File size: 20,748 Bytes
486eff6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 |
#!/usr/bin/env python3
"""
Local LLM Clue Generator for Crossword Puzzles
Uses google/flan-t5-small for generating contextual crossword clues.
Designed to work within Hugging Face Spaces constraints.
"""
import os
import time
import logging
from typing import List, Dict, Optional, Tuple, Any
from pathlib import Path
# Transformers imports
try:
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
TRANSFORMERS_AVAILABLE = True
except ImportError:
TRANSFORMERS_AVAILABLE = False
logging.warning("Transformers not available - LLM clue generation disabled")
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s:%(lineno)d - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger(__name__)
class LLMClueGenerator:
"""
Local LLM-based clue generator using google/flan-t5-small.
Optimized for Hugging Face Spaces deployment.
"""
def __init__(self, cache_dir: Optional[str] = None):
"""Initialize the LLM clue generator.
Args:
cache_dir: Directory to cache the model files
"""
if not TRANSFORMERS_AVAILABLE:
raise ImportError("transformers library is required for LLM clue generation")
if cache_dir is None:
cache_dir = os.path.join(os.path.dirname(__file__), 'model_cache')
self.cache_dir = Path(cache_dir)
self.cache_dir.mkdir(parents=True, exist_ok=True)
# Model configuration - flan-t5-base with superior prompting strategy
self.model_name = "google/flan-t5-base" # ~1GB, with much better prompts
self.max_length = 64 # Slightly longer for better responses
self.num_return_sequences = 3 # Generate multiple candidates
# Model components
self.tokenizer = None
self.model = None
self.generator = None
self.is_initialized = False
# Superior prompts with examples for flan-t5-base
self.clue_templates = {
"definition": """Write a crossword clue for the word '{word}' (topic: {topic}).
Examples:
- CAT (animals) β "Feline pet"
- GUITAR (music) β "Stringed instrument"
- AIRPORT (transportation) β "Flight terminal"
Now write a clue for '{word}' (topic: {topic}) in 2-5 words:""",
"description": """Create a crossword clue by describing '{word}' from the {topic} category.
Examples:
- DOG (animals) β "Loyal canine companion"
- PIZZA (food) β "Italian bread dish"
- DATABASE (technology) β "Information storage system"
Describe '{word}' (topic: {topic}) in 3-6 words:""",
"simple": """Complete this crossword clue pattern.
Examples:
VIOLIN (music) = "Bowed string instrument"
SCIENTIST (science) = "Research professional"
SWIMMING (sports) = "Aquatic athletic activity"
{word} ({topic}) =""",
}
def initialize(self):
"""Initialize the LLM model and tokenizer."""
if self.is_initialized:
return
start_time = time.time()
logger.info(f"π€ Initializing LLM clue generator with {self.model_name}")
logger.info(f"π Cache directory: {self.cache_dir}")
try:
# Load tokenizer and model
logger.info("π¦ Loading tokenizer...")
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
cache_dir=str(self.cache_dir)
)
logger.info("π¦ Loading model...")
self.model = AutoModelForSeq2SeqLM.from_pretrained(
self.model_name,
cache_dir=str(self.cache_dir)
)
# Create text generation pipeline
logger.info("π Creating generation pipeline...")
self.generator = pipeline(
"text2text-generation",
model=self.model,
tokenizer=self.tokenizer,
max_length=self.max_length,
num_return_sequences=1, # We'll handle multiple candidates manually
do_sample=True,
temperature=0.7,
device=-1 # CPU inference
)
self.is_initialized = True
init_time = time.time() - start_time
logger.info(f"β
LLM clue generator initialized in {init_time:.2f}s")
except Exception as e:
logger.error(f"β Failed to initialize LLM clue generator: {e}")
raise
def generate_clue(self,
word: str,
topic: str,
clue_style: str = "category",
difficulty: str = "medium") -> str:
"""Generate a single clue for the given word and topic.
Args:
word: The word to generate a clue for
topic: The theme/topic context
clue_style: Style of clue ('definition', 'trivia', 'description', 'category', 'simple')
difficulty: Difficulty level ('easy', 'medium', 'hard')
Returns:
Generated clue string
"""
if not self.is_initialized:
self.initialize()
candidates = self.generate_clue_candidates(word, topic, clue_style, difficulty)
return self._select_best_clue(candidates, word) if candidates else self._fallback_clue(word, topic)
def generate_clue_candidates(self,
word: str,
topic: str,
clue_style: str = "category",
difficulty: str = "medium",
num_candidates: int = 5) -> List[str]:
"""Generate multiple clue candidates using different strategies.
Args:
word: The word to generate clues for
topic: The theme/topic context
clue_style: Style of clue to generate
difficulty: Difficulty level
num_candidates: Number of candidates to generate
Returns:
List of generated clue candidates
"""
if not self.is_initialized:
self.initialize()
logger.info(f"π― Generating {num_candidates} clues for '{word}' (topic: {topic}, style: {clue_style})")
candidates = []
# Strategy 1: Try primary clue style
candidates.extend(self._try_clue_generation(word, topic, clue_style, difficulty, num_candidates // 2))
# Strategy 2: If we don't have enough good candidates, try different styles
if len(candidates) < 2:
backup_styles = ["definition", "description", "simple"]
for backup_style in backup_styles:
if backup_style != clue_style:
backup_candidates = self._try_clue_generation(word, topic, backup_style, difficulty, 2)
candidates.extend(backup_candidates)
if len(candidates) >= 3:
break
# Strategy 3: Try with modified temperature if still not enough
if len(candidates) < 2:
logger.debug(f"β οΈ Low quality candidates, trying with different temperature")
candidates.extend(self._try_clue_generation(word, topic, "simple", difficulty, 3, temperature=0.5))
logger.debug(f"β
Generated {len(candidates)} valid candidates total")
return candidates[:num_candidates] # Return only requested number
def _try_clue_generation(self, word: str, topic: str, clue_style: str, difficulty: str,
attempts: int, temperature: float = 0.8) -> List[str]:
"""Try generating clues with specific parameters."""
template = self.clue_templates.get(clue_style, self.clue_templates["definition"])
prompt = self._create_prompt(word, topic, template, difficulty)
candidates = []
try:
for i in range(attempts):
result = self.generator(
prompt,
max_length=self.max_length,
do_sample=True,
temperature=temperature,
num_return_sequences=1,
pad_token_id=self.tokenizer.eos_token_id
)
if result and len(result) > 0:
generated_text = result[0]['generated_text'].strip()
# Clean up the generated text
clean_clue = self._clean_generated_clue(generated_text, word)
if clean_clue and clean_clue not in candidates:
candidates.append(clean_clue)
logger.debug(f"β
Valid clue #{len(candidates)}: {clean_clue}")
else:
logger.debug(f"β Rejected clue: {generated_text[:100]}...")
except Exception as e:
logger.error(f"β Error in clue generation attempt: {e}")
return candidates
def generate_clues_batch(self,
words_and_topics: List[Tuple[str, str]],
clue_style: str = "category",
difficulty: str = "medium") -> Dict[str, str]:
"""Generate clues for multiple words in batch.
Args:
words_and_topics: List of (word, topic) tuples
clue_style: Style of clue to generate
difficulty: Difficulty level
Returns:
Dictionary mapping words to their generated clues
"""
if not self.is_initialized:
self.initialize()
logger.info(f"π― Generating {len(words_and_topics)} clues in batch")
results = {}
start_time = time.time()
for i, (word, topic) in enumerate(words_and_topics):
try:
clue = self.generate_clue(word, topic, clue_style, difficulty)
results[word] = clue
if (i + 1) % 5 == 0: # Progress update every 5 words
elapsed = time.time() - start_time
avg_time = elapsed / (i + 1)
logger.info(f"π Progress: {i+1}/{len(words_and_topics)} ({avg_time:.2f}s per clue)")
except Exception as e:
logger.error(f"β Failed to generate clue for '{word}': {e}")
results[word] = self._fallback_clue(word, topic)
total_time = time.time() - start_time
logger.info(f"β
Batch generation complete in {total_time:.2f}s (avg: {total_time/len(words_and_topics):.2f}s per clue)")
return results
def _create_prompt(self, word: str, topic: str, template: str, difficulty: str) -> str:
"""Create a difficulty-aware prompt for the LLM."""
# Adjust complexity based on difficulty
difficulty_hints = {
"easy": "Keep it simple and clear.",
"medium": "Make it moderately challenging.",
"hard": "Make it clever and challenging."
}
base_prompt = template.format(word=word, topic=topic)
hint = difficulty_hints.get(difficulty, "")
return f"{base_prompt} {hint}".strip()
def _clean_generated_clue(self, generated_text: str, word: str) -> str:
"""Clean and validate the generated clue text with improved filtering."""
if not generated_text:
return ""
# Remove common artifacts and clean up
clue = generated_text.strip()
# Remove common LLM artifacts
artifacts_to_remove = [
"Your clue:", "Your answer:", "Clue:", "Answer:", "Format:", "Example:",
"Rules:", "Here's", "The clue is", "A good clue would be", "This is",
"I would suggest", "One option could be", "Consider this",
]
clue_lower = clue.lower()
for artifact in artifacts_to_remove:
if artifact.lower() in clue_lower:
# Find and remove the artifact and everything before it
artifact_pos = clue_lower.find(artifact.lower())
if artifact_pos >= 0:
clue = clue[artifact_pos + len(artifact):].strip()
# Remove quotes, brackets, and leading/trailing punctuation
clue = clue.strip('"\'[](){}<>')
# Check if clue contains the target word (invalid for crosswords)
word_lower = word.lower()
clue_words = set(clue.lower().split())
if word_lower in clue_words:
logger.debug(f"β οΈ Rejecting clue containing target word '{word}': {clue}")
return ""
# Check for partial word matches (e.g., "cats" contains "cat")
if any(word_lower in clue_word or clue_word in word_lower for clue_word in clue_words):
logger.debug(f"β οΈ Rejecting clue with partial word match for '{word}': {clue}")
return ""
# Reject clues that are too short or too long for crosswords
if len(clue) < 5 or len(clue) > 80:
logger.debug(f"β οΈ Rejecting clue with bad length ({len(clue)}): {clue}")
return ""
# Reject clues with too many words (crossword clues should be concise)
word_count = len(clue.split())
if word_count > 15:
logger.debug(f"β οΈ Rejecting wordy clue ({word_count} words): {clue}")
return ""
# Check for nonsensical patterns
if self._is_nonsensical(clue):
logger.debug(f"β οΈ Rejecting nonsensical clue: {clue}")
return ""
# Clean up final formatting
clue = clue.capitalize()
if not clue.endswith('.'):
clue = clue.rstrip('.,!?') + '.'
return clue
def _is_nonsensical(self, clue: str) -> bool:
"""Check if clue appears nonsensical or inappropriate."""
clue_lower = clue.lower()
# Check for obvious nonsense patterns
nonsense_indicators = [
"shit", "crap", "damn", "fuck", # Inappropriate language
"nicolas", "fender", "omelets are sometimes", # Random/broken phrases
"for the most part", "go to a party", # Unrelated sentence fragments
"help for the kids", "new ways to get", # Generic filler text
]
for indicator in nonsense_indicators:
if indicator in clue_lower:
return True
# Check for broken sentence structures
if clue_lower.startswith(("for the", "help for", "go to", "new ways")):
return True
# Check for excessive repetition
words = clue_lower.split()
if len(set(words)) < len(words) * 0.5: # More than 50% repeated words
return True
return False
def _select_best_clue(self, candidates: List[str], word: str) -> str:
"""Select the best clue from candidates."""
if not candidates:
return ""
# Simple selection criteria:
# 1. Prefer shorter clues (easier to read in crosswords)
# 2. Prefer clues without the target word
# 3. Prefer clues with reasonable length
scored_candidates = []
for clue in candidates:
score = 0
# Length scoring (prefer 20-60 characters)
length = len(clue)
if 20 <= length <= 60:
score += 10
elif length < 20:
score += 5 # Too short, but better than too long
else:
score -= (length - 60) // 10 # Penalty for being too long
# Avoid clues containing the target word
if word.lower() not in clue.lower():
score += 15
else:
score -= 20
# Prefer clues with some punctuation (more natural)
if any(p in clue for p in '.!?,:;'):
score += 3
scored_candidates.append((score, clue))
# Sort by score (highest first) and return best
scored_candidates.sort(key=lambda x: x[0], reverse=True)
best_clue = scored_candidates[0][1]
logger.debug(f"π Selected best clue: '{best_clue}' (score: {scored_candidates[0][0]})")
return best_clue
def _fallback_clue(self, word: str, topic: str) -> str:
"""Generate a simple fallback clue when LLM fails."""
word_lower = word.lower()
topic_lower = topic.lower()
# Simple topic-based templates
if any(keyword in topic_lower for keyword in ["animal", "pet", "wildlife"]):
return f"Animal: {word_lower}"
elif any(keyword in topic_lower for keyword in ["tech", "computer", "software"]):
return f"Technology term: {word_lower}"
elif any(keyword in topic_lower for keyword in ["science", "biology", "chemistry"]):
return f"Science: {word_lower}"
elif any(keyword in topic_lower for keyword in ["food", "cooking", "cuisine"]):
return f"Food item: {word_lower}"
elif any(keyword in topic_lower for keyword in ["music", "song", "instrument"]):
return f"Music: {word_lower}"
else:
return f"Related to {topic_lower}: {word_lower}"
def get_model_info(self) -> Dict[str, Any]:
"""Get information about the loaded model."""
info = {
"model_name": self.model_name,
"is_initialized": self.is_initialized,
"cache_directory": str(self.cache_dir),
"transformers_available": TRANSFORMERS_AVAILABLE
}
if self.is_initialized and self.model:
try:
# Count parameters (rough estimate)
total_params = sum(p.numel() for p in self.model.parameters())
info["model_parameters"] = total_params
info["model_size_mb"] = total_params * 4 / (1024 * 1024) # Assuming float32
except:
pass
return info
def main():
"""Test the LLM clue generator."""
print("π LLM Clue Generator Test")
print("=" * 50)
# Initialize generator
print("π Initializing LLM clue generator...")
generator = LLMClueGenerator()
try:
generator.initialize()
# Model info
info = generator.get_model_info()
print(f"\nπ Model Information:")
print(f" Model: {info['model_name']}")
print(f" Parameters: {info.get('model_parameters', 'Unknown'):,}")
print(f" Size: {info.get('model_size_mb', 0):.1f} MB")
# Test single clue generation
print("\nπ― Single Clue Generation:")
print("-" * 30)
test_cases = [
("elephant", "animals"),
("python", "technology"),
("ocean", "geography"),
("guitar", "music"),
("pizza", "food")
]
for word, topic in test_cases:
print(f"\nWord: '{word}' | Topic: '{topic}'")
# Test different styles
for style in ["category", "definition", "trivia"]:
start_time = time.time()
clue = generator.generate_clue(word, topic, clue_style=style)
gen_time = time.time() - start_time
print(f" {style:10}: {clue} ({gen_time:.2f}s)")
# Test batch generation
print(f"\nπ― Batch Generation Test:")
print("-" * 30)
batch_words = [
("cat", "animals"),
("computer", "technology"),
("mountain", "geography"),
("piano", "music")
]
batch_results = generator.generate_clues_batch(batch_words, clue_style="category")
for word, clue in batch_results.items():
print(f" {word:10}: {clue}")
print(f"\nβ
LLM clue generator test completed!")
except Exception as e:
print(f"β Error during testing: {e}")
print("This might be due to missing transformers library or model download issues.")
if __name__ == "__main__":
main()
|