Spaces:
Sleeping
Sleeping
File size: 8,632 Bytes
d3a44ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<title>Document Analyzer | CTRL + ALT + HEAL</title>
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<script src="https://cdn.tailwindcss.com"></script>
</head>
<body class="bg-[#F7F8F9] font-sans text-gray-800 min-h-screen">
<!-- Navbar -->
<nav class="bg-white border border-gray-200 px-6 py-4 mb-8">
<div class="container mx-auto flex justify-between items-center">
<a href="index.html" class="text-2xl font-bold text-[#6B9080]">CTRL + ALT + HEAL</a>
<ul class="flex space-x-6 text-sm font-medium text-gray-700">
<li><a href="index.html" class="hover:text-[#6B9080]">Home</a></li>
<li><a href="analyzer.html" class="hover:text-[#6B9080]">Analyzer</a></li>
<li><a href="profile.html" class="hover:text-[#6B9080]">Profile</a></li>
<li><a href="login.html" class="hover:text-[#6B9080]">Login</a></li>
<li><a href="about.html" class="hover:text-[#6B9080]">About Us</a></li>
</ul>
</div>
</nav>
<main class="max-w-5xl mx-auto px-4 mb-16">
<!-- Upload & Score Section -->
<div class="bg-white border border-gray-200 rounded-lg p-6 mb-8">
<h2 class="text-xl font-semibold text-[#6B9080] mb-4">Upload & Analyze Your Medical PDF or Image</h2>
<input type="file" id="pdf-upload" accept=".pdf, image/*"
class="w-full mb-4 border border-gray-300 rounded px-3 py-2" />
<input type="date" id="report-date"
class="w-full mb-4 border border-gray-300 rounded px-3 py-2"
placeholder="Report Date" />
<button id="analyze-btn"
class="bg-[#6B9080] text-white px-4 py-2 rounded hover:bg-[#5B7A6F]">
Analyze with AI
</button>
<p id="loading" class="text-gray-600 mt-2">No file uploaded yet.</p>
</div>
<!-- Extracted Text -->
<div class="bg-white border border-gray-200 rounded-lg p-6 mb-8">
<h3 class="text-lg font-semibold text-[#6B9080] mb-3">Extracted Text</h3>
<div id="text-output" class="whitespace-pre-wrap h-60 overflow-auto bg-[#FAFBFC] text-sm text-gray-800 border border-gray-200 rounded p-4">
OCR results will appear here.
</div>
</div>
<!-- AI Recommendations -->
<div class="bg-white border border-gray-200 rounded-lg p-6 mb-8">
<h3 class="text-lg font-semibold text-[#6B9080] mb-3">AI Recommendations</h3>
<div id="recommendations-output" class="whitespace-pre-wrap h-60 overflow-auto bg-[#FAFBFC] text-sm text-gray-800 border border-gray-200 rounded p-4">
Recommendations will appear here.
</div>
</div>
<!-- QA Chatbot -->
<div class="bg-white border border-gray-200 rounded-lg p-6 mb-8">
<h3 class="text-lg font-semibold text-[#6B9080] mb-3">Ask Chatbot</h3>
<div id="chat-output" class="space-y-2 h-48 overflow-auto bg-[#FAFBFC] text-sm text-gray-800 border border-gray-200 rounded p-4">
<p><strong>Chatbot:</strong> Ask me something about your report</p>
</div>
<div class="flex mt-4 gap-2">
<input type="text" id="user-question" placeholder="Ask a question..."
class="flex-1 border border-gray-300 rounded px-3 py-2 focus:outline-none focus:ring-2 focus:ring-[#6B9080]" />
<button id="ask-btn" class="bg-[#6B9080] text-white px-4 py-2 rounded hover:bg-[#5B7A6F]">
Ask
</button>
</div>
</div>
</main>
<script type="module">
import { pipeline, env } from 'https://cdn.jsdelivr.net/npm/@xenova/[email protected]';
const loadingEl = document.getElementById('loading');
const textOutput = document.getElementById('text-output');
const recsOutput = document.getElementById('recommendations-output');
let extractedText = "";
document.getElementById('pdf-upload').addEventListener('change', function() {
loadingEl.textContent = this.files.length
? `File selected: ${this.files[0].name}`
: 'No file uploaded yet.';
});
document.getElementById('analyze-btn').addEventListener('click', async () => {
const file = document.getElementById('pdf-upload').files[0];
const date = document.getElementById('report-date').value;
if (!file) { loadingEl.textContent = "Please upload a file first."; return; }
if (!date) { loadingEl.textContent = "Please select the report date."; return; }
loadingEl.textContent = "Processing with AI...";
textOutput.textContent = "";
recsOutput.textContent = "";
const formData = new FormData();
formData.append('file', file);
formData.append('model', 'bert');
try {
const res = await fetch('http://localhost:9000/analyze/', {
method: 'POST', body: formData
});
if (!res.ok) throw new Error(await res.text());
const data = await res.json();
// OCR text
extractedText = data.ocr_text || "";
textOutput.textContent = extractedText;
console.log("AI recs from backend:", data.resolutions);
let recs = [];
if (Array.isArray(data.resolutions)) {
recs = data.resolutions;
} else if (data.resolutions && typeof data.resolutions === 'object') {
recs = [data.resolutions];
}
if (recs.length) {
recsOutput.innerHTML = `
<ul class="list-disc list-inside space-y-4">
${recs.map((rec, i) => `
<li>
<strong>Finding ${i+1}:</strong> ${rec.findings} (Severity: ${rec.severity})
<ul class="list-disc list-inside ml-6 space-y-1">
<li><em>Recommendations:</em>
<ul class="list-disc list-inside ml-6">
${(rec.recommendations || []).map(r=>`<li>${r}</li>`).join('')}
</ul>
</li>
<li><em>Treatment:</em> ${rec.treatment_suggestions || 'Not available'}</li>
<li><em>Home Care:</em>
<ul class="list-disc list-inside ml-6">
${(rec.home_care_guidance || []).map(r=>`<li>${r}</li>`).join('')}
</ul>
</li>
${rec.info_link
? `<li><a href="${rec.info_link}" target="_blank" class="text-blue-600 underline">Learn more</a></li>`
: ''}
</ul>
</li>
`).join('')}
</ul>
`;
} else {
recsOutput.textContent = "No recommendations found.";
}
} catch (err) {
console.error(err);
loadingEl.textContent = "Error during analysis: " + err.message;
return;
}
// fake score(random)
try {
const scoreRes = await fetch('http://localhost:9000/api/analyze-health', {
method: 'POST',
headers: {'Content-Type':'application/json'},
body: JSON.stringify({ text: extractedText })
});
if (!scoreRes.ok) throw new Error(await scoreRes.text());
const { score, rationale } = await scoreRes.json();
loadingEl.textContent = `Last health score: ${score} (${rationale})`;
const progressData = JSON.parse(localStorage.getItem('progressData') || '[]');
progressData.push({ date: new Date().toISOString().split('T')[0], score });
localStorage.setItem('progressData', JSON.stringify(progressData));
} catch (err) {
console.error(err);
loadingEl.textContent = "Error during scoring: " + err.message;
}
//q&a chatbo t
document.getElementById('ask-btn').onclick = async () => {
const q = document.getElementById('user-question').value.trim();
if (!q) return;
const chat = document.getElementById('chat-output');
chat.innerHTML += `<p><strong>You:</strong> ${q}</p>`;
chat.scrollTop = chat.scrollHeight;
env.allowLocalModels = false;
const qa = await pipeline('question-answering','Xenova/distilbert-base-uncased-distilled-squad');
const out = await qa(q, extractedText);
chat.innerHTML += `<p><strong>Chatbot:</strong> ${out.answer}</p>`;
document.getElementById('user-question').value = '';
chat.scrollTop = chat.scrollHeight;
};
});
</script>
</body>
</html>
|