Spaces:
Runtime error
Runtime error
| import subprocess | |
| subprocess.run( | |
| 'pip install numpy==1.26.4', | |
| shell=True | |
| ) | |
| import os | |
| import gradio as gr | |
| import torch | |
| import spaces | |
| import random | |
| from PIL import Image | |
| import numpy as np | |
| from glob import glob | |
| from pathlib import Path | |
| from typing import Optional | |
| from diffsynth import save_video, ModelManager, SVDVideoPipeline, HunyuanDiTImagePipeline | |
| import uuid | |
| HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
| # Constants | |
| MAX_SEED = np.iinfo(np.int32).max | |
| CSS = """ | |
| footer { | |
| visibility: hidden; | |
| } | |
| """ | |
| JS = """function () { | |
| gradioURL = window.location.href | |
| if (!gradioURL.endsWith('?__theme=dark')) { | |
| window.location.replace(gradioURL + '?__theme=dark'); | |
| } | |
| }""" | |
| # Ensure model and scheduler are initialized in GPU-enabled function | |
| if torch.cuda.is_available(): | |
| model_manager = ModelManager( | |
| torch_dtype=torch.float16, | |
| device="cuda", | |
| model_id_list=["stable-video-diffusion-img2vid-xt", "ExVideo-SVD-128f-v1"], | |
| downloading_priority=["HuggingFace"]) | |
| pipe = SVDVideoPipeline.from_model_manager(model_manager) | |
| def generate( | |
| image, | |
| seed: Optional[int] = -1, | |
| motion_bucket_id: int = 127, | |
| fps_id: int = 25, | |
| num_inference_steps: int = 10, | |
| num_frames: int = 50, | |
| output_folder: str = "outputs", | |
| progress=gr.Progress(track_tqdm=True)): | |
| if seed == -1: | |
| seed = random.randint(0, MAX_SEED) | |
| image = Image.open(image) | |
| torch.manual_seed(seed) | |
| os.makedirs(output_folder, exist_ok=True) | |
| base_count = len(glob(os.path.join(output_folder, "*.mp4"))) | |
| video_path = os.path.join(output_folder, f"{base_count:06d}.mp4") | |
| video = pipe( | |
| input_image=image.resize((512, 512)), | |
| num_frames=num_frames, | |
| fps=fps_id, | |
| height=512, | |
| width=512, | |
| motion_bucket_id=motion_bucket_id, | |
| num_inference_steps=num_inference_steps, | |
| min_cfg_scale=2, | |
| max_cfg_scale=2, | |
| contrast_enhance_scale=1.2 | |
| ) | |
| model_manager.to("cpu") | |
| save_video(video, video_path, fps=fps_id) | |
| return video_path, seed | |
| examples = [ | |
| "./train.jpg", | |
| "./girl.webp", | |
| "./robo.jpg", | |
| ] | |
| # Gradio Interface | |
| with gr.Blocks(css=CSS, js=JS, theme="soft") as demo: | |
| gr.HTML("<h1><center>Exvideoπ½οΈ</center></h1>") | |
| gr.HTML("<p><center><a href='https://huggingface.co/ECNU-CILab/ExVideo-SVD-128f-v1'>ExVideo</a> image-to-video generation<br><b>Update</b>: first version</center></p>") | |
| with gr.Row(): | |
| image = gr.Image(label='Upload Image', height=600, scale=2, image_mode="RGB", type="filepath") | |
| video = gr.Video(label="Generated Video", height=600, scale=2) | |
| with gr.Accordion("Advanced Options", open=True): | |
| with gr.Column(scale=1): | |
| seed = gr.Slider( | |
| label="Seed (-1 Random)", | |
| minimum=-1, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=-1, | |
| ) | |
| motion_bucket_id = gr.Slider( | |
| label="Motion bucket id", | |
| info="Controls how much motion to add/remove from the image", | |
| value=127, | |
| step=1, | |
| minimum=1, | |
| maximum=255 | |
| ) | |
| fps_id = gr.Slider( | |
| label="Frames per second", | |
| info="The length of your video in seconds will be 25/fps", | |
| value=6, | |
| step=1, | |
| minimum=5, | |
| maximum=30 | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Inference steps", | |
| info="Inference steps", | |
| step=1, | |
| value=10, | |
| minimum=1, | |
| maximum=50 | |
| ) | |
| num_frames = gr.Slider( | |
| label="Frames num", | |
| info="Frames num", | |
| step=1, | |
| value=50, | |
| minimum=1, | |
| maximum=128 | |
| ) | |
| with gr.Row(): | |
| submit_btn = gr.Button(value="Generate") | |
| #stop_btn = gr.Button(value="Stop", variant="stop") | |
| clear_btn = gr.ClearButton([image, seed, video]) | |
| gr.Examples( | |
| examples=examples, | |
| inputs=image, | |
| outputs=[video, seed], | |
| fn=generate, | |
| cache_examples="lazy", | |
| examples_per_page=4, | |
| ) | |
| submit_event = submit_btn.click(fn=generate, inputs=[image, seed, motion_bucket_id, fps_id,num_inference_steps, num_frames], outputs=[video, seed], api_name="video") | |
| #stop_btn.click(fn=None, inputs=None, outputs=None, cancels=[submit_event]) | |
| demo.queue().launch() |