File size: 44,387 Bytes
486eff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
#!/usr/bin/env python3
"""
Frequency Analyzer for Brown Corpus Data

Reads cached frequency data and provides comprehensive analysis and visualization
of word frequency distribution from NLTK Brown corpus.
"""

import os
import pickle
import sys
import urllib.request
import json
import csv
import numpy as np
from collections import Counter
from typing import Dict, List, Tuple, Optional

# Optional imports for visualization
try:
    import matplotlib.pyplot as plt
    import matplotlib
    matplotlib.use('TkAgg')  # Use TkAgg backend for better compatibility
    HAS_MATPLOTLIB = True
except ImportError:
    HAS_MATPLOTLIB = False
    print("Note: matplotlib not available. Visualizations will be disabled.")

# Optional imports for external frequency sources
try:
    from wordfreq import word_frequency, zipf_frequency
    HAS_WORDFREQ = True
except ImportError:
    HAS_WORDFREQ = False
    print("Note: wordfreq not available. External frequency sources will be disabled.")


class FrequencySource:
    """Represents a word frequency data source."""
    
    def __init__(self, name: str, description: str, url: str = None, 
                 filename: str = None, parser=None):
        self.name = name
        self.description = description
        self.url = url
        self.filename = filename
        self.parser = parser
        self.frequencies = None
        self.total_words = 0
        self.unique_words = 0
    
    def is_available(self, cache_dir: str) -> bool:
        """Check if source data is available locally."""
        if self.name == 'wordfreq':
            return HAS_WORDFREQ  # Available if wordfreq library is installed
        elif self.filename:
            return os.path.exists(os.path.join(cache_dir, self.filename))
        return False
    
    def load_data(self, cache_dir: str) -> bool:
        """Load frequency data for this source."""
        if not self.is_available(cache_dir):
            return False
        
        try:
            if self.name == 'wordfreq':
                # Special case: generate data dynamically
                self.frequencies = self.parser()
            elif self.parser:
                filepath = os.path.join(cache_dir, self.filename)
                self.frequencies = self.parser(filepath)
            else:
                # Default: assume pickle format
                filepath = os.path.join(cache_dir, self.filename)
                with open(filepath, 'rb') as f:
                    self.frequencies = pickle.load(f)
            
            if self.frequencies:
                self.total_words = sum(self.frequencies.values()) if isinstance(self.frequencies, dict) else len(self.frequencies)
                self.unique_words = len(self.frequencies)
                return True
        except Exception as e:
            print(f"Error loading {self.name}: {e}")
        
        return False


class FrequencyAnalyzer:
    def __init__(self, cache_dir: str = None):
        """Initialize frequency analyzer."""
        if cache_dir is None:
            cache_dir = os.path.join(os.path.dirname(__file__), 'model_cache')
        
        self.cache_dir = cache_dir
        self.word_frequencies = None
        self.total_words = 0
        self.unique_words = 0
        self.frequency_tiers = {}
        self.current_source = None
        
        # Define available frequency sources
        self.frequency_sources = self._initialize_frequency_sources()
        
        # Try to load default source
        self.load_default_source()
    
    def _initialize_frequency_sources(self) -> Dict[str, FrequencySource]:
        """Initialize available frequency sources."""
        sources = {}
        
        # Brown Corpus (existing)
        sources['brown'] = FrequencySource(
            name='brown',
            description='NLTK Brown Corpus (1960s, ~1.1M words)',
            filename='brown_frequencies.pkl'
        )
        
        # WordFreq (external - multiple sources)
        if HAS_WORDFREQ:
            sources['wordfreq'] = FrequencySource(
                name='wordfreq',
                description='WordFreq Multi-source (Wikipedia, subtitles, news, books, web, Twitter, Reddit, ~2021)',
                parser=self._parse_wordfreq_data
            )
        
        # Google Books Ngram (requires real data download)
        sources['google_ngram'] = FrequencySource(
            name='google_ngram',
            description='Google Books Ngram Corpus (v3, 2020) - Real data download required',
            filename='google_ngram_frequencies.pkl'
        )
        
        return sources
    
    def _parse_wordfreq_data(self, filepath: str = None) -> Counter:
        """Parse wordfreq data - use wordfreq's own vocabulary."""
        if not HAS_WORDFREQ:
            return None
        
        print("Generating wordfreq dataset using wordfreq's vocabulary...")
        
        # Import wordfreq's vocabulary access
        try:
            from wordfreq import available_languages, top_n_list
            print(f"WordFreq available languages: {available_languages()}")
            
            # Get top words from wordfreq's vocabulary
            # Start with top 100K words, filter as needed
            print("Fetching top words from wordfreq vocabulary...")
            
            # Try different word counts to get comprehensive vocabulary
            word_counts = [500000,100000, 50000, 25000]  # Try different sizes
            
            frequency_data = Counter()
            
            for max_words in word_counts:
                try:
                    print(f"Attempting to fetch top {max_words:,} words...")
                    
                    # Get top words from wordfreq
                    top_words = top_n_list('en', max_words, wordlist='large')
                    
                    print(f"Retrieved {len(top_words):,} words from wordfreq")
                    
                    # Initialize tracking variables
                    filtered_out_words = []  # (word, freq, log_bin)
                    zero_freq_words = 0
                    total_processed = 0
                    
                    # Generate frequencies for these words
                    for i, word in enumerate(top_words):
                        try:
                            # Get actual frequency from wordfreq
                            freq = word_frequency(word, 'en', wordlist='large')
                            total_processed += 1
                            
                            if freq > 0:
                                # Calculate logarithmic bin: -log10(freq)
                                log_bin = int(-np.log10(freq))
                                
                                # Include ALL words with any frequency (even ultra-rare technical terms)
                                # Use larger scaling to preserve tiny frequencies
                                count = int(freq * 1_000_000_000)  # Scale by billions instead of millions
                                if count > 0:
                                    frequency_data[word] = count
                                else:
                                    # For extremely rare words, use minimum count of 1
                                    frequency_data[word] = 1
                                    filtered_out_words.append((word, freq, log_bin))  # Still track for analysis
                            else:
                                # Track words with exactly 0 frequency
                                zero_freq_words += 1
                            
                            # Progress indicator
                            if (i + 1) % 5000 == 0:
                                print(f"  Processed {i+1:,}/{len(top_words):,} words ({len(frequency_data):,} with frequencies)")
                                
                        except Exception as e:
                            continue  # Skip problematic words
                    
                    # Print detailed statistics
                    print(f"\nWordFreq Processing Results:")
                    print(f"  Total processed: {total_processed:,}")
                    print(f"  Words with frequencies: {len(frequency_data):,}")
                    print(f"  Words filtered out (tiny freq): {len(filtered_out_words):,}")
                    print(f"  Words with zero frequency: {zero_freq_words:,}")
                    
                    if filtered_out_words:
                        print(f"\nFrequency distribution of filtered words:")
                        bin_counts = Counter(log_bin for _, _, log_bin in filtered_out_words)
                        for bin_num in sorted(bin_counts.keys()):
                            print(f"  Bin {bin_num} (freq ~1e-{bin_num}): {bin_counts[bin_num]:,} words")
                        
                        # Show some examples from each bin
                        print(f"\nSample filtered words by frequency bin:")
                        bins_sample = {}
                        for word, freq, log_bin in filtered_out_words[:50]:  # First 50 examples
                            if log_bin not in bins_sample:
                                bins_sample[log_bin] = []
                            if len(bins_sample[log_bin]) < 3:  # Max 3 examples per bin
                                bins_sample[log_bin].append((word, freq))
                        
                        for bin_num in sorted(bins_sample.keys()):
                            print(f"  Bin {bin_num}: {', '.join(f'{w}({f:.2e})' for w, f in bins_sample[bin_num])}")
                    
                    if len(frequency_data) > 1000:  # Success threshold
                        break
                        
                except Exception as e:
                    print(f"Failed to fetch {max_words:,} words: {e}")
                    continue
            
            if len(frequency_data) == 0:
                print("Fallback: generating frequencies for common words manually...")
                # Fallback to manual word list
                common_words = [
                    "the", "be", "to", "of", "and", "a", "in", "that", "have", "i", 
                    "it", "for", "not", "on", "with", "he", "as", "you", "do", "at",
                    "this", "but", "his", "by", "from", "they", "she", "or", "an", "will",
                    "my", "one", "all", "would", "there", "their", "what", "so", "up", "out"
                ]
                
                for word in common_words:
                    try:
                        freq = word_frequency(word, 'en', wordlist='large')
                        if freq > 0:
                            count = int(freq * 1_000_000)
                            if count > 0:
                                frequency_data[word] = count
                    except:
                        continue
            
            print(f"✓ Generated wordfreq dataset: {len(frequency_data):,} words with real frequencies")
            return frequency_data
            
        except ImportError as e:
            print(f"Could not access wordfreq vocabulary functions: {e}")
            return None
    
    def load_default_source(self):
        """Load the best available frequency source."""
        # Priority order: wordfreq (if available), brown (fallback)
        priority_sources = ['wordfreq', 'brown']
        
        for source_name in priority_sources:
            if self.switch_source(source_name):
                break
        
        if not self.current_source:
            print("Warning: No frequency sources available!")
    
    def switch_source(self, source_name: str) -> bool:
        """Switch to a different frequency source."""
        if source_name not in self.frequency_sources:
            print(f"Unknown source: {source_name}")
            return False
        
        source = self.frequency_sources[source_name]
        
        if source.load_data(self.cache_dir):
            self.current_source = source
            self.word_frequencies = source.frequencies
            self.total_words = source.total_words
            self.unique_words = source.unique_words
            self.create_frequency_tiers()
            print(f"✓ Switched to {source.name}: {source.description}")
            return True
        else:
            print(f"✗ Source {source_name} not available. Use 'download {source_name}' to get it.")
            return False
    
    def download_source(self, source_name: str) -> bool:
        """Download external frequency source."""
        if source_name not in self.frequency_sources:
            print(f"Unknown source: {source_name}")
            return False
        
        source = self.frequency_sources[source_name]
        
        if source_name == 'google_ngram':
            return self._download_google_ngram()
        else:
            print(f"Download not implemented for {source_name}")
            return False
    
    def _download_google_ngram(self) -> bool:
        """Download and process actual Google Books Ngram frequency data."""
        print("Downloading Google Books Ngram frequency data...")
        print("Using streaming download from github.com/orgtre/google-books-ngram-frequency")
        
        # Use curl to download first 100K lines (most frequent words)
        url = "https://raw.githubusercontent.com/orgtre/google-books-ngram-frequency/main/ngrams/1grams_english.csv"
        
        try:
            print(f"Downloading top entries from: {url}")
            print("Note: Processing first 100,000 entries (most frequent words)")
            
            # Use curl to download and limit lines
            import subprocess
            result = subprocess.run([
                'curl', '-s', '-L', '--max-time', '60', url
            ], capture_output=True, text=True, timeout=90)
            
            if result.returncode != 0:
                raise Exception(f"curl failed: {result.stderr}")
            
            content = result.stdout
            print(f"Downloaded {len(content)} characters")
            
            # Parse the CSV content
            frequency_data = Counter()
            lines = content.strip().split('\n')
            
            print(f"Processing {len(lines)} lines...")
            
            # Parse CSV - columns are: ngram, freq, cumshare
            csv_reader = csv.DictReader(lines)
            
            for line_num, row in enumerate(csv_reader, 1):
                try:
                    word = row['ngram'].strip().lower()
                    freq_str = row['freq'].strip()
                    
                    # Parse frequency/count
                    freq_value = float(freq_str.replace(',', ''))
                    
                    if freq_value > 0:
                        # Filter valid English words (single words only, no phrases)
                        if len(word) > 1 and word.isalpha() and word.isascii() and ' ' not in word:
                            frequency_data[word] = int(freq_value)
                
                    # Progress indicator
                    if line_num % 10000 == 0:
                        print(f"  Processed {line_num:,} lines, found {len(frequency_data):,} valid words")
                    
                    # Limit processing to avoid timeout - take top 100K entries
                    if line_num >= 100000:
                        print(f"  Processed first 100,000 most frequent entries")
                        break
                        
                except (ValueError, KeyError, IndexError) as e:
                    continue  # Skip malformed lines
            
            if len(frequency_data) > 1000:  # Need substantial dataset
                # Save to cache
                cache_path = os.path.join(self.cache_dir, 'google_ngram_frequencies.pkl')
                with open(cache_path, 'wb') as f:
                    pickle.dump(frequency_data, f)
                
                print(f"✓ Downloaded Google Ngram data: {len(frequency_data):,} words")
                print(f"✓ Saved to: {cache_path}")
                return True
            else:
                print(f"✗ Not enough valid data found ({len(frequency_data)} words)")
                return False
                
        except Exception as e:
            print(f"✗ Failed to download Google Ngram data: {e}")
            return False
    
    
    
    def list_sources(self):
        """List all available frequency sources."""
        print(f"\n{'='*70}")
        print("AVAILABLE FREQUENCY SOURCES")
        print(f"{'='*70}")
        print(f"{'Source':<12} {'Available':<10} {'Description'}")
        print("-" * 70)
        
        for name, source in self.frequency_sources.items():
            available = "✓ Yes" if source.is_available(self.cache_dir) else "✗ No"
            current = " (current)" if self.current_source and self.current_source.name == name else ""
            print(f"{name:<12} {available:<10} {source.description}{current}")
        
        print(f"\nCurrent source: {self.current_source.name if self.current_source else 'None'}")
    
    def compare_word_across_sources(self, word: str):
        """Compare how a word is classified across different sources."""
        print(f"\n{'='*70}")
        print(f"WORD COMPARISON: '{word}'")
        print(f"{'='*70}")
        print(f"{'Source':<12} {'Count':<8} {'Frequency':<12} {'Tier':<12} {'Available'}")
        print("-" * 70)
        
        current_source = self.current_source
        
        for name, source in self.frequency_sources.items():
            if source.is_available(self.cache_dir):
                # Temporarily switch to this source
                if source.load_data(self.cache_dir):
                    temp_freq = source.frequencies
                    temp_total = sum(temp_freq.values()) if isinstance(temp_freq, dict) else len(temp_freq)
                    
                    count = temp_freq.get(word.lower(), 0)
                    freq = count / temp_total if temp_total > 0 else 0.0
                    
                    # Quick tier calculation
                    if freq > 0.001:
                        tier = "very_common"
                    elif freq > 0.0001:
                        tier = "common"
                    elif freq > 0.00001:
                        tier = "uncommon"
                    else:
                        tier = "rare"
                    
                    available = "✓"
                    print(f"{name:<12} {count:<8} {freq:<12.6f} {tier:<12} {available}")
                else:
                    print(f"{name:<12} {'N/A':<8} {'N/A':<12} {'N/A':<12} {'✗'}")
            else:
                print(f"{name:<12} {'N/A':<8} {'N/A':<12} {'N/A':<12} {'✗'}")
        
        # Restore original source
        if current_source:
            current_source.load_data(self.cache_dir)
            self.current_source = current_source
            self.word_frequencies = current_source.frequencies
            self.total_words = current_source.total_words
            self.unique_words = current_source.unique_words
    
    def load_frequency_data(self) -> bool:
        """Load cached Brown corpus frequency data."""
        freq_cache_path = os.path.join(self.cache_dir, 'brown_frequencies.pkl')
        
        if not os.path.exists(freq_cache_path):
            print(f"Error: Frequency cache not found at {freq_cache_path}")
            print("Please run the thematic word generator first to create the cache.")
            return False
        
        try:
            print("Loading frequency data from cache...")
            with open(freq_cache_path, 'rb') as f:
                self.word_frequencies = pickle.load(f)
            
            self.total_words = sum(self.word_frequencies.values())
            self.unique_words = len(self.word_frequencies)
            
            print(f"✓ Loaded frequency data:")
            print(f"  - Total word tokens: {self.total_words:,}")
            print(f"  - Unique words: {self.unique_words:,}")
            
            return True
            
        except Exception as e:
            print(f"Error loading frequency cache: {e}")
            return False
    
    def create_frequency_tiers(self):
        """Create detailed frequency tier classifications with 10 bins."""
        if not self.word_frequencies:
            return
        
        tiers = {}
        most_common = self.word_frequencies.most_common(50000)  # Increased for better coverage
        
        # Calculate percentile-based thresholds for more even distribution
        all_counts = [count for word, count in self.word_frequencies.items()]
        all_counts.sort(reverse=True)
        
        # Define 10 tiers with percentile-based thresholds
        tier_definitions = [
            ("tier_1_ultra_common", 0.999, "Ultra Common (Top 0.1%)"),      # Top 0.1%
            ("tier_2_extremely_common", 0.995, "Extremely Common (Top 0.5%)"), # Top 0.5% 
            ("tier_3_very_common", 0.99, "Very Common (Top 1%)"),           # Top 1%
            ("tier_4_highly_common", 0.97, "Highly Common (Top 3%)"),       # Top 3%
            ("tier_5_common", 0.92, "Common (Top 8%)"),                     # Top 8%
            ("tier_6_moderately_common", 0.85, "Moderately Common (Top 15%)"), # Top 15%
            ("tier_7_somewhat_uncommon", 0.70, "Somewhat Uncommon (Top 30%)"), # Top 30%
            ("tier_8_uncommon", 0.50, "Uncommon (Top 50%)"),                # Top 50%
            ("tier_9_rare", 0.25, "Rare (Top 75%)"),                        # Top 75%
            ("tier_10_very_rare", 0.0, "Very Rare (Bottom 25%)")            # Bottom 25%
        ]
        
        # Calculate actual count thresholds based on percentiles
        thresholds = []
        for tier_name, percentile, description in tier_definitions:
            if percentile > 0:
                idx = int((1 - percentile) * len(all_counts))
                threshold = all_counts[min(idx, len(all_counts) - 1)]
            else:
                threshold = 0
            thresholds.append((tier_name, threshold, description))
        
        # Assign tiers based on thresholds
        for word, count in self.word_frequencies.items():
            assigned = False
            for tier_name, threshold, description in thresholds:
                if count >= threshold:
                    tiers[word] = tier_name
                    assigned = True
                    break
            
            if not assigned:
                tiers[word] = "tier_10_very_rare"
        
        self.frequency_tiers = tiers
        self.tier_descriptions = {name: desc for name, _, desc in thresholds}
        
        # Count words per tier and show distribution
        tier_counts = Counter(tiers.values())
        print(f"\n✓ Frequency tier distribution (10-tier system):")
        
        # Sort tiers by numeric order
        tier_order = [f"tier_{i}_{name}" for i, name in enumerate([
            "ultra_common", "extremely_common", "very_common", "highly_common", 
            "common", "moderately_common", "somewhat_uncommon", "uncommon", 
            "rare", "very_rare"
        ], 1)]
        
        for tier_key in tier_order:
            if tier_key in tier_counts:
                count = tier_counts[tier_key]
                description = self.tier_descriptions.get(tier_key, tier_key)
                percentage = (count / len(tiers)) * 100
                print(f"  - {description}: {count:,} words ({percentage:.1f}%)")
    
    def get_word_info(self, word: str) -> Tuple[int, float, str, int]:
        """Get detailed information about a word."""
        word = word.lower()
        count = self.word_frequencies.get(word, 0)
        relative_freq = count / self.total_words if self.total_words > 0 else 0.0
        tier = self.frequency_tiers.get(word, "rare")
        
        # Calculate rank
        rank = 0
        if count > 0:
            rank = sum(1 for w, c in self.word_frequencies.items() if c > count) + 1
        
        return count, relative_freq, tier, rank
    
    def show_top_words(self, n: int = 50):
        """Display the most common words."""
        print(f"\n{'='*60}")
        print(f"TOP {n} MOST COMMON WORDS")
        print(f"{'='*60}")
        print(f"{'Rank':<6} {'Word':<15} {'Count':<8} {'Frequency':<12} {'Tier'}")
        print("-" * 60)
        
        for i, (word, count) in enumerate(self.word_frequencies.most_common(n)):
            relative_freq = count / self.total_words
            tier = self.frequency_tiers.get(word, "rare")
            print(f"{i+1:<6} {word:<15} {count:<8} {relative_freq:<12.6f} {tier}")
    
    def show_bottom_words(self, n: int = 50):
        """Display the least common words."""
        print(f"\n{'='*60}")
        print(f"BOTTOM {n} LEAST COMMON WORDS")
        print(f"{'='*60}")
        print(f"{'Word':<15} {'Count':<8} {'Frequency':<12} {'Tier'}")
        print("-" * 60)
        
        # Get words with lowest counts
        bottom_words = self.word_frequencies.most_common()[:-n-1:-1]
        
        for word, count in bottom_words:
            relative_freq = count / self.total_words
            tier = self.frequency_tiers.get(word, "rare")
            print(f"{word:<15} {count:<8} {relative_freq:<12.6f} {tier}")
    
    def show_frequency_ranges(self):
        """Show distribution of words across detailed frequency ranges."""
        print(f"\n{'='*70}")
        print("DETAILED FREQUENCY RANGE DISTRIBUTION")
        print(f"{'='*70}")
        
        # Create 10 logarithmic bins for better distribution visualization
        ranges = [
            ("Ultra High (>1e-2)", lambda f: f > 0.01),
            ("Extremely High (1e-3 to 1e-2)", lambda f: 0.001 < f <= 0.01),
            ("Very High (1e-4 to 1e-3)", lambda f: 0.0001 < f <= 0.001),
            ("High (1e-5 to 1e-4)", lambda f: 0.00001 < f <= 0.0001),
            ("Moderately High (1e-6 to 1e-5)", lambda f: 0.000001 < f <= 0.00001),
            ("Medium (1e-7 to 1e-6)", lambda f: 0.0000001 < f <= 0.000001),
            ("Moderately Low (1e-8 to 1e-7)", lambda f: 0.00000001 < f <= 0.0000001),
            ("Low (1e-9 to 1e-8)", lambda f: 0.000000001 < f <= 0.00000001),
            ("Very Low (1e-10 to 1e-9)", lambda f: 0.0000000001 < f <= 0.000000001),
            ("Ultra Low (<1e-10)", lambda f: f <= 0.0000000001)
        ]
        
        print(f"{'Range':<30} {'Count':<10} {'Percentage'}")
        print("-" * 70)
        
        for range_name, condition in ranges:
            count = sum(1 for word, word_count in self.word_frequencies.items() 
                       if condition(word_count / self.total_words))
            percentage = (count / self.unique_words) * 100
            print(f"{range_name:<30} {count:>8,} words ({percentage:>5.1f}%)")
    
    def show_tier_samples(self, n: int = 5):
        """Show sample words from each frequency tier."""
        print(f"\n{'='*80}")
        print(f"SAMPLE WORDS BY TIER (showing {n} per tier)")
        print(f"{'='*80}")
        
        # Get tier order
        tier_order = [f"tier_{i}_{name}" for i, name in enumerate([
            "ultra_common", "extremely_common", "very_common", "highly_common", 
            "common", "moderately_common", "somewhat_uncommon", "uncommon", 
            "rare", "very_rare"
        ], 1)]
        
        tier_samples = {tier: [] for tier in tier_order}
        
        # Collect samples for each tier
        for word, tier in self.frequency_tiers.items():
            if tier in tier_samples and len(tier_samples[tier]) < n:
                count, freq, _, rank = self.get_word_info(word)
                tier_samples[tier].append((word, count, freq, rank))
        
        # Display samples
        for tier in tier_order:
            if tier in tier_samples and tier_samples[tier]:
                description = self.tier_descriptions.get(tier, tier)
                print(f"\n{description}:")
                print(f"{'Word':<15} {'Count':<12} {'Frequency':<12} {'Rank'}")
                print("-" * 55)
                
                for word, count, freq, rank in tier_samples[tier]:
                    print(f"{word:<15} {count:<12,} {freq:<12.8f} {rank:,}")
    
    def lookup_word(self, word: str):
        """Look up detailed information for a specific word."""
        count, freq, tier, rank = self.get_word_info(word)
        
        print(f"\nWord: '{word}'")
        print(f"  Count: {count:,}")
        print(f"  Frequency: {freq:.8f}")
        print(f"  Tier: {tier}")
        print(f"  Rank: {rank:,} (out of {self.unique_words:,})")
        
        if count == 0:
            print("  Note: Word not found in Brown corpus")
    
    def batch_lookup(self, words: List[str]):
        """Look up multiple words and compare them."""
        print(f"\n{'='*80}")
        print("BATCH WORD LOOKUP")
        print(f"{'='*80}")
        print(f"{'Word':<15} {'Count':<8} {'Frequency':<12} {'Tier':<12} {'Rank'}")
        print("-" * 80)
        
        results = []
        for word in words:
            count, freq, tier, rank = self.get_word_info(word)
            results.append((word, count, freq, tier, rank))
            print(f"{word:<15} {count:<8} {freq:<12.6f} {tier:<12} {rank:,}")
        
        return results
    
    def analyze_zipf_law(self):
        """Analyze how well the frequency distribution follows Zipf's law."""
        print(f"\n{'='*60}")
        print("ZIPF'S LAW ANALYSIS")
        print(f"{'='*60}")
        
        # Get top 1000 words for analysis
        top_words = self.word_frequencies.most_common(1000)
        
        print("Zipf's law prediction vs actual frequency (top 20 words):")
        print(f"{'Rank':<6} {'Word':<15} {'Actual Freq':<12} {'Zipf Pred':<12} {'Ratio'}")
        print("-" * 70)
        
        # Use most common word as baseline
        baseline_freq = top_words[0][1] / self.total_words
        
        for i, (word, count) in enumerate(top_words[:20]):
            rank = i + 1
            actual_freq = count / self.total_words
            zipf_predicted = baseline_freq / rank
            ratio = actual_freq / zipf_predicted if zipf_predicted > 0 else 0
            
            print(f"{rank:<6} {word:<15} {actual_freq:<12.6f} {zipf_predicted:<12.6f} {ratio:<8.2f}")
    
    def plot_frequency_distribution(self):
        """Create visualizations of frequency distribution."""
        if not HAS_MATPLOTLIB:
            print("Matplotlib not available. Skipping visualizations.")
            return
        
        print("\nGenerating frequency distribution plots...")
        
        # Prepare data
        counts = list(self.word_frequencies.values())
        counts.sort(reverse=True)
        
        # Create subplots
        fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(15, 10))
        source_name = self.current_source.description if self.current_source else 'Unknown Source'
        fig.suptitle(f'Frequency Analysis - {source_name}', fontsize=16)
        
        # 1. Frequency histogram (log scale)
        ax1.hist([c for c in counts if c > 1], bins=50, alpha=0.7, edgecolor='black')
        ax1.set_xlabel('Word Count')
        ax1.set_ylabel('Number of Words')
        ax1.set_title('Word Count Distribution')
        ax1.set_yscale('log')
        
        # 2. Zipf's law plot (rank vs frequency)
        ranks = list(range(1, min(1000, len(counts)) + 1))
        top_counts = counts[:len(ranks)]
        ax2.loglog(ranks, top_counts, 'bo-', alpha=0.7, markersize=3)
        ax2.set_xlabel('Rank')
        ax2.set_ylabel('Frequency')
        ax2.set_title("Zipf's Law (Rank vs Frequency)")
        ax2.grid(True, alpha=0.3)
        
        # 3. 10-Tier distribution bar chart
        tier_counts = Counter(self.frequency_tiers.values())
        
        # Get tier order and labels
        tier_order = [f"tier_{i}_{name}" for i, name in enumerate([
            "ultra_common", "extremely_common", "very_common", "highly_common", 
            "common", "moderately_common", "somewhat_uncommon", "uncommon", 
            "rare", "very_rare"
        ], 1)]
        
        tier_labels = [f"T{i}" for i in range(1, 11)]  # Shortened labels for chart
        tier_values = [tier_counts.get(tier, 0) for tier in tier_order]
        
        bars = ax3.bar(tier_labels, tier_values, alpha=0.7, edgecolor='black')
        ax3.set_ylabel('Number of Words')
        ax3.set_title('10-Tier Frequency Distribution')
        ax3.set_xlabel('Frequency Tiers (T1=Ultra Common → T10=Very Rare)')
        
        # Color gradient from green (common) to red (rare)
        import matplotlib.cm as cm
        colors = cm.RdYlGn_r(np.linspace(0, 1, len(bars)))
        for bar, color in zip(bars, colors):
            bar.set_color(color)
        
        # 4. Logarithmic frequency ranges bar chart
        ranges = [
            "Ultra\nHigh", "Extremely\nHigh", "Very\nHigh", "High", "Mod.\nHigh",
            "Medium", "Mod.\nLow", "Low", "Very\nLow", "Ultra\nLow"
        ]
        
        range_counts = []
        conditions = [
            lambda f: f > 0.01,
            lambda f: 0.001 < f <= 0.01,
            lambda f: 0.0001 < f <= 0.001,
            lambda f: 0.00001 < f <= 0.0001,
            lambda f: 0.000001 < f <= 0.00001,
            lambda f: 0.0000001 < f <= 0.000001,
            lambda f: 0.00000001 < f <= 0.0000001,
            lambda f: 0.000000001 < f <= 0.00000001,
            lambda f: 0.0000000001 < f <= 0.000000001,
            lambda f: f <= 0.0000000001
        ]
        
        for condition in conditions:
            count = sum(1 for word, word_count in self.word_frequencies.items() 
                       if condition(word_count / self.total_words))
            range_counts.append(count)
        
        bars4 = ax4.bar(ranges, range_counts, alpha=0.7, edgecolor='black')
        ax4.set_ylabel('Number of Words')
        ax4.set_title('Logarithmic Frequency Ranges')
        ax4.tick_params(axis='x', rotation=45)
        
        # Color gradient for frequency ranges too
        colors4 = cm.viridis(np.linspace(0, 1, len(bars4)))
        for bar, color in zip(bars4, colors4):
            bar.set_color(color)
        
        plt.tight_layout()
        
        # Save plot
        plot_path = os.path.join(self.cache_dir, 'frequency_analysis.png')
        plt.savefig(plot_path, dpi=300, bbox_inches='tight')
        print(f"✓ Saved plots to: {plot_path}")
        
        # Show plot
        plt.show()
    
    def interactive_mode(self):
        """Run interactive analysis mode."""
        print(f"\n{'='*60}")
        print("INTERACTIVE FREQUENCY ANALYZER")
        print(f"{'='*60}")
        print("Commands:")
        print("  lookup <word>     - Look up word frequency")
        print("  batch <w1,w2,w3>  - Look up multiple words")
        print("  top [n]           - Show top n most common words")
        print("  bottom [n]        - Show bottom n least common words")
        print("  ranges            - Show frequency range distribution")
        print("  tiers             - Show sample words by tier")
        print("  zipf              - Analyze Zipf's law")
        print("  plot              - Generate visualizations")
        print("  stats             - Show basic statistics")
        print("  sources           - List available frequency sources")
        print("  source <name>     - Switch to frequency source")
        print("  download <source> - Download/create frequency source")
        print("  compare <word>    - Compare word across sources")
        print("  help              - Show this help message")
        print("  quit              - Exit")
        print("-" * 60)
        
        while True:
            try:
                cmd = input("\nfreq> ").strip()
                
                if cmd.lower() == 'quit':
                    break
                
                parts = cmd.split()
                if not parts:
                    continue
                
                command = parts[0].lower()
                
                if command == 'lookup' and len(parts) > 1:
                    self.lookup_word(parts[1])
                
                elif command == 'batch' and len(parts) > 1:
                    words = [w.strip() for w in ' '.join(parts[1:]).split(',')]
                    self.batch_lookup(words)
                
                elif command == 'top':
                    n = int(parts[1]) if len(parts) > 1 else 20
                    self.show_top_words(n)
                
                elif command == 'bottom':
                    n = int(parts[1]) if len(parts) > 1 else 20
                    self.show_bottom_words(n)
                
                elif command == 'ranges':
                    self.show_frequency_ranges()
                
                elif command == 'tiers':
                    self.show_tier_samples()
                
                elif command == 'zipf':
                    self.analyze_zipf_law()
                
                elif command == 'plot':
                    self.plot_frequency_distribution()
                
                elif command == 'stats':
                    print(f"\nBasic Statistics:")
                    print(f"  Current source: {self.current_source.name if self.current_source else 'None'}")
                    print(f"  Total word tokens: {self.total_words:,}")
                    print(f"  Unique words: {self.unique_words:,}")
                    if self.word_frequencies:
                        print(f"  Average word length: {sum(len(w) for w in self.word_frequencies) / self.unique_words:.1f}")
                        
                        # Most common word
                        most_common_word, most_common_count = self.word_frequencies.most_common(1)[0]
                        print(f"  Most common word: '{most_common_word}' ({most_common_count:,} times)")
                
                elif command == 'sources':
                    self.list_sources()
                
                elif command == 'source' and len(parts) > 1:
                    self.switch_source(parts[1])
                
                elif command == 'download' and len(parts) > 1:
                    if self.download_source(parts[1]):
                        print(f"✓ Downloaded {parts[1]}. Use 'source {parts[1]}' to switch to it.")
                
                elif command == 'compare' and len(parts) > 1:
                    self.compare_word_across_sources(parts[1])
                
                elif command == 'help':
                    print(f"\n{'='*60}")
                    print("AVAILABLE COMMANDS")
                    print(f"{'='*60}")
                    print("  lookup <word>     - Look up word frequency")
                    print("  batch <w1,w2,w3>  - Look up multiple words")
                    print("  top [n]           - Show top n most common words")
                    print("  bottom [n]        - Show bottom n least common words")
                    print("  ranges            - Show frequency range distribution")
                    print("  tiers             - Show sample words by tier")
                    print("  zipf              - Analyze Zipf's law")
                    print("  plot              - Generate visualizations")
                    print("  stats             - Show basic statistics")
                    print("  sources           - List available frequency sources")
                    print("  source <name>     - Switch to frequency source")
                    print("  download <source> - Download/create frequency source")
                    print("  compare <word>    - Compare word across sources")
                    print("  help              - Show this help message")
                    print("  quit              - Exit")
                
                else:
                    print("Unknown command. Type 'help' for available commands or 'quit' to exit.")
                    
            except KeyboardInterrupt:
                break
            except Exception as e:
                print(f"Error: {e}")
        
        print("\nGoodbye!")


def main():
    """Main function."""
    # Check for cache directory
    cache_dir = os.path.join(os.path.dirname(__file__), 'model_cache')
    if not os.path.exists(cache_dir):
        print(f"Error: Cache directory not found: {cache_dir}")
        print("Please run the thematic word generator first to create the cache.")
        sys.exit(1)
    
    # Initialize analyzer
    analyzer = FrequencyAnalyzer(cache_dir)
    
    if not analyzer.word_frequencies:
        print("Failed to load frequency data. Exiting.")
        sys.exit(1)
    
    # Command line argument handling
    if len(sys.argv) > 1:
        command = sys.argv[1].lower()
        
        if command == 'stats':
            print(f"\nBrown Corpus Statistics:")
            print(f"  Total word tokens: {analyzer.total_words:,}")
            print(f"  Unique words: {analyzer.unique_words:,}")
        
        elif command == 'top':
            n = int(sys.argv[2]) if len(sys.argv) > 2 else 20
            analyzer.show_top_words(n)
        
        elif command == 'bottom':
            n = int(sys.argv[2]) if len(sys.argv) > 2 else 20
            analyzer.show_bottom_words(n)
        
        elif command == 'ranges':
            analyzer.show_frequency_ranges()
        
        elif command == 'tiers':
            analyzer.show_tier_samples()
        
        elif command == 'zipf':
            analyzer.analyze_zipf_law()
        
        elif command == 'plot':
            analyzer.plot_frequency_distribution()
        
        elif command == 'lookup' and len(sys.argv) > 2:
            analyzer.lookup_word(sys.argv[2])
        
        elif command == 'interactive':
            analyzer.interactive_mode()
        
        elif command == 'sources':
            analyzer.list_sources()
        
        elif command == 'download' and len(sys.argv) > 2:
            source_name = sys.argv[2]
            if analyzer.download_source(source_name):
                print(f"✓ Downloaded {source_name}. Use 'source {source_name}' to switch to it.")
        
        elif command == 'source' and len(sys.argv) > 2:
            analyzer.switch_source(sys.argv[2])
        
        elif command == 'compare' and len(sys.argv) > 2:
            analyzer.compare_word_across_sources(sys.argv[2])
        
        elif command == 'help':
            print("\nAvailable commands:")
            print("  stats             - Show basic frequency statistics")
            print("  top [n]           - Show top n most common words")
            print("  bottom [n]        - Show bottom n least common words")
            print("  ranges            - Show frequency range distribution")
            print("  tiers             - Show sample words by tier")
            print("  zipf              - Analyze Zipf's law")
            print("  plot              - Generate visualizations")
            print("  sources           - List available frequency sources")
            print("  download <source> - Download/create frequency source")
            print("  source <name>     - Switch to frequency source")
            print("  compare <word>    - Compare word across sources")
            print("  lookup <word>     - Look up word frequency")
            print("  interactive       - Enter interactive mode")
            print("  help              - Show this help message")
        
        else:
            print("Usage: python frequency_analyzer.py [help|stats|top|bottom|ranges|tiers|zipf|plot|sources|download <source>|source <name>|compare <word>|lookup <word>|interactive]")
    
    else:
        # Default: show overview and enter interactive mode
        print(f"\nBrown Corpus Overview:")
        print(f"  Total tokens: {analyzer.total_words:,}")
        print(f"  Unique words: {analyzer.unique_words:,}")
        
        analyzer.show_top_words(10)
        analyzer.show_tier_samples(5)
        analyzer.interactive_mode()


if __name__ == "__main__":
    main()