File size: 24,355 Bytes
486eff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
#!/usr/bin/env python3
"""
Test Script: Thematic Word Generation + LLM Clue Generation

Integrates the existing thematic_word_generator.py with the new llm_clue_generator.py
to create a complete word-to-clue pipeline for crossword puzzles.

Tests various scenarios:
- Single topics
- Multiple topics  
- Custom sentences
- Different difficulties
- Performance analysis
"""

import os
import sys
import time
import logging
from typing import List, Dict, Tuple, Any
from pathlib import Path

# Add hack directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))

try:
    from thematic_word_generator import UnifiedThematicWordGenerator
    from llm_clue_generator import LLMClueGenerator
    GENERATORS_AVAILABLE = True
except ImportError as e:
    print(f"❌ Import error: {e}")
    print("Make sure thematic_word_generator.py and llm_clue_generator.py are in the same directory")
    GENERATORS_AVAILABLE = False

# Set up logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s:%(lineno)d - %(levelname)s - %(message)s',
    datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger(__name__)


class CrosswordClueTestSuite:
    """
    Test suite for integrated thematic word generation + LLM clue generation.
    """
    
    def __init__(self, vocab_size_limit: int = 50000):
        """Initialize the test suite.
        
        Args:
            vocab_size_limit: Vocabulary size for thematic generator (smaller for faster testing)
        """
        if not GENERATORS_AVAILABLE:
            raise ImportError("Required generators not available")
        
        self.vocab_size_limit = vocab_size_limit
        self.word_generator = None
        self.clue_generator = None
        
        # Test results storage
        self.test_results = {}
        self.performance_stats = {}
    
    def initialize(self):
        """Initialize both generators."""
        print("πŸš€ Initializing Crossword Clue Test Suite")
        print("=" * 60)
        
        # Initialize thematic word generator
        print("\nπŸ”„ Initializing thematic word generator...")
        start_time = time.time()
        
        self.word_generator = UnifiedThematicWordGenerator(
            vocab_size_limit=self.vocab_size_limit
        )
        self.word_generator.initialize()
        
        word_gen_time = time.time() - start_time
        print(f"βœ… Word generator ready in {word_gen_time:.2f}s")
        
        # Initialize LLM clue generator
        print("\nπŸ”„ Initializing LLM clue generator...")
        start_time = time.time()
        
        self.clue_generator = LLMClueGenerator()
        self.clue_generator.initialize()
        
        clue_gen_time = time.time() - start_time
        print(f"βœ… Clue generator ready in {clue_gen_time:.2f}s")
        
        # Store initialization stats
        self.performance_stats['word_gen_init_time'] = word_gen_time
        self.performance_stats['clue_gen_init_time'] = clue_gen_time
        self.performance_stats['total_init_time'] = word_gen_time + clue_gen_time
        
        print(f"\nβœ… Test suite initialized in {word_gen_time + clue_gen_time:.2f}s")
    
    def run_single_topic_test(self, topic: str, num_words: int = 10) -> Dict[str, Any]:
        """Test single topic word+clue generation.
        
        Args:
            topic: Single topic string
            num_words: Number of words to generate
            
        Returns:
            Test results dictionary
        """
        print(f"\n🎯 Single Topic Test: '{topic}'")
        print("-" * 50)
        
        start_time = time.time()
        
        # Step 1: Generate thematic words
        print(f"πŸ“ Generating {num_words} thematic words...")
        word_start_time = time.time()
        
        thematic_results = self.word_generator.generate_thematic_words(
            inputs=topic,
            num_words=num_words,
            min_similarity=0.3
        )
        
        word_gen_time = time.time() - word_start_time
        print(f"βœ… Generated {len(thematic_results)} words in {word_gen_time:.2f}s")
        
        if not thematic_results:
            return {"error": "No thematic words generated"}
        
        # Step 2: Generate clues for each word
        print(f"🎭 Generating clues for {len(thematic_results)} words...")
        clue_start_time = time.time()
        
        word_clue_pairs = []
        for word, similarity, tier in thematic_results:
            try:
                clue = self.clue_generator.generate_clue(
                    word=word, 
                    topic=topic, 
                    clue_style="category",
                    difficulty="medium"
                )
                
                word_clue_pairs.append({
                    "word": word.upper(),
                    "clue": clue,
                    "similarity": similarity,
                    "tier": tier,
                    "length": len(word)
                })
                
            except Exception as e:
                logger.error(f"Failed to generate clue for '{word}': {e}")
                word_clue_pairs.append({
                    "word": word.upper(),
                    "clue": f"Related to {topic}: {word}",  # Fallback
                    "similarity": similarity,
                    "tier": tier,
                    "length": len(word),
                    "error": str(e)
                })
        
        clue_gen_time = time.time() - clue_start_time
        total_time = time.time() - start_time
        
        # Display results
        print(f"βœ… Generated {len(word_clue_pairs)} clues in {clue_gen_time:.2f}s")
        print(f"\nπŸ“‹ Results for topic '{topic}':")
        print("=" * 60)
        
        for i, item in enumerate(word_clue_pairs, 1):
            tier_desc = self.word_generator.tier_descriptions.get(item['tier'], item['tier'])
            error_marker = " ⚠️" if 'error' in item else ""
            print(f"{i:2d}. {item['word']:<12} ({item['length']} letters) - {item['clue']}{error_marker}")
            print(f"    Similarity: {item['similarity']:.3f} | {tier_desc}")
        
        # Performance summary
        print(f"\n⏱️  Performance:")
        print(f"   Word generation: {word_gen_time:.2f}s")
        print(f"   Clue generation: {clue_gen_time:.2f}s ({clue_gen_time/len(word_clue_pairs):.2f}s per clue)")
        print(f"   Total time: {total_time:.2f}s")
        
        return {
            "topic": topic,
            "num_words_requested": num_words,
            "num_words_generated": len(word_clue_pairs),
            "word_clue_pairs": word_clue_pairs,
            "performance": {
                "word_gen_time": word_gen_time,
                "clue_gen_time": clue_gen_time,
                "total_time": total_time,
                "avg_clue_time": clue_gen_time / len(word_clue_pairs) if word_clue_pairs else 0
            }
        }
    
    def run_multi_topic_test(self, topics: List[str], num_words: int = 12) -> Dict[str, Any]:
        """Test multi-topic word+clue generation.
        
        Args:
            topics: List of topic strings
            num_words: Number of words to generate
            
        Returns:
            Test results dictionary
        """
        print(f"\n🎯 Multi-Topic Test: {topics}")
        print("-" * 50)
        
        start_time = time.time()
        
        # Step 1: Generate thematic words (multi-theme enabled)
        print(f"πŸ“ Generating {num_words} multi-thematic words...")
        word_start_time = time.time()
        
        thematic_results = self.word_generator.generate_thematic_words(
            inputs=topics,
            num_words=num_words,
            min_similarity=0.25,  # Lower threshold for multi-topic
            multi_theme=True  # Enable multi-theme processing
        )
        
        word_gen_time = time.time() - word_start_time
        print(f"βœ… Generated {len(thematic_results)} words in {word_gen_time:.2f}s")
        
        if not thematic_results:
            return {"error": "No thematic words generated"}
        
        # Step 2: Generate contextual clues
        print(f"🎭 Generating contextual clues...")
        clue_start_time = time.time()
        
        # Create topic context string for clue generation
        topic_context = " and ".join(topics)
        
        word_clue_pairs = []
        for word, similarity, tier in thematic_results:
            try:
                clue = self.clue_generator.generate_clue(
                    word=word, 
                    topic=topic_context,
                    clue_style="description",  # Use descriptive style for multi-topic
                    difficulty="medium"
                )
                
                word_clue_pairs.append({
                    "word": word.upper(),
                    "clue": clue,
                    "similarity": similarity,
                    "tier": tier,
                    "length": len(word)
                })
                
            except Exception as e:
                logger.error(f"Failed to generate clue for '{word}': {e}")
                word_clue_pairs.append({
                    "word": word.upper(),
                    "clue": f"Related to {topic_context}: {word}",
                    "similarity": similarity,
                    "tier": tier,
                    "length": len(word),
                    "error": str(e)
                })
        
        clue_gen_time = time.time() - clue_start_time
        total_time = time.time() - start_time
        
        # Display results
        print(f"βœ… Generated {len(word_clue_pairs)} clues in {clue_gen_time:.2f}s")
        print(f"\nπŸ“‹ Results for topics {topics}:")
        print("=" * 70)
        
        for i, item in enumerate(word_clue_pairs, 1):
            tier_desc = self.word_generator.tier_descriptions.get(item['tier'], item['tier'])
            error_marker = " ⚠️" if 'error' in item else ""
            print(f"{i:2d}. {item['word']:<12} ({item['length']} letters) - {item['clue']}{error_marker}")
            print(f"    Similarity: {item['similarity']:.3f} | {tier_desc}")
        
        # Performance summary
        print(f"\n⏱️  Performance:")
        print(f"   Word generation: {word_gen_time:.2f}s")
        print(f"   Clue generation: {clue_gen_time:.2f}s ({clue_gen_time/len(word_clue_pairs):.2f}s per clue)")
        print(f"   Total time: {total_time:.2f}s")
        
        return {
            "topics": topics,
            "num_words_requested": num_words,
            "num_words_generated": len(word_clue_pairs),
            "word_clue_pairs": word_clue_pairs,
            "performance": {
                "word_gen_time": word_gen_time,
                "clue_gen_time": clue_gen_time,
                "total_time": total_time,
                "avg_clue_time": clue_gen_time / len(word_clue_pairs) if word_clue_pairs else 0
            }
        }
    
    def run_custom_sentence_test(self, sentence: str, num_words: int = 10) -> Dict[str, Any]:
        """Test custom sentence word+clue generation.
        
        Args:
            sentence: Custom sentence input
            num_words: Number of words to generate
            
        Returns:
            Test results dictionary
        """
        print(f"\n🎯 Custom Sentence Test: '{sentence}'")
        print("-" * 60)
        
        start_time = time.time()
        
        # Step 1: Generate thematic words from sentence
        print(f"πŸ“ Generating {num_words} words from sentence...")
        word_start_time = time.time()
        
        thematic_results = self.word_generator.generate_thematic_words(
            inputs=sentence,
            num_words=num_words,
            min_similarity=0.2  # Lower threshold for sentences
        )
        
        word_gen_time = time.time() - word_start_time
        print(f"βœ… Generated {len(thematic_results)} words in {word_gen_time:.2f}s")
        
        if not thematic_results:
            return {"error": "No thematic words generated"}
        
        # Step 2: Generate personalized clues
        print(f"🎭 Generating personalized clues...")
        clue_start_time = time.time()
        
        word_clue_pairs = []
        for word, similarity, tier in thematic_results:
            try:
                # Use the original sentence as context for more personalized clues
                clue = self.clue_generator.generate_clue(
                    word=word, 
                    topic=f"theme: {sentence}",
                    clue_style="description",
                    difficulty="medium"
                )
                
                word_clue_pairs.append({
                    "word": word.upper(),
                    "clue": clue,
                    "similarity": similarity,
                    "tier": tier,
                    "length": len(word)
                })
                
            except Exception as e:
                logger.error(f"Failed to generate clue for '{word}': {e}")
                word_clue_pairs.append({
                    "word": word.upper(),
                    "clue": f"From '{sentence[:30]}...': {word}",
                    "similarity": similarity,
                    "tier": tier,
                    "length": len(word),
                    "error": str(e)
                })
        
        clue_gen_time = time.time() - clue_start_time
        total_time = time.time() - start_time
        
        # Display results
        print(f"βœ… Generated {len(word_clue_pairs)} clues in {clue_gen_time:.2f}s")
        print(f"\nπŸ“‹ Results for sentence: '{sentence}'")
        print("=" * 70)
        
        for i, item in enumerate(word_clue_pairs, 1):
            tier_desc = self.word_generator.tier_descriptions.get(item['tier'], item['tier'])
            error_marker = " ⚠️" if 'error' in item else ""
            print(f"{i:2d}. {item['word']:<12} ({item['length']} letters) - {item['clue']}{error_marker}")
            print(f"    Similarity: {item['similarity']:.3f} | {tier_desc}")
        
        # Performance summary
        print(f"\n⏱️  Performance:")
        print(f"   Word generation: {word_gen_time:.2f}s")
        print(f"   Clue generation: {clue_gen_time:.2f}s ({clue_gen_time/len(word_clue_pairs):.2f}s per clue)")
        print(f"   Total time: {total_time:.2f}s")
        
        return {
            "sentence": sentence,
            "num_words_requested": num_words,
            "num_words_generated": len(word_clue_pairs),
            "word_clue_pairs": word_clue_pairs,
            "performance": {
                "word_gen_time": word_gen_time,
                "clue_gen_time": clue_gen_time,
                "total_time": total_time,
                "avg_clue_time": clue_gen_time / len(word_clue_pairs) if word_clue_pairs else 0
            }
        }
    
    def run_difficulty_comparison_test(self, topic: str, num_words: int = 6) -> Dict[str, Any]:
        """Test different difficulty levels for the same topic.
        
        Args:
            topic: Topic to test
            num_words: Number of words to generate
            
        Returns:
            Comparison results
        """
        print(f"\n🎯 Difficulty Comparison Test: '{topic}'")
        print("-" * 50)
        
        difficulties = ["easy", "medium", "hard"]
        results = {}
        
        # Generate words once (reuse for all difficulties)
        thematic_results = self.word_generator.generate_thematic_words(
            inputs=topic,
            num_words=num_words,
            min_similarity=0.3
        )[:num_words]  # Take only requested number
        
        if not thematic_results:
            return {"error": "No thematic words generated"}
        
        print(f"πŸ“ Testing {len(thematic_results)} words at different difficulty levels...")
        
        for difficulty in difficulties:
            print(f"\n--- {difficulty.upper()} Difficulty ---")
            
            clue_pairs = []
            start_time = time.time()
            
            for word, similarity, tier in thematic_results:
                try:
                    clue = self.clue_generator.generate_clue(
                        word=word,
                        topic=topic,
                        clue_style="category",
                        difficulty=difficulty
                    )
                    
                    clue_pairs.append({
                        "word": word.upper(),
                        "clue": clue,
                        "similarity": similarity,
                        "tier": tier
                    })
                    
                except Exception as e:
                    logger.error(f"Failed to generate {difficulty} clue for '{word}': {e}")
                    clue_pairs.append({
                        "word": word.upper(),
                        "clue": f"{difficulty.title()} clue for {word}",
                        "similarity": similarity,
                        "tier": tier,
                        "error": str(e)
                    })
            
            generation_time = time.time() - start_time
            results[difficulty] = {
                "clue_pairs": clue_pairs,
                "generation_time": generation_time
            }
            
            # Display this difficulty's results
            for i, item in enumerate(clue_pairs, 1):
                error_marker = " ⚠️" if 'error' in item else ""
                print(f"  {i}. {item['word']:<10} - {item['clue']}{error_marker}")
        
        return {
            "topic": topic,
            "difficulties_tested": difficulties,
            "results": results,
            "base_words": [{"word": w, "similarity": s, "tier": t} for w, s, t in thematic_results]
        }
    
    def run_performance_analysis(self) -> Dict[str, Any]:
        """Analyze overall performance characteristics."""
        print(f"\nπŸ“Š Performance Analysis")
        print("-" * 40)
        
        # Collect performance stats from previous tests
        if not self.test_results:
            print("⚠️ No test results available for performance analysis")
            return {}
        
        all_word_times = []
        all_clue_times = []
        all_total_times = []
        
        for test_name, result in self.test_results.items():
            if 'performance' in result:
                perf = result['performance']
                all_word_times.append(perf.get('word_gen_time', 0))
                all_clue_times.append(perf.get('clue_gen_time', 0))
                all_total_times.append(perf.get('total_time', 0))
        
        if all_word_times:
            print(f"πŸ“ˆ Word Generation Performance:")
            print(f"   Average: {sum(all_word_times)/len(all_word_times):.2f}s")
            print(f"   Min: {min(all_word_times):.2f}s")
            print(f"   Max: {max(all_word_times):.2f}s")
            
            print(f"\n🎭 Clue Generation Performance:")
            print(f"   Average: {sum(all_clue_times)/len(all_clue_times):.2f}s")
            print(f"   Min: {min(all_clue_times):.2f}s")
            print(f"   Max: {max(all_clue_times):.2f}s")
            
            print(f"\n⏱️  Total Pipeline Performance:")
            print(f"   Average: {sum(all_total_times)/len(all_total_times):.2f}s")
            print(f"   Min: {min(all_total_times):.2f}s")
            print(f"   Max: {max(all_total_times):.2f}s")
        
        return {
            "word_gen_stats": {
                "avg": sum(all_word_times)/len(all_word_times) if all_word_times else 0,
                "min": min(all_word_times) if all_word_times else 0,
                "max": max(all_word_times) if all_word_times else 0
            },
            "clue_gen_stats": {
                "avg": sum(all_clue_times)/len(all_clue_times) if all_clue_times else 0,
                "min": min(all_clue_times) if all_clue_times else 0,
                "max": max(all_clue_times) if all_clue_times else 0
            },
            "total_stats": {
                "avg": sum(all_total_times)/len(all_total_times) if all_total_times else 0,
                "min": min(all_total_times) if all_total_times else 0,
                "max": max(all_total_times) if all_total_times else 0
            }
        }
    
    def run_full_test_suite(self):
        """Run the complete test suite."""
        print("πŸ§ͺ CROSSWORD CLUE GENERATION TEST SUITE")
        print("=" * 70)
        
        if not GENERATORS_AVAILABLE:
            print("❌ Cannot run tests - generators not available")
            return
        
        # Initialize
        self.initialize()
        
        # Test 1: Single topics
        print("\n" + "="*70)
        print("TEST 1: SINGLE TOPIC TESTS")
        print("="*70)
        
        single_topics = ["animals", "technology", "music", "food"]
        for topic in single_topics:
            result = self.run_single_topic_test(topic, num_words=8)
            self.test_results[f"single_{topic}"] = result
        
        # Test 2: Multi-topic
        print("\n" + "="*70)
        print("TEST 2: MULTI-TOPIC TEST")
        print("="*70)
        
        multi_result = self.run_multi_topic_test(["science", "technology"], num_words=10)
        self.test_results["multi_science_tech"] = multi_result
        
        # Test 3: Custom sentence
        print("\n" + "="*70)
        print("TEST 3: CUSTOM SENTENCE TEST")
        print("="*70)
        
        sentence_result = self.run_custom_sentence_test("I love cats and playing guitar", num_words=8)
        self.test_results["sentence_cats_guitar"] = sentence_result
        
        # Test 4: Difficulty comparison
        print("\n" + "="*70)
        print("TEST 4: DIFFICULTY COMPARISON")
        print("="*70)
        
        difficulty_result = self.run_difficulty_comparison_test("sports", num_words=5)
        self.test_results["difficulty_sports"] = difficulty_result
        
        # Test 5: Performance analysis
        print("\n" + "="*70)
        print("TEST 5: PERFORMANCE ANALYSIS")
        print("="*70)
        
        perf_result = self.run_performance_analysis()
        self.test_results["performance"] = perf_result
        
        # Final summary
        print("\n" + "="*70)
        print("πŸ“‹ FINAL SUMMARY")
        print("="*70)
        
        print(f"βœ… Test suite completed!")
        print(f"πŸ“Š Tests run: {len(self.test_results)}")
        
        # Model info
        word_info = {
            "vocab_size": self.word_generator.get_vocabulary_size(),
            "tier_distribution": len(self.word_generator.get_tier_distribution())
        }
        
        clue_info = self.clue_generator.get_model_info()
        
        print(f"\nπŸ”§ System Information:")
        print(f"   Word vocabulary: {word_info['vocab_size']:,} words")
        print(f"   Clue model: {clue_info['model_name']}")
        print(f"   Model size: {clue_info.get('model_size_mb', 0):.1f} MB")
        
        if perf_result:
            avg_total = perf_result['total_stats']['avg']
            print(f"   Average pipeline time: {avg_total:.2f}s")
        
        print(f"\nπŸ’‘ Recommendations for HF Spaces:")
        if perf_result and perf_result['total_stats']['avg'] < 15:
            print("   βœ… Performance suitable for interactive use")
        else:
            print("   ⚠️ Consider optimizations for better user experience")
        
        print("\nπŸŽ‰ Test suite complete!")


def main():
    """Run the test suite."""
    if not GENERATORS_AVAILABLE:
        print("❌ Cannot run tests - required generators not available")
        print("Make sure thematic_word_generator.py and llm_clue_generator.py are working")
        return
    
    # Create and run test suite
    test_suite = CrosswordClueTestSuite(vocab_size_limit=50000)  # Use existing cached embeddings
    
    try:
        test_suite.run_full_test_suite()
    except KeyboardInterrupt:
        print("\n\n⏹️ Test suite interrupted by user")
    except Exception as e:
        print(f"\n❌ Test suite failed: {e}")
        logger.error(f"Test suite error: {e}", exc_info=True)


if __name__ == "__main__":
    main()