File size: 7,172 Bytes
2ecccdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#!/usr/bin/env python3
"""
Test Fine-tuned Model vs Original

Compare the fine-tuned model with the original FLAN-T5 
on our target words: PANESAR, RAJOURI, XANTHIC
"""

import torch
from pathlib import Path
from typing import List, Dict

try:
    from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
    TRANSFORMERS_AVAILABLE = True
except ImportError:
    TRANSFORMERS_AVAILABLE = False


class ModelComparison:
    """Compare original vs fine-tuned models"""
    
    def __init__(self):
        self.cache_dir = Path(__file__).parent.parent / "cache-dir"
        self.fine_tuned_dir = Path(__file__).parent / "fine_tuned_model"
        
        self.original_model = None
        self.original_tokenizer = None
        self.fine_tuned_model = None
        self.fine_tuned_tokenizer = None
    
    def load_models(self):
        """Load both original and fine-tuned models"""
        print("πŸ”„ Loading original FLAN-T5-small...")
        
        # Load original model
        self.original_tokenizer = AutoTokenizer.from_pretrained(
            "google/flan-t5-small",
            cache_dir=str(self.cache_dir)
        )
        self.original_model = AutoModelForSeq2SeqLM.from_pretrained(
            "google/flan-t5-small",
            cache_dir=str(self.cache_dir)
        )
        
        print("βœ… Original model loaded")
        
        # Load fine-tuned model
        if self.fine_tuned_dir.exists():
            print("πŸ”„ Loading fine-tuned model...")
            
            self.fine_tuned_tokenizer = AutoTokenizer.from_pretrained(
                str(self.fine_tuned_dir)
            )
            self.fine_tuned_model = AutoModelForSeq2SeqLM.from_pretrained(
                str(self.fine_tuned_dir)
            )
            
            print("βœ… Fine-tuned model loaded")
        else:
            print("❌ Fine-tuned model not found - run training first")
            return False
        
        return True
    
    def generate_clue(self, model, tokenizer, word: str) -> str:
        """Generate a clue using the specified model"""
        prompt = f"Generate a crossword clue for: {word}"
        
        inputs = tokenizer(prompt, return_tensors="pt")
        
        with torch.no_grad():
            outputs = model.generate(
                **inputs,
                max_new_tokens=20,
                num_beams=3,
                temperature=0.7,
                do_sample=True,
                early_stopping=True,
                pad_token_id=tokenizer.pad_token_id
            )
        
        result = tokenizer.decode(outputs[0], skip_special_tokens=True)
        
        # Clean up (remove original prompt if echoed)
        if prompt in result:
            result = result.replace(prompt, "").strip()
        
        return result
    
    def compare_models(self):
        """Compare models on target words"""
        target_words = [
            "PANESAR",    # Should be: cricketer
            "TENDULKAR",  # Should be: cricketer (in training data)
            "RAJOURI",    # Should be: Kashmir district
            "XANTHIC",    # Should be: yellowish color
            "SERENDIPITY", # Should be: happy accident
            "BEETHOVEN",  # Should be: composer (in training data)
            "PIANO",      # Should be: instrument (in training data)
        ]
        
        print("\nπŸ”¬ COMPARING ORIGINAL vs FINE-TUNED")
        print("=" * 70)
        
        results = []
        
        for word in target_words:
            print(f"\nπŸ“ {word}:")
            
            # Original model
            original_clue = self.generate_clue(
                self.original_model, 
                self.original_tokenizer, 
                word
            )
            
            # Fine-tuned model  
            fine_tuned_clue = self.generate_clue(
                self.fine_tuned_model,
                self.fine_tuned_tokenizer,
                word
            )
            
            print(f"   Original:    \"{original_clue}\"")
            print(f"   Fine-tuned:  \"{fine_tuned_clue}\"")
            
            # Simple quality check
            in_training = word.upper() in ["TENDULKAR", "BEETHOVEN", "PIANO"]
            
            if in_training:
                print(f"   Note: This word WAS in training data")
            else:
                print(f"   Note: This word was NOT in training data")
            
            results.append({
                "word": word,
                "original": original_clue,
                "fine_tuned": fine_tuned_clue,
                "in_training": in_training
            })
        
        # Summary
        print("\n" + "=" * 70)
        print("πŸ“Š ANALYSIS")
        print("=" * 70)
        
        print("\n🎯 Words in Training Data:")
        for result in results:
            if result["in_training"]:
                print(f"   {result['word']:12} β†’ \"{result['fine_tuned']}\"")
        
        print("\nπŸ” Words NOT in Training Data (Transfer Learning Test):")
        for result in results:
            if not result["in_training"]:
                print(f"   {result['word']:12} β†’ \"{result['fine_tuned']}\"")
        
        print(f"\nπŸ’‘ CONCLUSIONS:")
        print(f"1. If fine-tuned model is worse on training data words,")
        print(f"   then fine-tuning failed completely")
        print(f"2. If it's better on training data but bad on new words,")
        print(f"   then it overfitted and didn't generalize")
        print(f"3. If it's better on both, then transfer learning succeeded!")
    
    def test_training_examples(self):
        """Test on exact training examples to check if model learned"""
        print("\nπŸŽ“ Testing on EXACT Training Examples:")
        print("=" * 50)
        
        training_examples = [
            ("PIANO", "88-key instrument"),
            ("BEETHOVEN", "Austrian composer"),  # Not exact but close
            ("OXYGEN", "Life-sustaining gas"),
            ("EINSTEIN", "Relativity physicist"),
        ]
        
        for word, expected in training_examples:
            generated = self.generate_clue(
                self.fine_tuned_model,
                self.fine_tuned_tokenizer,
                word
            )
            
            print(f"{word:12}: Expected: \"{expected}\"")
            print(f"{'':12}  Generated: \"{generated}\"")
            
            # Check if similar
            if any(exp_word in generated.lower() for exp_word in expected.lower().split()):
                print(f"{'':12}  Status: βœ… Some similarity")
            else:
                print(f"{'':12}  Status: ❌ No similarity")
            print()


def main():
    """Main function"""
    print("πŸ§ͺ FINE-TUNED MODEL EVALUATION")
    print("=" * 50)
    
    if not TRANSFORMERS_AVAILABLE:
        print("❌ Need transformers library")
        return
    
    comparison = ModelComparison()
    
    if not comparison.load_models():
        return
    
    # Test on training examples first
    comparison.test_training_examples()
    
    # Compare on target words
    comparison.compare_models()


if __name__ == "__main__":
    main()