File size: 10,285 Bytes
486eff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#!/usr/bin/env python3

import os
import numpy as np
import faiss
from sentence_transformers import SentenceTransformer
import requests
from sklearn.cluster import KMeans
import networkx as nx
import csv

def get_vocab():
    # Dynamically fetch a large list of English words from a public GitHub repository
    url = "https://raw.githubusercontent.com/dwyl/english-words/master/words.txt"
    response = requests.get(url)
    if response.status_code == 200:
        return [word.strip().lower() for word in response.text.splitlines() if word.strip() and len(word) > 2]  # Filter short words
    else:
        raise Exception("Failed to fetch vocabulary list")

class CrosswordGenerator2:
    def get_dict_vocab(self):
        """Read the dictionary CSV file and return list of words."""
        dict_path = os.path.join(os.path.dirname(__file__), 'dict-words', 'dict.csv')
        words = []
        
        try:
            with open(dict_path, 'r', encoding='utf-8') as csvfile:
                reader = csv.DictReader(csvfile)
                for row in reader:
                    word = row['word'].strip().lower()
                    if word and len(word) > 2:  # Filter short words
                        words.append(word)
        except FileNotFoundError:
            raise Exception(f"Dictionary file not found: {dict_path}")
        except Exception as e:
            raise Exception(f"Error reading dictionary file: {e}")
        
        return words

    def __init__(self, cache_dir='./model_cache'):
        self.vocab = self.get_dict_vocab()
        self.model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2', cache_folder=cache_dir)
        embeddings = self.model.encode(self.vocab, convert_to_numpy=True)
        embeddings = np.ascontiguousarray(embeddings, dtype=np.float32)
        faiss.normalize_L2(embeddings)
        self.dimension = embeddings.shape[1]
        self.faiss_index = faiss.IndexFlatIP(self.dimension)
        self.faiss_index.add(embeddings)
        self.max_results = 50  # Adjustable

    def get_wikipedia_subcats(self, topic):
        topic_cap = topic.capitalize().replace(' ', '_')
        url = f"https://en.wikipedia.org/w/api.php?action=query&list=categorymembers&cmtitle=Category:{topic_cap}&cmtype=subcat&format=json&cmlimit=50"
        try:
            response = requests.get(url).json()
            members = response.get('query', {}).get('categorymembers', [])
            if members:
                return [member['title'].replace('Category:', '').lower() for member in members]
            else:
                # Fallback: Search for main page and get relevant category subcats
                search_url = f"https://en.wikipedia.org/w/api.php?action=query&list=search&srsearch={topic}&format=json"
                search_response = requests.get(search_url).json()
                search_results = search_response.get('query', {}).get('search', [])
                if search_results:
                    main_title = search_results[0]['title']
                    cat_url = f"https://en.wikipedia.org/w/api.php?action=query&prop=categories&titles={main_title}&format=json&cllimit=50"
                    cat_response = requests.get(cat_url).json()
                    pages = cat_response.get('query', {}).get('pages', {})
                    if pages:
                        cats = list(pages.values())[0].get('categories', [])
                        cat_titles = [cat['title'].replace('Category:', '').lower() for cat in cats]
                        relevant_cats = [c for c in cat_titles if any(t in c for t in topic.lower().split())]
                        if relevant_cats:
                            subcat_topic = relevant_cats[0].capitalize().replace(' ', '_')
                            sub_url = f"https://en.wikipedia.org/w/api.php?action=query&list=categorymembers&cmtitle=Category:{subcat_topic}&cmtype=subcat&format=json&cmlimit=50"
                            sub_response = requests.get(sub_url).json()
                            sub_members = sub_response.get('query', {}).get('categorymembers', [])
                            return [m['title'].replace('Category:', '').lower() for m in sub_members]
            return []
        except Exception:
            return []

    def get_category_pages(self, category):
        cat_cap = category.capitalize().replace(' ', '_')
        url = f"https://en.wikipedia.org/w/api.php?action=query&list=categorymembers&cmtitle=Category:{cat_cap}&cmtype=page&format=json&cmlimit=50"
        try:
            response = requests.get(url).json()
            members = response.get('query', {}).get('categorymembers', [])
            # Filter to single words, lower case
            return [member['title'].lower() for member in members if ' ' not in member['title'] and len(member['title']) > 3]
        except Exception:
            return []

    def is_subcategory(self, topic, word):
        url = f"https://en.wikipedia.org/w/api.php?action=query&prop=categories&format=json&titles={word.capitalize()}"
        try:
            response = requests.get(url).json()
            pages = response.get('query', {}).get('pages', {})
            if pages:
                cats = list(pages.values())[0].get('categories', [])
                return any(topic.lower() in cat['title'].lower() for cat in cats)
            return False
        except Exception:
            return False

    def generate_words(self, topic, num_words=20):
        variations = [topic.lower()]
        if topic.endswith('s'):
            variations.append(topic[:-1])
        else:
            variations.append(topic + 's')

        all_results = {}

        subcats = self.get_wikipedia_subcats(topic)
        print('wiki subcats', subcats)

        # Add specific words from subcategory pages
        for sub in subcats:
            pages = self.get_category_pages(sub)
            for p in pages:
                # Assign a high score for direct Wikipedia matches
                all_results[p] = all_results.get(p, 0) + 0.8  # High base score

        for variation in variations:
            # Get topic embedding
            topic_embedding = self.model.encode([variation], convert_to_numpy=True)
            noise_factor = float(os.getenv("SEARCH_RANDOMNESS", "0.02"))
            if noise_factor > 0:
                noise = np.random.normal(0, noise_factor, topic_embedding.shape)
                topic_embedding += noise
            topic_embedding = np.ascontiguousarray(topic_embedding, dtype=np.float32)
            faiss.normalize_L2(topic_embedding)

            search_size = min(self.max_results * 3, len(self.vocab))
            scores, indices = self.faiss_index.search(topic_embedding, search_size)

            initial_results = []
            for i in range(len(indices[0])):
                idx = indices[0][i]
                score = scores[0][i]
                if score > 0.3:
                    initial_results.append(self.vocab[idx])

            # Identify additional subcats from initial results if wiki didn't provide
            if not subcats:
                additional_subcats = [w for w in initial_results[:30] if self.is_subcategory(topic, w)]
                subcats.extend(additional_subcats)

            # Fallback clustering if still no subcats
            if not subcats and len(initial_results) >= 3:
                result_embeddings = self.model.encode(initial_results, convert_to_numpy=True)
                result_embeddings = np.ascontiguousarray(result_embeddings, dtype=np.float32)
                faiss.normalize_L2(result_embeddings)
                kmeans = KMeans(n_clusters=min(3, len(initial_results)), random_state=42).fit(result_embeddings)
                cluster_centers = kmeans.cluster_centers_.astype(np.float32)
                faiss.normalize_L2(cluster_centers)
                _, subcat_indices = self.faiss_index.search(cluster_centers, 1)
                subcats = [self.vocab[subcat_indices[j][0]] for j in range(len(subcat_indices))]

            # Search subcategories
            for level, subs in enumerate([subcats], start=1):
                for sub in subs:
                    sub_embedding = self.model.encode([sub], convert_to_numpy=True)
                    sub_embedding = np.ascontiguousarray(sub_embedding, dtype=np.float32)
                    faiss.normalize_L2(sub_embedding)
                    sub_scores, sub_indices = self.faiss_index.search(sub_embedding, search_size)
                    for i in range(len(sub_indices[0])):
                        idx = sub_indices[0][i]
                        score = sub_scores[0][i]
                        if score > 0.3:
                            w = self.vocab[idx]
                            weighted_score = score * (0.8 ** level)
                            all_results[w] = all_results.get(w, 0) + weighted_score

            # Add initial results
            for i in range(len(indices[0])):
                idx = indices[0][i]
                score = scores[0][i]
                if score > 0.3:
                    w = self.vocab[idx]
                    all_results[w] = all_results.get(w, 0) + score

        # Combine with graph-based weighting
        G = nx.Graph()
        G.add_node(topic)
        for w, score in all_results.items():
            G.add_edge(topic, w, weight=score)
        pr = nx.pagerank(G, weight='weight')

        # Sort and return top, exclude topic
        sorted_results = sorted(pr.items(), key=lambda x: x[1], reverse=True)
        final_words = [w for w, _ in sorted_results if w != topic][:num_words]

        return final_words

if __name__ == "__main__":
    # Create a cache directory if it doesn't exist
    cache_dir = os.path.join(os.path.dirname(__file__), 'model_cache')
    os.makedirs(cache_dir, exist_ok=True)
    
    generator = CrosswordGenerator2(cache_dir=cache_dir)
    topics = ["animal", "animal", "science", "technology", "food", "indian food", "chinese food"]  # Example topic
    for topic in topics:
        print(f"------------- {topic} ------------")
        generated_words = generator.generate_words(topic)
        sorted_generated_words = sorted(generated_words)
        print(f"Generated words for topic '{topic}':")
        print(sorted_generated_words)