
+
<script src="script.js"></script>
|
195 |
<script>
|
196 |
const hamburger = document.getElementById("hamburger");
|
197 |
const mobileMenu = document.getElementById("mobile-menu");
|
|
|
472 |
|
473 |
let data;
|
474 |
try {
|
475 |
+
const res = await fetch(api("analyze/"), {
|
476 |
method: "POST",
|
477 |
body: formData,
|
478 |
});
|
|
|
514 |
}
|
515 |
|
516 |
if (currentUser) {
|
517 |
+
/*await saveAnalysis(currentUser.uid, {
|
518 |
reportDate: date,
|
519 |
ocr_text: extractedText,
|
520 |
resolutions: recs,
|
521 |
measurements: findings,
|
522 |
+
});*/
|
523 |
+
await postReportToBackend({
|
524 |
+
user_id: currentUser.email,
|
525 |
+
report_date: new Date(),
|
526 |
+
ocr_text: extractedText,
|
527 |
+
anomalies: JSON.stringify(recs),
|
528 |
+
measurements: JSON.stringify(findings),
|
529 |
});
|
530 |
}
|
531 |
|
|
|
534 |
|
535 |
async function postReportToBackend(report) {
|
536 |
try {
|
537 |
+
const response = await fetch(api('save_report/'), {
|
538 |
method: 'POST',
|
539 |
headers: {
|
540 |
'Content-Type': 'application/json',
|
|
|
568 |
chat.scrollTop = chat.scrollHeight;
|
569 |
|
570 |
try {
|
571 |
+
const response = await fetch(api('chat/'), {
|
572 |
method: "POST",
|
573 |
headers: {
|
574 |
"Content-Type": "application/json",
|
web/past_data.html
CHANGED
@@ -114,8 +114,31 @@
|
|
114 |
onAuthStateChanged(auth, async (user) => {
|
115 |
if (user) {
|
116 |
statusEl.textContent = `Signed in as ${user.email || user.uid}`;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
-
|
119 |
const q = query(
|
120 |
collection(db, "users", user.uid, "analyses"),
|
121 |
orderBy("createdAt", "desc")
|
@@ -150,7 +173,7 @@
|
|
150 |
} catch (error) {
|
151 |
console.error('Error fetching analyses:', error);
|
152 |
recsEl.innerHTML = '<p class="text-sm text-red-500">Error loading analyses.</p>';
|
153 |
-
}
|
154 |
|
155 |
} else {
|
156 |
statusEl.textContent = "Not signed in.";
|
|
|
114 |
onAuthStateChanged(auth, async (user) => {
|
115 |
if (user) {
|
116 |
statusEl.textContent = `Signed in as ${user.email || user.uid}`;
|
117 |
+
|
118 |
+
async function getPastReports() {
|
119 |
+
try {
|
120 |
+
const url = api('reports/', { user_id: user.email });
|
121 |
+
const response = await fetch(url, {
|
122 |
+
method: 'GET',
|
123 |
+
headers: {
|
124 |
+
'Content-Type': 'application/json',
|
125 |
+
},
|
126 |
+
});
|
127 |
+
if (!response.ok) {
|
128 |
+
throw new Error(`HTTP error! status: ${response.status}`);
|
129 |
+
}
|
130 |
+
const data = await response.json();
|
131 |
+
console.log('Report successfully sent to backend:', data);
|
132 |
+
recsEl.innerHTML = data.map(doc => renderAnalysis(doc)).join("");
|
133 |
+
} catch (error) {
|
134 |
+
console.error('Error sending report to backend:', error);
|
135 |
+
recsEl.innerHTML = '<p class="text-sm text-gray-500">No saved analyses yet.</p>';
|
136 |
+
}
|
137 |
+
}
|
138 |
+
getPastReports();
|
139 |
+
|
140 |
|
141 |
+
/* try {
|
142 |
const q = query(
|
143 |
collection(db, "users", user.uid, "analyses"),
|
144 |
orderBy("createdAt", "desc")
|
|
|
173 |
} catch (error) {
|
174 |
console.error('Error fetching analyses:', error);
|
175 |
recsEl.innerHTML = '<p class="text-sm text-red-500">Error loading analyses.</p>';
|
176 |
+
}*/
|
177 |
|
178 |
} else {
|
179 |
statusEl.textContent = "Not signed in.";
|
web/script.js
CHANGED
@@ -27,6 +27,7 @@
|
|
27 |
: API_BASE + (path.startsWith("/") ? path : "/" + path);
|
28 |
|
29 |
const url = new URL(full);
|
|
|
30 |
if (params && typeof params === "object") {
|
31 |
for (const [k, v] of Object.entries(params)) {
|
32 |
if (v === undefined || v === null) continue;
|
|
|
27 |
: API_BASE + (path.startsWith("/") ? path : "/" + path);
|
28 |
|
29 |
const url = new URL(full);
|
30 |
+
console.log("Calling api :",url);
|
31 |
if (params && typeof params === "object") {
|
32 |
for (const [k, v] of Object.entries(params)) {
|
33 |
if (v === undefined || v === null) continue;
|