abc123 / hack /test_geometric_mean.py
vimalk78's picture
feat: add multi-topic intersection methods with adaptive beta for word selection
b05514b
#!/usr/bin/env python3
"""
Test Geometric Mean Method for Multi-Topic Word Finding
The geometric mean approach: score = (sim1 × sim2 × ... × simN)^(1/N)
This method penalizes low scores more heavily than arithmetic mean,
potentially finding better intersection words.
"""
import os
import sys
import numpy as np
from typing import List, Tuple, Dict
import warnings
# Suppress warnings for cleaner output
warnings.filterwarnings("ignore")
def setup_environment():
"""Setup environment and imports"""
# Set cache directory to root cache-dir folder
cache_dir = os.path.join(os.path.dirname(__file__), '..', 'cache-dir')
cache_dir = os.path.abspath(cache_dir) # Get absolute path
os.environ['HF_HOME'] = cache_dir
os.environ['TRANSFORMERS_CACHE'] = cache_dir
os.environ['SENTENCE_TRANSFORMERS_HOME'] = cache_dir
try:
from sentence_transformers import SentenceTransformer
import torch
return SentenceTransformer, torch
except ImportError as e:
print(f"❌ Missing dependencies: {e}")
print("Install with: pip install sentence-transformers torch")
sys.exit(1)
def cosine_similarity(a: np.ndarray, b: np.ndarray) -> float:
"""Calculate cosine similarity between two vectors"""
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
def geometric_mean_method(topic_vectors: List[np.ndarray], word_vectors: Dict[str, np.ndarray]) -> List[Tuple[str, float]]:
"""
Geometric mean method - finds words relevant to ALL topics.
Score = (similarity_to_topic1 × similarity_to_topic2 × ...)^(1/N)
"""
similarities = []
for word, word_vec in word_vectors.items():
# Calculate similarity to each topic
topic_similarities = []
for topic_vec in topic_vectors:
sim = cosine_similarity(word_vec, topic_vec)
# Ensure positive for geometric mean (add small epsilon if needed)
sim = max(sim, 0.001) # Avoid zero/negative values
topic_similarities.append(sim)
# Geometric mean: (a * b * c)^(1/n)
geo_mean = np.prod(topic_similarities) ** (1/len(topic_similarities))
similarities.append((word, geo_mean))
return sorted(similarities, key=lambda x: x[1], reverse=True)
def harmonic_mean_method(topic_vectors: List[np.ndarray], word_vectors: Dict[str, np.ndarray]) -> List[Tuple[str, float]]:
"""
Harmonic mean method - heavily penalizes low scores.
Score = N / (1/sim1 + 1/sim2 + ... + 1/simN)
"""
similarities = []
for word, word_vec in word_vectors.items():
# Calculate similarity to each topic
topic_similarities = []
for topic_vec in topic_vectors:
sim = cosine_similarity(word_vec, topic_vec)
# Ensure positive for harmonic mean
sim = max(sim, 0.001)
topic_similarities.append(sim)
# Harmonic mean: N / (1/a + 1/b + 1/c + ...)
harmonic_mean = len(topic_similarities) / sum(1/s for s in topic_similarities)
similarities.append((word, harmonic_mean))
return sorted(similarities, key=lambda x: x[1], reverse=True)
def soft_min_method(topic_vectors: List[np.ndarray], word_vectors: Dict[str, np.ndarray], beta: float = 10.0) -> List[Tuple[str, float]]:
"""
Soft minimum method - smooth approximation to minimum similarity.
Score = -log(sum(exp(-beta * sim_i))) / beta
"""
similarities = []
for word, word_vec in word_vectors.items():
# Calculate similarity to each topic
topic_similarities = []
for topic_vec in topic_vectors:
sim = cosine_similarity(word_vec, topic_vec)
topic_similarities.append(sim)
# Soft minimum using LogSumExp
score = -np.log(sum(np.exp(-beta * s) for s in topic_similarities)) / beta
similarities.append((word, score))
return sorted(similarities, key=lambda x: x[1], reverse=True)
def simple_averaging(topic_vectors: List[np.ndarray], word_vectors: Dict[str, np.ndarray]) -> List[Tuple[str, float]]:
"""Simple averaging method (current approach)"""
avg_vector = np.mean(topic_vectors, axis=0)
similarities = []
for word, word_vec in word_vectors.items():
sim = cosine_similarity(avg_vector, word_vec)
similarities.append((word, sim))
return sorted(similarities, key=lambda x: x[1], reverse=True)
def load_sample_words() -> List[str]:
"""Load actual sample words from the art-and-books sample file"""
sample_file = os.path.join(os.path.dirname(__file__), '..', 'samples', 'art-and-books-sample-words.txt')
words = []
current_section = None
if os.path.exists(sample_file):
with open(sample_file, 'r') as f:
for line in f:
line = line.strip()
if line.startswith("['art', 'books']"):
current_section = "separated"
continue
elif line.startswith("['art and books']") or line.startswith("['words related to art and books']"):
current_section = "combined"
continue
elif line and not line.startswith('[') and line != '' and current_section == "separated":
# Only use the separated topics section for comparison
words.append(line)
if len(words) >= 100: # Limit for performance
break
return words
def test_multiple_methods(model):
"""Compare all intersection methods"""
print("🔍 Comparing Multiple Intersection Methods")
print("=" * 70)
# Load sample words
sample_words = load_sample_words()
print(f"Loaded {len(sample_words)} sample words")
if len(sample_words) < 10:
print("❌ Not enough sample words loaded")
return
# Get topic embeddings
topics = ["Art", "Books"]
topic_embeddings = model.encode(topics)
topic_vectors = [emb for emb in topic_embeddings]
# Get word embeddings
print("Encoding word embeddings...")
word_embeddings = model.encode(sample_words)
word_vectors = dict(zip(sample_words, word_embeddings))
# Test all methods
methods = [
("Simple Averaging", simple_averaging),
("Geometric Mean", geometric_mean_method),
("Harmonic Mean", harmonic_mean_method),
("Soft Minimum", lambda tv, wv: soft_min_method(tv, wv, beta=10.0))
]
all_results = {}
for method_name, method_func in methods:
print(f"\n📊 {method_name} - Top 15:")
results = method_func(topic_vectors, word_vectors)
all_results[method_name] = results
for i, (word, score) in enumerate(results[:15], 1):
print(f" {i:2d}. {word:20s}: {score:.4f}")
# Analyze differences
print(f"\n🔄 Method Comparison Analysis:")
# Find words that rank very differently across methods
word_rankings = {}
for method_name, results in all_results.items():
rankings = {word: rank for rank, (word, _) in enumerate(results)}
word_rankings[method_name] = rankings
# Look for significant differences
significant_differences = []
for word in sample_words[:50]: # Check top words only
rankings = [word_rankings[method].get(word, len(sample_words)) for method in word_rankings]
if max(rankings) - min(rankings) >= 10: # Significant rank difference
significant_differences.append((word, rankings))
if significant_differences:
print(f" Words with significant ranking differences:")
method_names = list(all_results.keys())
header = f" {'Word':<20s} " + " ".join(f"{name[:8]:>8s}" for name in method_names)
print(header)
print(" " + "-" * len(header))
for word, rankings in significant_differences[:10]:
rank_str = " ".join(f"{rank+1:8d}" for rank in rankings)
print(f" {word:<20s} {rank_str}")
else:
print(" No significant ranking differences found")
# Analyze specific problematic and good words
problematic_words = ["ethology", "guns", "porn", "calibre"]
good_words = ["illustration", "literature", "painting", "library", "poetry"]
print(f"\n🎯 Analysis of Known Problematic Words:")
for word in problematic_words:
if word in word_rankings["Simple Averaging"]:
ranks = []
for method_name in all_results.keys():
rank = word_rankings[method_name].get(word, len(sample_words))
ranks.append(f"{rank+1:3d}")
print(f" {word:15s}: " + " | ".join(f"{method[:10]:>10s}: {rank}" for method, rank in zip(all_results.keys(), ranks)))
print(f"\n✅ Analysis of Good Intersection Words:")
for word in good_words:
if word in word_rankings["Simple Averaging"]:
ranks = []
for method_name in all_results.keys():
rank = word_rankings[method_name].get(word, len(sample_words))
ranks.append(f"{rank+1:3d}")
print(f" {word:15s}: " + " | ".join(f"{method[:10]:>10s}: {rank}" for method, rank in zip(all_results.keys(), ranks)))
def test_individual_similarities(model):
"""Analyze individual topic similarities for key words"""
print("\n\n🔬 Individual Topic Similarity Analysis")
print("=" * 70)
# Test specific words
test_words = ["ethology", "illustration", "literature", "guns", "art", "books", "poetry"]
topics = ["Art", "Books"]
# Get embeddings
topic_embeddings = model.encode(topics)
word_embeddings = model.encode(test_words)
print(f"Individual similarities to each topic:")
print(f"{'Word':<15s} {'Art':<8s} {'Books':<8s} {'Geo Mean':<10s} {'Harm Mean':<10s} {'Soft Min':<10s}")
print("-" * 70)
for word, word_emb in zip(test_words, word_embeddings):
art_sim = cosine_similarity(word_emb, topic_embeddings[0])
books_sim = cosine_similarity(word_emb, topic_embeddings[1])
# Calculate different aggregations
sims = [art_sim, books_sim]
geo_mean = np.prod([max(s, 0.001) for s in sims]) ** (1/len(sims))
harm_mean = len(sims) / sum(1/max(s, 0.001) for s in sims)
soft_min = -np.log(sum(np.exp(-10.0 * s) for s in sims)) / 10.0
print(f"{word:<15s} {art_sim:8.4f} {books_sim:8.4f} {geo_mean:10.4f} {harm_mean:10.4f} {soft_min:10.4f}")
def main():
"""Main test runner"""
print("🧪 Geometric Mean and Multiple Methods Test")
print("Using production model: sentence-transformers/all-mpnet-base-v2")
print("=" * 70)
# Setup
SentenceTransformer, torch = setup_environment()
# Load model
model_name = "sentence-transformers/all-mpnet-base-v2"
print(f"Loading model: {model_name}")
model = SentenceTransformer(model_name)
print(f"✅ Model loaded successfully")
# Run tests
test_multiple_methods(model)
test_individual_similarities(model)
print("\n" + "=" * 70)
print("🎯 KEY INSIGHTS:")
print("1. Geometric mean penalizes words with low similarity to any topic")
print("2. Harmonic mean is even more aggressive at finding intersections")
print("3. Soft minimum provides smooth approximation to true intersection")
print("4. All methods may show similar results if topics are semantically close")
print("=" * 70)
if __name__ == "__main__":
main()