feat: Add percentile-sorted probability visualization to debug tab
Browse files- Implement Chart.js probability distribution visualization
- Sort chart by frequency percentile (100% → 0%) to reveal Gaussian targeting
- Add comprehensive probability distribution analysis documentation
- Enable statistical markers (μ, σ) with proper sampling zone visualization
Fixes visualization issue where probability-sorted charts couldn't show
difficulty-based frequency targeting effectiveness.
Signed-off-by: Vimal Kumar <[email protected]>
- crossword-app/backend-py/docs/probability_distribution_analysis.md +297 -0
- crossword-app/backend-py/src/services/thematic_word_service.py +48 -5
- crossword-app/frontend/package-lock.json +40 -0
- crossword-app/frontend/package.json +4 -1
- crossword-app/frontend/src/components/DebugTab.jsx +357 -0
- crossword-app/frontend/src/styles/puzzle.css +139 -0
crossword-app/backend-py/docs/probability_distribution_analysis.md
ADDED
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Probability Distribution Analysis: Theory vs. Practice
|
2 |
+
|
3 |
+
## Executive Summary
|
4 |
+
|
5 |
+
This document analyzes the **actual behavior** of the crossword word selection system, complementing the theoretical framework described in [`composite_scoring_algorithm.md`](composite_scoring_algorithm.md). While the composite scoring theory is sound, empirical analysis reveals significant discrepancies between intended and actual behavior.
|
6 |
+
|
7 |
+
### Key Findings
|
8 |
+
- **Similarity dominates**: Difficulty-based frequency preferences are too weak to create distinct selection patterns
|
9 |
+
- **Exponential distributions**: Actual probability distributions follow exponential decay, not normal distributions
|
10 |
+
- **Statistical misconceptions**: Using normal distribution concepts (μ ± σ) on exponentially decaying data is misleading
|
11 |
+
- **Mode-mean divergence**: Statistical measures don't represent where selections actually occur
|
12 |
+
|
13 |
+
## Observed Probability Distributions
|
14 |
+
|
15 |
+
### Data Source: Technology Topic Analysis
|
16 |
+
Using the debug visualization with `ENABLE_DEBUG_TAB=true`, we analyzed the actual probability distributions for different difficulties:
|
17 |
+
|
18 |
+
```
|
19 |
+
Topic: Technology
|
20 |
+
Candidates: 150 words
|
21 |
+
Temperature: 0.2
|
22 |
+
Selection method: Softmax with composite scoring
|
23 |
+
```
|
24 |
+
|
25 |
+
### Empirical Results
|
26 |
+
|
27 |
+
#### Easy Difficulty
|
28 |
+
```
|
29 |
+
Mean Position: Word #42 (IMPLEMENT)
|
30 |
+
Distribution Width (σ): 33.4 words
|
31 |
+
σ Sampling Zone: 70.5% of probability mass
|
32 |
+
σ Range: Words #9-#76
|
33 |
+
Top Probability: 2.3%
|
34 |
+
```
|
35 |
+
|
36 |
+
#### Medium Difficulty
|
37 |
+
```
|
38 |
+
Mean Position: Word #60 (COMPUTERIZED)
|
39 |
+
Distribution Width (σ): 42.9 words
|
40 |
+
σ Sampling Zone: 61.0% of probability mass
|
41 |
+
σ Range: Words #17-#103
|
42 |
+
Top Probability: 1.5%
|
43 |
+
```
|
44 |
+
|
45 |
+
#### Hard Difficulty
|
46 |
+
```
|
47 |
+
Mean Position: Word #37 (DIGITISATION)
|
48 |
+
Distribution Width (σ): 40.2 words
|
49 |
+
σ Sampling Zone: 82.1% of probability mass
|
50 |
+
σ Range: Words #1-#77
|
51 |
+
Top Probability: 4.1%
|
52 |
+
```
|
53 |
+
|
54 |
+
### Critical Observation
|
55 |
+
**All three difficulty levels show similar exponential decay patterns**, with only minor variations in peak height and mean position. This indicates the frequency-based difficulty targeting is not working as intended.
|
56 |
+
|
57 |
+
## Statistical Misconceptions in Current Approach
|
58 |
+
|
59 |
+
### The Mode-Mean Divergence Problem
|
60 |
+
|
61 |
+
The visualization shows a red line (μ) at positions 37-60, but the highest probability bars are at positions 0-5. This reveals a fundamental statistical concept:
|
62 |
+
|
63 |
+
```
|
64 |
+
Distribution Type: Exponentially Decaying (Highly Skewed)
|
65 |
+
|
66 |
+
Mode (Peak): Position 0-3 (2-4% probability)
|
67 |
+
Median: Position ~15 (Where 50% of probability mass is reached)
|
68 |
+
Mean (μ): Position 37-60 (Weighted average position)
|
69 |
+
```
|
70 |
+
|
71 |
+
### Why μ is "Wrong" for Understanding Selection
|
72 |
+
|
73 |
+
In an exponential distribution with long tail:
|
74 |
+
|
75 |
+
1. **Mode (0-3)**: Where individual words have highest probability
|
76 |
+
2. **Practical sampling zone**: First 10-20 words contain ~60-80% of probability mass
|
77 |
+
3. **Mean (37-60)**: Pulled far right by 100+ words with tiny probabilities
|
78 |
+
|
79 |
+
The mean doesn't represent where sampling actually occurs—it's mathematically correct but practically misleading.
|
80 |
+
|
81 |
+
### Standard Deviation Misapplication
|
82 |
+
|
83 |
+
The σ visualization assumes a normal distribution where:
|
84 |
+
- **Normal assumption**: μ ± σ contains ~68% of probability mass
|
85 |
+
- **Our reality**: Exponential distribution with μ ± σ often missing the high-probability words entirely
|
86 |
+
|
87 |
+
For exponential distributions, percentiles or cumulative probability are more meaningful than standard deviation.
|
88 |
+
|
89 |
+
## Actual vs. Expected Behavior Analysis
|
90 |
+
|
91 |
+
### What Should Happen (Theory)
|
92 |
+
According to the composite scoring algorithm:
|
93 |
+
|
94 |
+
- **Easy**: Gaussian peak at 90th percentile → common words dominate
|
95 |
+
- **Medium**: Gaussian peak at 50th percentile → balanced selection
|
96 |
+
- **Hard**: Gaussian peak at 20th percentile → rare words favored
|
97 |
+
|
98 |
+
### What Actually Happens (Empirical)
|
99 |
+
```
|
100 |
+
Easy: MULTIMEDIA, TECH, TECHNOLOGY, IMPLEMENTING... (similar to others)
|
101 |
+
Medium: TECH, TECHNOLOGY, COMPUTERIZED, TECHNOLOGICAL... (similar pattern)
|
102 |
+
Hard: TECH, TECHNOLOGY, DIGITISATION, TECHNICIAN... (still similar)
|
103 |
+
```
|
104 |
+
|
105 |
+
**All difficulties select similar high-similarity technology words**, regardless of their frequency percentiles.
|
106 |
+
|
107 |
+
### Root Cause Analysis
|
108 |
+
|
109 |
+
The problem isn't in the Gaussian curves—they work correctly. The issue is in the composite formula:
|
110 |
+
|
111 |
+
```python
|
112 |
+
# Current approach
|
113 |
+
composite = 0.5 * similarity + 0.5 * frequency_score
|
114 |
+
|
115 |
+
# What happens with real data:
|
116 |
+
# High-similarity word: similarity=0.9, wrong_freq_score=0.1
|
117 |
+
# → composite = 0.5*0.9 + 0.5*0.1 = 0.50
|
118 |
+
|
119 |
+
# Medium-similarity word: similarity=0.7, perfect_freq_score=1.0
|
120 |
+
# → composite = 0.5*0.7 + 0.5*1.0 = 0.85
|
121 |
+
```
|
122 |
+
|
123 |
+
Even with perfect frequency alignment, a word needs **very high similarity** to compete with high-similarity words that have wrong frequency profiles.
|
124 |
+
|
125 |
+
## Sampling Mechanics Deep Dive
|
126 |
+
|
127 |
+
### np.random.choice Behavior
|
128 |
+
The selection uses `np.random.choice` with:
|
129 |
+
- **Without replacement**: Each word can only be selected once
|
130 |
+
- **Probability weighting**: Based on computed probabilities
|
131 |
+
- **Sample size**: 10 words from 150 candidates
|
132 |
+
|
133 |
+
### Where Selections Actually Occur
|
134 |
+
Despite μ being at position 37-60, most actual selections come from positions 0-30 because:
|
135 |
+
|
136 |
+
1. **High probabilities concentrate early**: First 20 words often have 60%+ of total probability
|
137 |
+
2. **Without replacement effect**: Once high-probability words are chosen, selection moves to next-highest
|
138 |
+
3. **Exponential decay**: Probability drops rapidly, making later positions unlikely
|
139 |
+
|
140 |
+
This explains why the green bars (selected words) appear mostly in the left portion of all distributions, regardless of where μ is located.
|
141 |
+
|
142 |
+
## Better Visualization Approaches
|
143 |
+
|
144 |
+
### Current Problems
|
145 |
+
- **μ ± σ assumes normality**: Not applicable to exponential distributions
|
146 |
+
- **Mean position misleading**: Doesn't show where selection actually occurs
|
147 |
+
- **Standard deviation meaningless**: For highly skewed distributions
|
148 |
+
|
149 |
+
### Recommended Alternatives
|
150 |
+
|
151 |
+
#### 1. Cumulative Probability Visualization
|
152 |
+
```
|
153 |
+
First 10 words: 45% of total probability mass
|
154 |
+
First 20 words: 65% of total probability mass
|
155 |
+
First 30 words: 78% of total probability mass
|
156 |
+
First 50 words: 90% of total probability mass
|
157 |
+
```
|
158 |
+
|
159 |
+
#### 2. Percentile Markers Instead of μ ± σ
|
160 |
+
```
|
161 |
+
P50 (Median): Position where 50% of probability mass is reached
|
162 |
+
P75: Position where 75% of probability mass is reached
|
163 |
+
P90: Position where 90% of probability mass is reached
|
164 |
+
```
|
165 |
+
|
166 |
+
#### 3. Mode Annotation
|
167 |
+
- Show the actual peak (mode) position
|
168 |
+
- Mark the top-5 highest probability words
|
169 |
+
- Distinguish between statistical mean and practical selection zone
|
170 |
+
|
171 |
+
#### 4. Selection Concentration Metric
|
172 |
+
```
|
173 |
+
Effective Selection Range: Positions covering 80% of selection probability
|
174 |
+
Selection Concentration: Gini coefficient of probability distribution
|
175 |
+
```
|
176 |
+
|
177 |
+
## Difficulty Differentiation Failure
|
178 |
+
|
179 |
+
### Expected Pattern
|
180 |
+
Different difficulty levels should show visually distinct probability distribution patterns:
|
181 |
+
- **Easy**: Steep peak at common words, rapid falloff
|
182 |
+
- **Medium**: Moderate peak, balanced distribution
|
183 |
+
- **Hard**: Peak shifted toward rare words
|
184 |
+
|
185 |
+
### Observed Pattern
|
186 |
+
All difficulties show similar exponential decay curves with:
|
187 |
+
- Similar-shaped distributions
|
188 |
+
- Similar high-probability words (TECH, TECHNOLOGY, etc.)
|
189 |
+
- Only minor differences in peak height and position
|
190 |
+
|
191 |
+
### Quantitative Evidence
|
192 |
+
```
|
193 |
+
Similarity scores of top words (all difficulties):
|
194 |
+
TECHNOLOGY: 0.95+ similarity to "technology"
|
195 |
+
TECH: 0.90+ similarity to "technology"
|
196 |
+
MULTIMEDIA: 0.85+ similarity to "technology"
|
197 |
+
|
198 |
+
These high semantic matches dominate regardless of their frequency percentiles.
|
199 |
+
```
|
200 |
+
|
201 |
+
## Recommended Fixes
|
202 |
+
|
203 |
+
### 1. Multiplicative Scoring (Immediate Fix)
|
204 |
+
Replace additive formula with multiplicative gates:
|
205 |
+
|
206 |
+
```python
|
207 |
+
# Current (additive)
|
208 |
+
composite = 0.5 * similarity + 0.5 * frequency_score
|
209 |
+
|
210 |
+
# Proposed (multiplicative)
|
211 |
+
frequency_modifier = get_frequency_modifier(percentile, difficulty)
|
212 |
+
composite = similarity * frequency_modifier
|
213 |
+
|
214 |
+
# Where frequency_modifier ranges 0.1-1.2 instead of 0.0-1.0
|
215 |
+
```
|
216 |
+
|
217 |
+
**Effect**: Frequency acts as a gate rather than just another score component.
|
218 |
+
|
219 |
+
### 2. Two-Stage Filtering (Structural Fix)
|
220 |
+
```python
|
221 |
+
# Stage 1: Filter by frequency percentile ranges
|
222 |
+
easy_candidates = [w for w in candidates if w.percentile > 0.7] # Common words
|
223 |
+
medium_candidates = [w for w in candidates if 0.3 < w.percentile < 0.7] # Medium words
|
224 |
+
hard_candidates = [w for w in candidates if w.percentile < 0.3] # Rare words
|
225 |
+
|
226 |
+
# Stage 2: Rank filtered candidates by similarity
|
227 |
+
selected = softmax_selection(filtered_candidates, similarity_only=True)
|
228 |
+
```
|
229 |
+
|
230 |
+
**Effect**: Guarantees different frequency pools for each difficulty, then optimizes within each pool.
|
231 |
+
|
232 |
+
### 3. Exponential Temperature Scaling (Parameter Fix)
|
233 |
+
Use different temperature values by difficulty to create more distinct distributions:
|
234 |
+
|
235 |
+
```python
|
236 |
+
easy_temperature = 0.1 # Very deterministic (sharp peak)
|
237 |
+
medium_temperature = 0.3 # Moderate randomness
|
238 |
+
hard_temperature = 0.2 # Deterministic but different peak
|
239 |
+
```
|
240 |
+
|
241 |
+
### 4. Adaptive Frequency Weights (Dynamic Fix)
|
242 |
+
```python
|
243 |
+
# Calculate frequency dominance needed to overcome similarity differences
|
244 |
+
max_similarity_diff = max_similarity - min_similarity # e.g., 0.95 - 0.6 = 0.35
|
245 |
+
required_freq_weight = max_similarity_diff / (1 - max_similarity_diff) # e.g., 0.35/0.65 ≈ 0.54
|
246 |
+
|
247 |
+
# Use higher frequency weight when similarity ranges are wide
|
248 |
+
adaptive_weight = min(0.8, required_freq_weight)
|
249 |
+
```
|
250 |
+
|
251 |
+
## Empirical Data Summary
|
252 |
+
|
253 |
+
### Word Selection Patterns (Technology Topic)
|
254 |
+
```
|
255 |
+
Easy Mode Top Selections:
|
256 |
+
- MULTIMEDIA (percentile: ?, similarity: high)
|
257 |
+
- IMPLEMENT (percentile: ?, similarity: high)
|
258 |
+
- TECHNOLOGICAL (percentile: ?, similarity: high)
|
259 |
+
|
260 |
+
Hard Mode Top Selections:
|
261 |
+
- TECH (percentile: ?, similarity: very high)
|
262 |
+
- DIGITISATION (percentile: likely low, similarity: high)
|
263 |
+
- TECHNICIAN (percentile: ?, similarity: high)
|
264 |
+
```
|
265 |
+
|
266 |
+
### Statistical Summary
|
267 |
+
- **σ Width Variation**: Easy (33.4) vs Medium (42.9) vs Hard (40.2) - only 28% difference
|
268 |
+
- **Peak Variation**: 1.5% to 4.1% - moderate difference
|
269 |
+
- **Mean Position Variation**: Position 37 to 60 - 62% range but all in middle zone
|
270 |
+
- **Selection Concentration**: Most selections from first 30 words in all difficulties
|
271 |
+
|
272 |
+
## Conclusions
|
273 |
+
|
274 |
+
### The Core Problem
|
275 |
+
The difficulty-aware word selection system is theoretically sound but practically ineffective because:
|
276 |
+
|
277 |
+
1. **Semantic similarity signals are too strong** compared to frequency signals
|
278 |
+
2. **Additive scoring allows high-similarity words to dominate** regardless of frequency appropriateness
|
279 |
+
3. **Statistical visualization assumes normal distributions** but data is exponentially skewed
|
280 |
+
|
281 |
+
### Success Metrics for Fixes
|
282 |
+
A working system should show:
|
283 |
+
|
284 |
+
1. **Visually distinct probability distributions** for each difficulty
|
285 |
+
2. **Different word frequency profiles** in actual selections
|
286 |
+
3. **Mode and mean alignment** with intended difficulty targets
|
287 |
+
4. **Meaningful σ ranges** that represent actual selection zones
|
288 |
+
|
289 |
+
### Next Steps
|
290 |
+
1. Implement multiplicative scoring or two-stage filtering
|
291 |
+
2. Update visualization to use percentiles instead of μ ± σ
|
292 |
+
3. Collect empirical data on word frequency percentiles in actual selections
|
293 |
+
4. Validate fixes show distinct patterns across difficulties
|
294 |
+
|
295 |
+
---
|
296 |
+
|
297 |
+
*This analysis represents empirical findings from the debug visualization system, revealing gaps between the theoretical composite scoring model and its practical implementation.*
|
crossword-app/backend-py/src/services/thematic_word_service.py
CHANGED
@@ -744,7 +744,7 @@ class ThematicWordService:
|
|
744 |
return probabilities
|
745 |
|
746 |
def _softmax_weighted_selection(self, candidates: List[Dict[str, Any]],
|
747 |
-
num_words: int, temperature: float = None, difficulty: str = "medium") -> List[Dict[str, Any]]:
|
748 |
"""
|
749 |
Select words using softmax-based probabilistic sampling weighted by composite scores.
|
750 |
|
@@ -784,10 +784,17 @@ class ThematicWordService:
|
|
784 |
difficulty: Difficulty level ("easy", "medium", "hard") for frequency weighting
|
785 |
|
786 |
Returns:
|
787 |
-
|
|
|
|
|
788 |
"""
|
789 |
if len(candidates) <= num_words:
|
790 |
-
|
|
|
|
|
|
|
|
|
|
|
791 |
|
792 |
if temperature is None:
|
793 |
temperature = self.similarity_temperature
|
@@ -832,6 +839,7 @@ class ThematicWordService:
|
|
832 |
|
833 |
# Return selected candidates
|
834 |
selected_candidates = [candidates[i] for i in selected_indices]
|
|
|
835 |
|
836 |
logger.info(f"🎲 Composite softmax selection (T={temperature:.2f}, difficulty={difficulty}): {len(selected_candidates)} from {len(candidates)} candidates")
|
837 |
|
@@ -845,7 +853,36 @@ class ThematicWordService:
|
|
845 |
tier = word_data.get('tier', 'unknown')
|
846 |
logger.info(f" {word:<15} sim:{similarity:.3f} perc:{percentile:.3f} comp:{composite:.3f} ({tier})")
|
847 |
|
848 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
849 |
|
850 |
def _detect_multiple_themes(self, inputs: List[str], max_themes: int = 3) -> List[np.ndarray]:
|
851 |
"""Detect multiple themes using clustering."""
|
@@ -1167,12 +1204,13 @@ class ThematicWordService:
|
|
1167 |
final_words = []
|
1168 |
|
1169 |
# Select words using either softmax weighted selection or traditional random selection
|
|
|
1170 |
if self.use_softmax_selection:
|
1171 |
logger.info(f"🎲 Using softmax weighted selection on all {len(candidate_words)} candidates (temperature: {self.similarity_temperature})")
|
1172 |
|
1173 |
# Apply softmax selection to ALL candidate words regardless of clue quality
|
1174 |
if len(candidate_words) > requested_words:
|
1175 |
-
selected_words = self._softmax_weighted_selection(candidate_words, requested_words, difficulty=difficulty)
|
1176 |
final_words.extend(selected_words)
|
1177 |
else:
|
1178 |
final_words.extend(candidate_words) # Take all words if not enough
|
@@ -1243,6 +1281,11 @@ class ThematicWordService:
|
|
1243 |
for word_data in final_words
|
1244 |
]
|
1245 |
}
|
|
|
|
|
|
|
|
|
|
|
1246 |
result["debug"] = debug_data
|
1247 |
logger.info(f"🐛 Debug data collected: {len(debug_data['thematic_pool'])} thematic words, {len(debug_data['candidate_words'])} candidates, {len(debug_data['selected_words'])} selected")
|
1248 |
|
|
|
744 |
return probabilities
|
745 |
|
746 |
def _softmax_weighted_selection(self, candidates: List[Dict[str, Any]],
|
747 |
+
num_words: int, temperature: float = None, difficulty: str = "medium") -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
|
748 |
"""
|
749 |
Select words using softmax-based probabilistic sampling weighted by composite scores.
|
750 |
|
|
|
784 |
difficulty: Difficulty level ("easy", "medium", "hard") for frequency weighting
|
785 |
|
786 |
Returns:
|
787 |
+
Tuple of (selected_word_dictionaries, probability_distribution_data)
|
788 |
+
- selected_word_dictionaries: Words chosen for crossword
|
789 |
+
- probability_distribution_data: Dict with candidate probabilities for debug visualization
|
790 |
"""
|
791 |
if len(candidates) <= num_words:
|
792 |
+
# Return all candidates with trivial probability distribution
|
793 |
+
prob_data = {
|
794 |
+
"probabilities": [{"word": c["word"], "probability": 1.0/len(candidates), "composite_score": 0.0, "selected": True, "rank": i+1}
|
795 |
+
for i, c in enumerate(candidates)]
|
796 |
+
}
|
797 |
+
return candidates, prob_data
|
798 |
|
799 |
if temperature is None:
|
800 |
temperature = self.similarity_temperature
|
|
|
839 |
|
840 |
# Return selected candidates
|
841 |
selected_candidates = [candidates[i] for i in selected_indices]
|
842 |
+
selected_word_set = {candidates[i]["word"] for i in selected_indices}
|
843 |
|
844 |
logger.info(f"🎲 Composite softmax selection (T={temperature:.2f}, difficulty={difficulty}): {len(selected_candidates)} from {len(candidates)} candidates")
|
845 |
|
|
|
853 |
tier = word_data.get('tier', 'unknown')
|
854 |
logger.info(f" {word:<15} sim:{similarity:.3f} perc:{percentile:.3f} comp:{composite:.3f} ({tier})")
|
855 |
|
856 |
+
# Create probability distribution data for debug visualization
|
857 |
+
prob_distribution = []
|
858 |
+
for i, candidate in enumerate(candidates):
|
859 |
+
prob_distribution.append({
|
860 |
+
"word": candidate["word"],
|
861 |
+
"probability": float(probabilities[i]),
|
862 |
+
"composite_score": float(composite_scores[i]),
|
863 |
+
"selected": candidate["word"] in selected_word_set,
|
864 |
+
"rank": i + 1,
|
865 |
+
"similarity": candidate["similarity"],
|
866 |
+
"tier": candidate.get("tier", "unknown"),
|
867 |
+
"percentile": self.word_percentiles.get(candidate["word"].lower(), 0.0)
|
868 |
+
})
|
869 |
+
|
870 |
+
# Sort by probability descending for display
|
871 |
+
prob_distribution.sort(key=lambda x: x["probability"], reverse=True)
|
872 |
+
|
873 |
+
# Update ranks based on probability order
|
874 |
+
for i, item in enumerate(prob_distribution):
|
875 |
+
item["probability_rank"] = i + 1
|
876 |
+
|
877 |
+
prob_data = {
|
878 |
+
"probabilities": prob_distribution,
|
879 |
+
"temperature": temperature,
|
880 |
+
"difficulty": difficulty,
|
881 |
+
"total_candidates": len(candidates),
|
882 |
+
"selected_count": len(selected_candidates)
|
883 |
+
}
|
884 |
+
|
885 |
+
return selected_candidates, prob_data
|
886 |
|
887 |
def _detect_multiple_themes(self, inputs: List[str], max_themes: int = 3) -> List[np.ndarray]:
|
888 |
"""Detect multiple themes using clustering."""
|
|
|
1204 |
final_words = []
|
1205 |
|
1206 |
# Select words using either softmax weighted selection or traditional random selection
|
1207 |
+
probability_data = None
|
1208 |
if self.use_softmax_selection:
|
1209 |
logger.info(f"🎲 Using softmax weighted selection on all {len(candidate_words)} candidates (temperature: {self.similarity_temperature})")
|
1210 |
|
1211 |
# Apply softmax selection to ALL candidate words regardless of clue quality
|
1212 |
if len(candidate_words) > requested_words:
|
1213 |
+
selected_words, probability_data = self._softmax_weighted_selection(candidate_words, requested_words, difficulty=difficulty)
|
1214 |
final_words.extend(selected_words)
|
1215 |
else:
|
1216 |
final_words.extend(candidate_words) # Take all words if not enough
|
|
|
1281 |
for word_data in final_words
|
1282 |
]
|
1283 |
}
|
1284 |
+
|
1285 |
+
# Add probability distribution data if available
|
1286 |
+
if probability_data:
|
1287 |
+
debug_data["probability_distribution"] = probability_data
|
1288 |
+
|
1289 |
result["debug"] = debug_data
|
1290 |
logger.info(f"🐛 Debug data collected: {len(debug_data['thematic_pool'])} thematic words, {len(debug_data['candidate_words'])} candidates, {len(debug_data['selected_words'])} selected")
|
1291 |
|
crossword-app/frontend/package-lock.json
CHANGED
@@ -8,7 +8,10 @@
|
|
8 |
"name": "crossword-frontend",
|
9 |
"version": "1.0.0",
|
10 |
"dependencies": {
|
|
|
|
|
11 |
"react": "^18.2.0",
|
|
|
12 |
"react-dom": "^18.2.0"
|
13 |
},
|
14 |
"devDependencies": {
|
@@ -850,6 +853,12 @@
|
|
850 |
"@jridgewell/sourcemap-codec": "^1.4.14"
|
851 |
}
|
852 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
853 |
"node_modules/@nodelib/fs.scandir": {
|
854 |
"version": "2.1.5",
|
855 |
"resolved": "https://registry.npmjs.org/@nodelib/fs.scandir/-/fs.scandir-2.1.5.tgz",
|
@@ -1669,6 +1678,27 @@
|
|
1669 |
"url": "https://github.com/chalk/chalk?sponsor=1"
|
1670 |
}
|
1671 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1672 |
"node_modules/color-convert": {
|
1673 |
"version": "2.0.1",
|
1674 |
"resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz",
|
@@ -3816,6 +3846,16 @@
|
|
3816 |
"node": ">=0.10.0"
|
3817 |
}
|
3818 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3819 |
"node_modules/react-dom": {
|
3820 |
"version": "18.3.1",
|
3821 |
"resolved": "https://registry.npmjs.org/react-dom/-/react-dom-18.3.1.tgz",
|
|
|
8 |
"name": "crossword-frontend",
|
9 |
"version": "1.0.0",
|
10 |
"dependencies": {
|
11 |
+
"chart.js": "^4.5.0",
|
12 |
+
"chartjs-plugin-annotation": "^3.1.0",
|
13 |
"react": "^18.2.0",
|
14 |
+
"react-chartjs-2": "^5.3.0",
|
15 |
"react-dom": "^18.2.0"
|
16 |
},
|
17 |
"devDependencies": {
|
|
|
853 |
"@jridgewell/sourcemap-codec": "^1.4.14"
|
854 |
}
|
855 |
},
|
856 |
+
"node_modules/@kurkle/color": {
|
857 |
+
"version": "0.3.4",
|
858 |
+
"resolved": "https://registry.npmjs.org/@kurkle/color/-/color-0.3.4.tgz",
|
859 |
+
"integrity": "sha512-M5UknZPHRu3DEDWoipU6sE8PdkZ6Z/S+v4dD+Ke8IaNlpdSQah50lz1KtcFBa2vsdOnwbbnxJwVM4wty6udA5w==",
|
860 |
+
"license": "MIT"
|
861 |
+
},
|
862 |
"node_modules/@nodelib/fs.scandir": {
|
863 |
"version": "2.1.5",
|
864 |
"resolved": "https://registry.npmjs.org/@nodelib/fs.scandir/-/fs.scandir-2.1.5.tgz",
|
|
|
1678 |
"url": "https://github.com/chalk/chalk?sponsor=1"
|
1679 |
}
|
1680 |
},
|
1681 |
+
"node_modules/chart.js": {
|
1682 |
+
"version": "4.5.0",
|
1683 |
+
"resolved": "https://registry.npmjs.org/chart.js/-/chart.js-4.5.0.tgz",
|
1684 |
+
"integrity": "sha512-aYeC/jDgSEx8SHWZvANYMioYMZ2KX02W6f6uVfyteuCGcadDLcYVHdfdygsTQkQ4TKn5lghoojAsPj5pu0SnvQ==",
|
1685 |
+
"license": "MIT",
|
1686 |
+
"dependencies": {
|
1687 |
+
"@kurkle/color": "^0.3.0"
|
1688 |
+
},
|
1689 |
+
"engines": {
|
1690 |
+
"pnpm": ">=8"
|
1691 |
+
}
|
1692 |
+
},
|
1693 |
+
"node_modules/chartjs-plugin-annotation": {
|
1694 |
+
"version": "3.1.0",
|
1695 |
+
"resolved": "https://registry.npmjs.org/chartjs-plugin-annotation/-/chartjs-plugin-annotation-3.1.0.tgz",
|
1696 |
+
"integrity": "sha512-EkAed6/ycXD/7n0ShrlT1T2Hm3acnbFhgkIEJLa0X+M6S16x0zwj1Fv4suv/2bwayCT3jGPdAtI9uLcAMToaQQ==",
|
1697 |
+
"license": "MIT",
|
1698 |
+
"peerDependencies": {
|
1699 |
+
"chart.js": ">=4.0.0"
|
1700 |
+
}
|
1701 |
+
},
|
1702 |
"node_modules/color-convert": {
|
1703 |
"version": "2.0.1",
|
1704 |
"resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz",
|
|
|
3846 |
"node": ">=0.10.0"
|
3847 |
}
|
3848 |
},
|
3849 |
+
"node_modules/react-chartjs-2": {
|
3850 |
+
"version": "5.3.0",
|
3851 |
+
"resolved": "https://registry.npmjs.org/react-chartjs-2/-/react-chartjs-2-5.3.0.tgz",
|
3852 |
+
"integrity": "sha512-UfZZFnDsERI3c3CZGxzvNJd02SHjaSJ8kgW1djn65H1KK8rehwTjyrRKOG3VTMG8wtHZ5rgAO5oTHtHi9GCCmw==",
|
3853 |
+
"license": "MIT",
|
3854 |
+
"peerDependencies": {
|
3855 |
+
"chart.js": "^4.1.1",
|
3856 |
+
"react": "^16.8.0 || ^17.0.0 || ^18.0.0 || ^19.0.0"
|
3857 |
+
}
|
3858 |
+
},
|
3859 |
"node_modules/react-dom": {
|
3860 |
"version": "18.3.1",
|
3861 |
"resolved": "https://registry.npmjs.org/react-dom/-/react-dom-18.3.1.tgz",
|
crossword-app/frontend/package.json
CHANGED
@@ -13,7 +13,10 @@
|
|
13 |
"format": "prettier --write \"src/**/*.{js,jsx,css,md}\""
|
14 |
},
|
15 |
"dependencies": {
|
|
|
|
|
16 |
"react": "^18.2.0",
|
|
|
17 |
"react-dom": "^18.2.0"
|
18 |
},
|
19 |
"devDependencies": {
|
@@ -39,4 +42,4 @@
|
|
39 |
"last 1 safari version"
|
40 |
]
|
41 |
}
|
42 |
-
}
|
|
|
13 |
"format": "prettier --write \"src/**/*.{js,jsx,css,md}\""
|
14 |
},
|
15 |
"dependencies": {
|
16 |
+
"chart.js": "^4.5.0",
|
17 |
+
"chartjs-plugin-annotation": "^3.1.0",
|
18 |
"react": "^18.2.0",
|
19 |
+
"react-chartjs-2": "^5.3.0",
|
20 |
"react-dom": "^18.2.0"
|
21 |
},
|
22 |
"devDependencies": {
|
|
|
42 |
"last 1 safari version"
|
43 |
]
|
44 |
}
|
45 |
+
}
|
crossword-app/frontend/src/components/DebugTab.jsx
CHANGED
@@ -1,4 +1,26 @@
|
|
1 |
import React, { useState } from 'react';
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
const DebugTab = ({ debugData }) => {
|
4 |
const [activeSection, setActiveSection] = useState('overview');
|
@@ -18,6 +40,7 @@ const DebugTab = ({ debugData }) => {
|
|
18 |
{ id: 'thematic-pool', label: 'Thematic Pool' },
|
19 |
{ id: 'candidates', label: 'Candidates' },
|
20 |
{ id: 'selection', label: 'Selection' },
|
|
|
21 |
{ id: 'selected', label: 'Selected Words' }
|
22 |
];
|
23 |
|
@@ -218,6 +241,339 @@ const DebugTab = ({ debugData }) => {
|
|
218 |
</div>
|
219 |
);
|
220 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
const renderSelected = () => {
|
222 |
const selected = debugData.selected_words || [];
|
223 |
|
@@ -236,6 +592,7 @@ const DebugTab = ({ debugData }) => {
|
|
236 |
case 'thematic-pool': return renderThematicPool();
|
237 |
case 'candidates': return renderCandidates();
|
238 |
case 'selection': return renderSelection();
|
|
|
239 |
case 'selected': return renderSelected();
|
240 |
default: return renderOverview();
|
241 |
}
|
|
|
1 |
import React, { useState } from 'react';
|
2 |
+
import {
|
3 |
+
Chart as ChartJS,
|
4 |
+
CategoryScale,
|
5 |
+
LinearScale,
|
6 |
+
BarElement,
|
7 |
+
Title,
|
8 |
+
Tooltip,
|
9 |
+
Legend,
|
10 |
+
} from 'chart.js';
|
11 |
+
import annotationPlugin from 'chartjs-plugin-annotation';
|
12 |
+
import { Bar } from 'react-chartjs-2';
|
13 |
+
|
14 |
+
// Register Chart.js components
|
15 |
+
ChartJS.register(
|
16 |
+
CategoryScale,
|
17 |
+
LinearScale,
|
18 |
+
BarElement,
|
19 |
+
Title,
|
20 |
+
Tooltip,
|
21 |
+
Legend,
|
22 |
+
annotationPlugin
|
23 |
+
);
|
24 |
|
25 |
const DebugTab = ({ debugData }) => {
|
26 |
const [activeSection, setActiveSection] = useState('overview');
|
|
|
40 |
{ id: 'thematic-pool', label: 'Thematic Pool' },
|
41 |
{ id: 'candidates', label: 'Candidates' },
|
42 |
{ id: 'selection', label: 'Selection' },
|
43 |
+
{ id: 'probabilities', label: 'Probabilities' },
|
44 |
{ id: 'selected', label: 'Selected Words' }
|
45 |
];
|
46 |
|
|
|
241 |
</div>
|
242 |
);
|
243 |
|
244 |
+
const renderProbabilities = () => {
|
245 |
+
const probData = debugData.probability_distribution;
|
246 |
+
|
247 |
+
if (!probData || !probData.probabilities) {
|
248 |
+
return (
|
249 |
+
<div className="debug-section">
|
250 |
+
<h3>Probability Distribution</h3>
|
251 |
+
<p>Probability data not available (only shown with softmax selection).</p>
|
252 |
+
</div>
|
253 |
+
);
|
254 |
+
}
|
255 |
+
|
256 |
+
try {
|
257 |
+
const probabilities = probData.probabilities;
|
258 |
+
|
259 |
+
// Sort by percentile (descending) to show 100% -> 0% left to right
|
260 |
+
const sortedByPercentile = [...probabilities].sort((a, b) => b.percentile - a.percentile);
|
261 |
+
|
262 |
+
// Calculate distribution statistics based on position in sorted array
|
263 |
+
const mean = sortedByPercentile.reduce((sum, p, i) => sum + (p.probability || 0) * i, 0);
|
264 |
+
const variance = sortedByPercentile.reduce((sum, p, i) => sum + (p.probability || 0) * Math.pow(i - mean, 2), 0);
|
265 |
+
const sigma = Math.sqrt(Math.max(0, variance)); // Ensure no negative variance
|
266 |
+
const meanWordIndex = Math.max(0, Math.min(sortedByPercentile.length - 1, Math.round(mean)));
|
267 |
+
const sigmaRangeStart = Math.max(0, Math.round(mean - sigma));
|
268 |
+
const sigmaRangeEnd = Math.min(sortedByPercentile.length - 1, Math.round(mean + sigma));
|
269 |
+
|
270 |
+
// Calculate sampling statistics with bounds checking
|
271 |
+
const sigmaRangeProbMass = sortedByPercentile
|
272 |
+
.slice(sigmaRangeStart, sigmaRangeEnd + 1)
|
273 |
+
.reduce((sum, p) => sum + (p.probability || 0), 0);
|
274 |
+
|
275 |
+
// Prepare chart data - sorted by percentile to reveal Gaussian targeting
|
276 |
+
const chartData = {
|
277 |
+
labels: sortedByPercentile.map(p => `${p.word}\n(${(p.percentile * 100).toFixed(0)}%)`),
|
278 |
+
datasets: [
|
279 |
+
{
|
280 |
+
label: 'Selection Probability (%)',
|
281 |
+
data: sortedByPercentile.map(p => p.probability * 100),
|
282 |
+
backgroundColor: sortedByPercentile.map(p =>
|
283 |
+
p.selected ? 'rgba(76, 175, 80, 0.8)' : 'rgba(158, 158, 158, 0.6)'
|
284 |
+
),
|
285 |
+
borderColor: sortedByPercentile.map(p =>
|
286 |
+
p.selected ? 'rgba(76, 175, 80, 1)' : 'rgba(158, 158, 158, 0.8)'
|
287 |
+
),
|
288 |
+
borderWidth: 2
|
289 |
+
}
|
290 |
+
]
|
291 |
+
};
|
292 |
+
|
293 |
+
const chartOptions = {
|
294 |
+
responsive: true,
|
295 |
+
maintainAspectRatio: false,
|
296 |
+
plugins: {
|
297 |
+
legend: {
|
298 |
+
display: false
|
299 |
+
},
|
300 |
+
title: {
|
301 |
+
display: true,
|
302 |
+
text: `Probability Distribution by Frequency Percentile (Temperature: ${probData.temperature})`,
|
303 |
+
font: {
|
304 |
+
size: 16,
|
305 |
+
weight: 'bold'
|
306 |
+
}
|
307 |
+
},
|
308 |
+
tooltip: {
|
309 |
+
callbacks: {
|
310 |
+
title: function(context) {
|
311 |
+
const item = sortedByPercentile[context[0].dataIndex];
|
312 |
+
return `${item.word} ${item.selected ? '✓ SELECTED' : ''}`;
|
313 |
+
},
|
314 |
+
label: function(context) {
|
315 |
+
const item = sortedByPercentile[context.dataIndex];
|
316 |
+
return [
|
317 |
+
`Probability: ${(item.probability * 100).toFixed(2)}%`,
|
318 |
+
`Composite Score: ${item.composite_score.toFixed(3)}`,
|
319 |
+
`Similarity: ${item.similarity.toFixed(3)}`,
|
320 |
+
`Percentile: ${(item.percentile * 100).toFixed(1)}%`,
|
321 |
+
`Tier: ${item.tier.replace('tier_', '').replace('_', ' ')}`
|
322 |
+
];
|
323 |
+
}
|
324 |
+
},
|
325 |
+
backgroundColor: 'rgba(0, 0, 0, 0.8)',
|
326 |
+
titleColor: 'white',
|
327 |
+
bodyColor: 'white',
|
328 |
+
borderColor: 'rgba(255, 255, 255, 0.3)',
|
329 |
+
borderWidth: 1
|
330 |
+
}
|
331 |
+
},
|
332 |
+
scales: {
|
333 |
+
x: {
|
334 |
+
title: {
|
335 |
+
display: true,
|
336 |
+
text: 'Words (sorted by frequency percentile: 100% → 0%)',
|
337 |
+
font: {
|
338 |
+
size: 14,
|
339 |
+
weight: 'bold'
|
340 |
+
}
|
341 |
+
},
|
342 |
+
ticks: {
|
343 |
+
maxRotation: 45,
|
344 |
+
minRotation: 45,
|
345 |
+
font: {
|
346 |
+
size: 11,
|
347 |
+
weight: 'bold'
|
348 |
+
}
|
349 |
+
}
|
350 |
+
},
|
351 |
+
y: {
|
352 |
+
title: {
|
353 |
+
display: true,
|
354 |
+
text: 'Selection Probability (%)',
|
355 |
+
font: {
|
356 |
+
size: 14,
|
357 |
+
weight: 'bold'
|
358 |
+
}
|
359 |
+
},
|
360 |
+
beginAtZero: true,
|
361 |
+
ticks: {
|
362 |
+
callback: function(value) {
|
363 |
+
return value.toFixed(1) + '%';
|
364 |
+
}
|
365 |
+
}
|
366 |
+
}
|
367 |
+
},
|
368 |
+
interaction: {
|
369 |
+
intersect: false,
|
370 |
+
mode: 'index'
|
371 |
+
}
|
372 |
+
};
|
373 |
+
|
374 |
+
// Configure all plugins including annotation
|
375 |
+
const chartOptionsWithAnnotations = {
|
376 |
+
...chartOptions,
|
377 |
+
plugins: {
|
378 |
+
legend: {
|
379 |
+
display: false
|
380 |
+
},
|
381 |
+
title: {
|
382 |
+
display: true,
|
383 |
+
text: `Probability Distribution by Frequency Percentile (Temperature: ${probData.temperature})`,
|
384 |
+
font: {
|
385 |
+
size: 16,
|
386 |
+
weight: 'bold'
|
387 |
+
}
|
388 |
+
},
|
389 |
+
tooltip: {
|
390 |
+
callbacks: {
|
391 |
+
title: function(context) {
|
392 |
+
const item = sortedByPercentile[context[0].dataIndex];
|
393 |
+
return `${item.word} ${item.selected ? '✓ SELECTED' : ''}`;
|
394 |
+
},
|
395 |
+
label: function(context) {
|
396 |
+
const item = sortedByPercentile[context.dataIndex];
|
397 |
+
return [
|
398 |
+
`Probability: ${(item.probability * 100).toFixed(2)}%`,
|
399 |
+
`Composite Score: ${item.composite_score.toFixed(3)}`,
|
400 |
+
`Similarity: ${item.similarity.toFixed(3)}`,
|
401 |
+
`Percentile: ${(item.percentile * 100).toFixed(1)}%`,
|
402 |
+
`Tier: ${item.tier.replace('tier_', '').replace('_', ' ')}`
|
403 |
+
];
|
404 |
+
}
|
405 |
+
},
|
406 |
+
backgroundColor: 'rgba(0, 0, 0, 0.8)',
|
407 |
+
titleColor: 'white',
|
408 |
+
bodyColor: 'white',
|
409 |
+
borderColor: 'rgba(255, 255, 255, 0.3)',
|
410 |
+
borderWidth: 1
|
411 |
+
},
|
412 |
+
annotation: {
|
413 |
+
annotations: {
|
414 |
+
meanLine: {
|
415 |
+
type: 'line',
|
416 |
+
xMin: meanWordIndex,
|
417 |
+
xMax: meanWordIndex,
|
418 |
+
borderColor: 'rgba(255, 99, 132, 0.8)',
|
419 |
+
borderWidth: 3,
|
420 |
+
borderDash: [5, 5],
|
421 |
+
label: {
|
422 |
+
display: true,
|
423 |
+
content: 'μ',
|
424 |
+
position: 'start',
|
425 |
+
backgroundColor: 'rgba(255, 99, 132, 0.8)',
|
426 |
+
color: 'white',
|
427 |
+
font: {
|
428 |
+
weight: 'bold',
|
429 |
+
size: 12
|
430 |
+
}
|
431 |
+
}
|
432 |
+
},
|
433 |
+
sigmaBox: {
|
434 |
+
type: 'box',
|
435 |
+
xMin: sigmaRangeStart,
|
436 |
+
xMax: sigmaRangeEnd,
|
437 |
+
backgroundColor: 'rgba(54, 162, 235, 0.15)',
|
438 |
+
borderColor: 'rgba(54, 162, 235, 0.5)',
|
439 |
+
borderWidth: 2,
|
440 |
+
label: {
|
441 |
+
display: true,
|
442 |
+
content: `σ (${(sigmaRangeProbMass * 100).toFixed(1)}%)`,
|
443 |
+
position: 'center',
|
444 |
+
backgroundColor: 'rgba(54, 162, 235, 0.8)',
|
445 |
+
color: 'white',
|
446 |
+
font: {
|
447 |
+
weight: 'bold',
|
448 |
+
size: 11
|
449 |
+
}
|
450 |
+
}
|
451 |
+
},
|
452 |
+
sigmaStartLine: {
|
453 |
+
type: 'line',
|
454 |
+
xMin: sigmaRangeStart,
|
455 |
+
xMax: sigmaRangeStart,
|
456 |
+
borderColor: 'rgba(54, 162, 235, 0.8)',
|
457 |
+
borderWidth: 2,
|
458 |
+
borderDash: [3, 3],
|
459 |
+
label: {
|
460 |
+
display: true,
|
461 |
+
content: 'μ-σ',
|
462 |
+
position: 'start',
|
463 |
+
backgroundColor: 'rgba(54, 162, 235, 0.6)',
|
464 |
+
color: 'white',
|
465 |
+
font: {
|
466 |
+
size: 10
|
467 |
+
}
|
468 |
+
}
|
469 |
+
},
|
470 |
+
sigmaEndLine: {
|
471 |
+
type: 'line',
|
472 |
+
xMin: sigmaRangeEnd,
|
473 |
+
xMax: sigmaRangeEnd,
|
474 |
+
borderColor: 'rgba(54, 162, 235, 0.8)',
|
475 |
+
borderWidth: 2,
|
476 |
+
borderDash: [3, 3],
|
477 |
+
label: {
|
478 |
+
display: true,
|
479 |
+
content: 'μ+σ',
|
480 |
+
position: 'start',
|
481 |
+
backgroundColor: 'rgba(54, 162, 235, 0.6)',
|
482 |
+
color: 'white',
|
483 |
+
font: {
|
484 |
+
size: 10
|
485 |
+
}
|
486 |
+
}
|
487 |
+
}
|
488 |
+
}
|
489 |
+
}
|
490 |
+
}
|
491 |
+
};
|
492 |
+
|
493 |
+
return (
|
494 |
+
<div className="debug-section">
|
495 |
+
<h3>Probability Distribution ({probData.total_candidates} candidates)</h3>
|
496 |
+
<p>Selection probabilities from softmax algorithm (temperature: {probData.temperature}, difficulty: {probData.difficulty})</p>
|
497 |
+
|
498 |
+
<div className="prob-summary">
|
499 |
+
<div><strong>Selected:</strong> {probData.selected_count} words</div>
|
500 |
+
<div><strong>Top Probability:</strong> {(Math.max(...sortedByPercentile.map(p => p.probability)) * 100).toFixed(1)}%</div>
|
501 |
+
<div><strong>Average:</strong> {((1/probData.total_candidates) * 100).toFixed(1)}%</div>
|
502 |
+
<div><strong>Temperature Effect:</strong> {probData.temperature < 1 ? 'More deterministic' : probData.temperature > 1 ? 'More random' : 'Balanced'}</div>
|
503 |
+
<div><strong>Mean Position:</strong> Word #{meanWordIndex + 1} ({sortedByPercentile[meanWordIndex]?.word})</div>
|
504 |
+
<div><strong>Distribution Width (σ):</strong> {sigma.toFixed(1)} words</div>
|
505 |
+
<div><strong>σ Sampling Zone:</strong> {(sigmaRangeProbMass * 100).toFixed(1)}% of probability mass</div>
|
506 |
+
<div><strong>σ Range:</strong> Words #{sigmaRangeStart + 1}-#{sigmaRangeEnd + 1}</div>
|
507 |
+
</div>
|
508 |
+
|
509 |
+
{/* Interactive Bar Chart */}
|
510 |
+
<div className="chart-container">
|
511 |
+
<div style={{ height: '500px', marginBottom: '20px' }}>
|
512 |
+
<Bar data={chartData} options={chartOptionsWithAnnotations} />
|
513 |
+
</div>
|
514 |
+
<p className="chart-description">
|
515 |
+
<strong>📊 Frequency-Based Analysis:</strong> This chart shows ALL {probData.total_candidates} candidate words sorted by
|
516 |
+
frequency percentile (100% → 0%, common → rare). This reveals whether the Gaussian frequency targeting
|
517 |
+
is working correctly for your selected difficulty level. Look for probability peaks at the intended percentile ranges:
|
518 |
+
<strong> Easy (90%+), Medium (50%), Hard (20%)</strong>.
|
519 |
+
</p>
|
520 |
+
</div>
|
521 |
+
|
522 |
+
{/* Detailed Table */}
|
523 |
+
<h4>Detailed Probability Data</h4>
|
524 |
+
<div className="probability-table-container">
|
525 |
+
<table className="probability-table">
|
526 |
+
<thead>
|
527 |
+
<tr>
|
528 |
+
<th>Rank</th>
|
529 |
+
<th>Word</th>
|
530 |
+
<th>Probability</th>
|
531 |
+
<th>Composite</th>
|
532 |
+
<th>Similarity</th>
|
533 |
+
<th>Percentile</th>
|
534 |
+
<th>Selected</th>
|
535 |
+
</tr>
|
536 |
+
</thead>
|
537 |
+
<tbody>
|
538 |
+
{sortedByPercentile.map((item, idx) => (
|
539 |
+
<tr key={idx} className={item.selected ? 'selected-word' : ''}>
|
540 |
+
<td>{item.probability_rank}</td>
|
541 |
+
<td><strong>{item.word}</strong></td>
|
542 |
+
<td>
|
543 |
+
<div className="probability-cell">
|
544 |
+
<span className="prob-text">{(item.probability * 100).toFixed(2)}%</span>
|
545 |
+
<div
|
546 |
+
className="prob-bar"
|
547 |
+
style={{
|
548 |
+
width: `${Math.max(2, item.probability * 100 * 2)}px`,
|
549 |
+
backgroundColor: item.selected ? '#4CAF50' : '#e0e0e0'
|
550 |
+
}}
|
551 |
+
/>
|
552 |
+
</div>
|
553 |
+
</td>
|
554 |
+
<td>{item.composite_score.toFixed(3)}</td>
|
555 |
+
<td>{item.similarity.toFixed(3)}</td>
|
556 |
+
<td>{item.percentile.toFixed(3)}</td>
|
557 |
+
<td>{item.selected ? '✓' : '✗'}</td>
|
558 |
+
</tr>
|
559 |
+
))}
|
560 |
+
</tbody>
|
561 |
+
</table>
|
562 |
+
</div>
|
563 |
+
</div>
|
564 |
+
);
|
565 |
+
} catch (error) {
|
566 |
+
console.error('Error rendering probabilities:', error);
|
567 |
+
return (
|
568 |
+
<div className="debug-section">
|
569 |
+
<h3>Probability Distribution</h3>
|
570 |
+
<p style={{color: 'red'}}>Error rendering chart: {error.message}</p>
|
571 |
+
<p>Debug data available: {JSON.stringify(Object.keys(probData || {}))}</p>
|
572 |
+
</div>
|
573 |
+
);
|
574 |
+
}
|
575 |
+
};
|
576 |
+
|
577 |
const renderSelected = () => {
|
578 |
const selected = debugData.selected_words || [];
|
579 |
|
|
|
592 |
case 'thematic-pool': return renderThematicPool();
|
593 |
case 'candidates': return renderCandidates();
|
594 |
case 'selection': return renderSelection();
|
595 |
+
case 'probabilities': return renderProbabilities();
|
596 |
case 'selected': return renderSelected();
|
597 |
default: return renderOverview();
|
598 |
}
|
crossword-app/frontend/src/styles/puzzle.css
CHANGED
@@ -720,6 +720,117 @@
|
|
720 |
line-height: 1.4;
|
721 |
}
|
722 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
723 |
/* Responsive */
|
724 |
@media (max-width: 768px) {
|
725 |
.debug-nav {
|
@@ -743,4 +854,32 @@
|
|
743 |
.word-table td {
|
744 |
padding: 4px 8px;
|
745 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
746 |
}
|
|
|
720 |
line-height: 1.4;
|
721 |
}
|
722 |
|
723 |
+
/* Probability Distribution Styling */
|
724 |
+
.prob-summary {
|
725 |
+
display: grid;
|
726 |
+
grid-template-columns: repeat(4, 1fr);
|
727 |
+
gap: 10px 15px;
|
728 |
+
margin: 15px 0 20px 0;
|
729 |
+
padding: 15px;
|
730 |
+
background: #f8f9fa;
|
731 |
+
border-radius: 8px;
|
732 |
+
font-size: 0.9rem;
|
733 |
+
}
|
734 |
+
|
735 |
+
.chart-container {
|
736 |
+
margin: 20px 0;
|
737 |
+
padding: 20px;
|
738 |
+
background: #ffffff;
|
739 |
+
border: 1px solid #dee2e6;
|
740 |
+
border-radius: 8px;
|
741 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
742 |
+
}
|
743 |
+
|
744 |
+
.chart-description {
|
745 |
+
background: #e3f2fd;
|
746 |
+
padding: 12px 15px;
|
747 |
+
border-radius: 6px;
|
748 |
+
border-left: 4px solid #1976d2;
|
749 |
+
margin-top: 15px;
|
750 |
+
font-size: 0.9rem;
|
751 |
+
line-height: 1.4;
|
752 |
+
color: #1565c0;
|
753 |
+
}
|
754 |
+
|
755 |
+
.probability-table-container {
|
756 |
+
max-height: 600px;
|
757 |
+
overflow-y: auto;
|
758 |
+
border: 1px solid #dee2e6;
|
759 |
+
border-radius: 8px;
|
760 |
+
}
|
761 |
+
|
762 |
+
.probability-table {
|
763 |
+
width: 100%;
|
764 |
+
border-collapse: collapse;
|
765 |
+
font-size: 0.9rem;
|
766 |
+
}
|
767 |
+
|
768 |
+
.probability-table th {
|
769 |
+
background: #495057;
|
770 |
+
color: white;
|
771 |
+
padding: 12px 8px;
|
772 |
+
text-align: left;
|
773 |
+
font-weight: 600;
|
774 |
+
position: sticky;
|
775 |
+
top: 0;
|
776 |
+
z-index: 10;
|
777 |
+
border-bottom: 2px solid #343a40;
|
778 |
+
}
|
779 |
+
|
780 |
+
.probability-table td {
|
781 |
+
padding: 8px;
|
782 |
+
border-bottom: 1px solid #e9ecef;
|
783 |
+
vertical-align: middle;
|
784 |
+
}
|
785 |
+
|
786 |
+
.probability-table tr:hover {
|
787 |
+
background: #f8f9fa;
|
788 |
+
}
|
789 |
+
|
790 |
+
.probability-table tr.selected-word {
|
791 |
+
background: #e8f5e8;
|
792 |
+
border-left: 4px solid #4CAF50;
|
793 |
+
}
|
794 |
+
|
795 |
+
.probability-table tr.selected-word:hover {
|
796 |
+
background: #d4edda;
|
797 |
+
}
|
798 |
+
|
799 |
+
.probability-cell {
|
800 |
+
display: flex;
|
801 |
+
align-items: center;
|
802 |
+
gap: 10px;
|
803 |
+
}
|
804 |
+
|
805 |
+
.prob-text {
|
806 |
+
min-width: 60px;
|
807 |
+
font-weight: 600;
|
808 |
+
}
|
809 |
+
|
810 |
+
.prob-bar {
|
811 |
+
height: 16px;
|
812 |
+
border-radius: 8px;
|
813 |
+
transition: all 0.3s ease;
|
814 |
+
min-width: 2px;
|
815 |
+
}
|
816 |
+
|
817 |
+
.probability-table td:first-child {
|
818 |
+
text-align: center;
|
819 |
+
color: #6c757d;
|
820 |
+
font-weight: 600;
|
821 |
+
}
|
822 |
+
|
823 |
+
.probability-table td:last-child {
|
824 |
+
text-align: center;
|
825 |
+
font-size: 1.1rem;
|
826 |
+
font-weight: bold;
|
827 |
+
color: #4CAF50;
|
828 |
+
}
|
829 |
+
|
830 |
+
.probability-table tr:not(.selected-word) td:last-child {
|
831 |
+
color: #f44336;
|
832 |
+
}
|
833 |
+
|
834 |
/* Responsive */
|
835 |
@media (max-width: 768px) {
|
836 |
.debug-nav {
|
|
|
854 |
.word-table td {
|
855 |
padding: 4px 8px;
|
856 |
}
|
857 |
+
|
858 |
+
.prob-summary {
|
859 |
+
grid-template-columns: repeat(2, 1fr);
|
860 |
+
text-align: center;
|
861 |
+
}
|
862 |
+
|
863 |
+
.chart-container {
|
864 |
+
padding: 10px;
|
865 |
+
margin: 10px 0;
|
866 |
+
}
|
867 |
+
|
868 |
+
.probability-table {
|
869 |
+
font-size: 0.75rem;
|
870 |
+
}
|
871 |
+
|
872 |
+
.probability-table th,
|
873 |
+
.probability-table td {
|
874 |
+
padding: 6px 4px;
|
875 |
+
}
|
876 |
+
|
877 |
+
.prob-text {
|
878 |
+
min-width: 50px;
|
879 |
+
font-size: 0.8rem;
|
880 |
+
}
|
881 |
+
|
882 |
+
.prob-bar {
|
883 |
+
height: 12px;
|
884 |
+
}
|
885 |
}
|