Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
| 2 |
from huggingface_hub import hf_hub_download
|
| 3 |
from safetensors.torch import load_file
|
| 4 |
import spaces
|
| 5 |
-
|
| 6 |
-
import torch
|
| 7 |
-
import PIL
|
| 8 |
|
| 9 |
# Constants
|
| 10 |
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
|
@@ -23,8 +23,7 @@ CSS = """
|
|
| 23 |
|
| 24 |
# Ensure model and scheduler are initialized in GPU-enabled function
|
| 25 |
if torch.cuda.is_available():
|
| 26 |
-
|
| 27 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
| 28 |
|
| 29 |
|
| 30 |
# Function
|
|
@@ -37,12 +36,13 @@ def generate_image(prompt, ckpt):
|
|
| 37 |
num_inference_steps = checkpoints[ckpt][1]
|
| 38 |
|
| 39 |
if loaded != num_inference_steps:
|
| 40 |
-
pipe.unet.load_state_dict(torch.load(hf_hub_download(repo, checkpoint), map_location="cuda"))
|
| 41 |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample" if num_inference_steps==1 else "epsilon")
|
|
|
|
| 42 |
loaded = num_inference_steps
|
| 43 |
|
| 44 |
results = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0)
|
| 45 |
|
|
|
|
| 46 |
return results.images[0]
|
| 47 |
|
| 48 |
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler
|
| 4 |
from huggingface_hub import hf_hub_download
|
| 5 |
from safetensors.torch import load_file
|
| 6 |
import spaces
|
| 7 |
+
from PIL import Image
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# Constants
|
| 10 |
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
|
|
|
| 23 |
|
| 24 |
# Ensure model and scheduler are initialized in GPU-enabled function
|
| 25 |
if torch.cuda.is_available():
|
| 26 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
|
|
|
| 27 |
|
| 28 |
|
| 29 |
# Function
|
|
|
|
| 36 |
num_inference_steps = checkpoints[ckpt][1]
|
| 37 |
|
| 38 |
if loaded != num_inference_steps:
|
|
|
|
| 39 |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample" if num_inference_steps==1 else "epsilon")
|
| 40 |
+
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, checkpoint), device="cuda"))
|
| 41 |
loaded = num_inference_steps
|
| 42 |
|
| 43 |
results = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0)
|
| 44 |
|
| 45 |
+
|
| 46 |
return results.images[0]
|
| 47 |
|
| 48 |
|