File size: 13,491 Bytes
68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 d9a16d6 68ed8a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
# Crossword Puzzle Webapp - Implementation Status & Roadmap
## π― Project Status: **Phase 5 Complete - LLM Enhancement In Progress**
## Architecture Overview β
COMPLETED
**Frontend (React + Vite)** β
- β
Topic selection with multi-select buttons
- β
Generate puzzle button with loading states
- β
Interactive crossword grid display
- β
Clue lists (across/down) with click navigation
**Backend (Node.js + Express)** β
- β
REST API endpoints for puzzle generation
- β
Advanced crossword algorithm with backtracking
- β
JSON-based word/clue management
- β
Rate limiting and CORS configuration
**Data Storage** β
(JSON files - simple & effective)
- β
Word collections organized by topics (164+ animals, science, geography, technology)
- β
Pre-written clue-answer pairs
- β
In-memory caching for performance
## Core Components β
ALL IMPLEMENTED
1. β
**Topic Management**: 4 categories with 164+ words each
2. β
**Word Selection**: Smart scoring algorithm for crossword suitability
3. β
**Grid Generation**: Advanced placement with intersection optimization
4. β
**Clue Generation**: Quality pre-written clues for all words
5. β
**UI Rendering**: Fully interactive puzzle with real-time validation
## Key Algorithms β
COMPLETED
- β
**Grid placement**: Sophisticated intersection finding with quality scoring
- β
**Backtracking**: Robust conflict resolution with timeout handling
- β
**Difficulty scaling**: Word length filtering and grid size optimization
- β
**Grid optimization**: Automatic trimming and compact layouts
## Current Tech Stack β
IMPLEMENTED
- β
**Frontend**: React + Vite, CSS Grid, responsive design
- β
**Backend**: Node.js + Express with comprehensive middleware
- β
**Database**: JSON files (simple, fast, version-controlled)
- β
**Deployment**: HuggingFace Spaces with Docker containerization
## Frontend Components & UI β
COMPLETED
**Main Page Layout** β
```
β
Header: "Crossword Puzzle Generator"
β
Topic Selector: Multi-select buttons with visual feedback
β
Generate Button: "Create Puzzle" with loading states
β
Loading State: Spinner with generation messages
β
Puzzle Display: Interactive grid + clue lists
β
Actions: Reset, Show Solution, New Puzzle
```
**Components:** β
ALL IMPLEMENTED
- β
`TopicSelector`: Multi-select topics with selection count
- β
`PuzzleGrid`: Fully interactive crossword grid with validation
- β
`ClueList`: Numbered clues (Across/Down) with click navigation
- β
`LoadingSpinner`: Generation feedback with progress messages
- β
`PuzzleControls`: Reset/Reveal/Generate buttons
**UI Flow:** β
WORKING
1. β
User selects topic(s) - visual feedback on selection
2. β
Clicks generate β Loading state with spinner
3. β
Puzzle renders with empty grid and numbered clues
4. β
User fills in answers with keyboard navigation
5. β
Real-time validation feedback and completion detection
## Backend API & Crossword Generation β
COMPLETED
**API Endpoints:** β
ALL IMPLEMENTED
```
β
GET /api/topics - List available topics
β
POST /api/generate - Generate puzzle
Body: { topics: string[], difficulty: 'easy'|'medium'|'hard' }
Response: { grid: Cell[][], clues: Clue[], metadata: {} }
β
GET /api/words/:topic - Get words for topic
β
POST /api/validate - Validate user answers
β
GET /api/health - Health check endpoint
```
**Core Algorithm:** β
ADVANCED IMPLEMENTATION
1. β
**Word Selection**: Smart scoring with crossword suitability metrics
2. β
**Grid Placement**:
- β
Longest word placed centrally first
- β
Advanced intersection finding with quality scoring
- β
Sophisticated backtracking with timeout handling
- β
Multiple fallback strategies for difficult placements
3. β
**Grid Optimization**: Automatic trimming, compact layouts
4. β
**Clue Matching**: Pre-written quality clues for all words
**Generation Logic:** β
PRODUCTION-READY
```javascript
β
CrosswordGenerator class with:
- Advanced word scoring algorithm
- Backtracking placement with timeout
- Grid size optimization
- Intersection quality scoring
- Fallback strategies for difficult cases
- Comprehensive error handling
```
## Data Storage & Word Management β
CURRENT + π FUTURE
**Current Implementation (JSON Files)** β
```json
β
topics: [
{ "id": "animals", "name": "Animals" },
{ "id": "science", "name": "Science" },
{ "id": "geography", "name": "Geography" },
{ "id": "technology", "name": "Technology" }
]
β
word-lists/animals.json: 164+ words with clues
β
word-lists/science.json: 100+ words with clues
β
word-lists/geography.json: 80+ words with clues
β
word-lists/technology.json: 90+ words with clues
```
**Word Collections by Topic:** β
EXTENSIVE COLLECTIONS
- β
**Animals**: 164 words (DOG, ELEPHANT, TIGER, WHALE, BUTTERFLY, etc.)
- β
**Science**: 100+ words (ATOM, GRAVITY, MOLECULE, PHOTON, CHEMISTRY, etc.)
- β
**Geography**: 80+ words (MOUNTAIN, OCEAN, DESERT, CONTINENT, RIVER, etc.)
- β
**Technology**: 90+ words (COMPUTER, INTERNET, ALGORITHM, DATABASE, SOFTWARE, etc.)
**Current Data Sources:** β
IMPLEMENTED
- β
Curated word lists with quality clues
- β
Manual curation for puzzle quality
- β
Version-controlled JSON format
**Current Storage Strategy:** β
WORKING
- β
JSON files for simplicity and version control
- β
In-memory caching with Map-based storage
- β
Fast file-based lookups
- β
No database overhead for current scale
**Future Enhancement (PostgreSQL)** π OPTIONAL
- π PostgreSQL for advanced querying (if needed at scale)
- π Redis caching layer for high-traffic scenarios
- π Indexing on topic_id and word_length for complex queries
## Project Structure β
IMPLEMENTED
```
β
crossword-app/
βββ β
frontend/
β βββ β
src/
β β βββ β
components/
β β β βββ β
TopicSelector.jsx
β β β βββ β
PuzzleGrid.jsx
β β β βββ β
ClueList.jsx
β β β βββ β
LoadingSpinner.jsx
β β βββ β
hooks/
β β β βββ β
useCrossword.js
β β βββ β
utils/
β β β βββ β
gridHelpers.js
β β βββ β
styles/
β β β βββ β
puzzle.css
β β βββ β
App.jsx
β βββ β
package.json
β βββ β
vite.config.js
βββ β
backend/
β βββ β
src/
β β βββ β
controllers/
β β β βββ β
puzzleController.js
β β βββ β
services/
β β β βββ β
crosswordGenerator.js
β β β βββ β
wordService.js
β β βββ β
routes/
β β β βββ β
api.js
β β βββ β
app.js
β βββ β
data/
β β βββ β
word-lists/ (animals.json, science.json, etc.)
β βββ β
package.json
β βββ β
.env
βββ β
docs/
β βββ β
crossword-app-plan.md
βββ β
Dockerfile (HuggingFace Spaces deployment)
βββ β
README.md (with HF metadata)
```
**Current Tech Stack:** β
PRODUCTION-READY
- β
**Frontend**: React + Vite, CSS Grid, Axios
- β
**Backend**: Node.js + Express, CORS, rate limiting, helmet
- β
**Data**: JSON files with in-memory caching
- β
**Development**: Nodemon, modern ES modules
- β
**Deployment**: Docker + HuggingFace Spaces
## Deployment & Hosting Strategy β
COMPLETED
**Development Environment:** β
WORKING
- β
JSON file-based data (no database setup needed)
- β
Frontend: `npm run dev` (Vite dev server)
- β
Backend: `npm run dev` (Nodemon with auto-reload)
- β
Environment variables in `.env`
**Production Deployment:** β
LIVE ON HUGGINGFACE SPACES
- β
**Platform**: HuggingFace Spaces with Docker
- β
**Frontend**: Built and served from backend (single container)
- β
**Backend**: Node.js Express server on port 7860
- β
**Data**: JSON files bundled in container
- β
**Domain**: `https://vimalk78-abc123.hf.space/` (public access)
- β
**HTTPS**: Automatic via HF Spaces infrastructure
**Container Setup:** β
DOCKERIZED
```dockerfile
β
Multi-stage build (frontend build β backend runtime)
β
Node.js 18 Alpine base image
β
Production optimizations
β
Port 7860 (HF Spaces standard)
β
Environment: NODE_ENV=production
```
**Environment Variables:** β
CONFIGURED
```
β
NODE_ENV=production
β
PORT=7860
β
Trust proxy configuration for HF infrastructure
β
CORS enabled for same-origin requests
```
**Performance Features:** β
IMPLEMENTED
- β
Static asset serving for built frontend
- β
API rate limiting (100 req/15min, 50 puzzle gen/5min)
- β
In-memory caching for word lists
- β
Gzip compression via Express
- β
Security headers via Helmet
## Implementation Progress
### β
COMPLETED PHASES
1. β
**Phase 1**: Basic word placement algorithm and simple UI
2. β
**Phase 2**: Topic selection and word database
3. β
**Phase 3**: Interactive grid with validation
4. β
**Phase 4**: Polish UI/UX and deployment
5. β
**Phase 5**: Advanced features (difficulty levels, mobile responsive)
---
## π NEXT PHASE: LLM-Enhanced Dynamic Word Generation
### **Phase 6: AI-Powered Crossword Generation** π€
Transform the static word lists into a dynamic, AI-powered system using embeddings and LLMs for unlimited content generation.
#### **6.1 Core LLM Integration** π§
- **HuggingFace Embedding Setup**
- Integrate `@huggingface/inference` package
- Deploy `sentence-transformers/all-MiniLM-L6-v2` model
- Create `EmbeddingWordService` class
- Implement semantic similarity search
- **Dynamic Word Generation**
- Topic-aware word generation using embeddings
- Quality filtering for crossword suitability
- Word difficulty scoring and classification
- Content validation (no proper nouns, inappropriate content)
#### **6.2 Intelligent Clue Generation** π
- **LLM-Powered Clues**
- Use small language model for clue generation
- Template-based clue creation with topic context
- Ensure crossword-appropriate formatting
- Quality scoring and validation
- **Clue Enhancement**
- Context-aware clue generation
- Difficulty-matched clue complexity
- Multiple clue variations per word
- User preference learning
#### **6.3 Advanced Caching Strategy** β‘
- **Multi-Tier Cache Architecture**
```
L1: In-Memory (current session) - No TTL
L2: Redis (cross-session) - 24h TTL + LRU
L3: Database (long-term) - 7d TTL
```
- **Smart Cache Policies**
- **Hybrid TTL + LRU**: Popular topics get longer cache life
- **Usage-based scoring**: `(frequency Γ 0.4) + (recency Γ 0.3) + (cost Γ 0.3)`
- **Adaptive TTL**: Adjust based on API response times and error rates
- **Topic-aware eviction**: Different TTL for popular vs niche topics
#### **6.4 Performance & Reliability** π
- **Fallback Strategies**
- Keep existing JSON word lists as backup
- Graceful degradation when APIs fail
- Offline mode with cached content
- Error recovery and retry logic
- **Optimization Features**
- Batch word generation requests
- Precompute popular topic combinations
- Async generation with progress indicators
- Request deduplication and coalescence
#### **6.5 Quality Control** β¨
- **Content Validation**
- Word appropriateness filtering
- Crossword intersection analysis
- Difficulty consistency checking
- User feedback collection
- **Continuous Improvement**
- A/B testing for different models
- User rating system for generated content
- Analytics for content quality metrics
- Model performance monitoring
#### **6.6 Enhanced Features** π―
- **Custom Topic Support**
- User-defined topic combinations
- Real-time topic similarity recommendations
- Trending topic suggestions
- Personal topic history
- **Advanced Difficulty**
- AI-driven difficulty assessment
- Personalized difficulty scaling
- Learning curve adaptation
- Challenge progression system
### **Technical Specifications**
**Recommended Models:**
- **Embeddings**: `sentence-transformers/all-MiniLM-L6-v2` (free, fast, 384 dimensions)
- **Text Generation**: `microsoft/DialoGPT-small` or `gpt2` for clues
- **Backup**: Keep existing 400+ static words as fallback
**API Integration:**
```javascript
class EmbeddingWordService {
async generateWords(topics, difficulty, count = 12) {
// Semantic word generation with embeddings
// Quality filtering and crossword optimization
// Cache with smart eviction policies
}
async generateClues(words, context) {
// LLM-powered clue generation
// Template-based formatting
// Quality validation
}
}
```
**Cache Architecture:**
```javascript
CacheStrategy {
L1: Map() // Session cache
L2: Redis // Cross-session with TTL
L3: JSON // Fallback storage
evictionPolicy: "TTL + LRU + Usage-Score"
adaptiveTTL: true
fallbackEnabled: true
}
```
### **Implementation Roadmap**
**Week 1-2**: Core infrastructure and embedding integration
**Week 3**: Dynamic word generation with basic caching
**Week 4**: LLM clue generation and quality controls
**Week 5**: Advanced caching and performance optimization
**Week 6**: Testing, fallback systems, and deployment
**Benefits:**
- π― Unlimited fresh content every time
- π§ Intelligent topic understanding
- β‘ Smart caching for performance
- π‘οΈ Robust fallback systems
- π Continuous quality improvement |