Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from unsloth import FastLanguageModel | |
| from transformers import TextStreamer | |
| from unsloth.chat_templates import get_chat_template | |
| # Initialize the model | |
| max_seq_length = 2048 | |
| dtype = None | |
| load_in_4bit = True | |
| model, tokenizer = FastLanguageModel.from_pretrained( | |
| model_name="umair894/llama3", | |
| max_seq_length=max_seq_length, | |
| dtype=dtype, | |
| load_in_4bit=load_in_4bit, | |
| ) | |
| tokenizer = get_chat_template( | |
| tokenizer, | |
| chat_template="llama-3", | |
| mapping={"role": "from", "content": "value", "user": "human", "assistant": "gpt"}, | |
| map_eos_token=True, | |
| ) | |
| FastLanguageModel.for_inference(model) # Enable native 2x faster inference | |
| # VIKK introduction prompt | |
| vikk_intro = """Consider you self a legal assistant in USA and your name is VIKK. You are very knowledgeable about all aspects of the law... | |
| """ | |
| # Function to get chat response | |
| def get_response(message, history, system_message, max_tokens, temperature, top_p): | |
| messages = [{"role": "system", "content": system_message}] if system_message else [] | |
| if not history: | |
| history = [{"role": "assistant", "content": vikk_intro}] | |
| for msg in history: | |
| if msg[0]: | |
| messages.append({"role": "user", "content": msg[0]}) | |
| if msg[1]: | |
| messages.append({"role": "assistant", "content": msg[1]}) | |
| messages.append({"role": "user", "content": message}) | |
| formatted_messages = [{"from": "assistant", "value": vikk_intro}] | |
| for msg in messages[1:]: | |
| role = "human" if msg["role"] == "user" else "assistant" | |
| formatted_messages.append({"from": role, "value": msg["content"]}) | |
| inputs = tokenizer.apply_chat_template( | |
| formatted_messages, | |
| tokenize=True, | |
| add_generation_prompt=True, | |
| return_tensors="pt", | |
| ).to("cuda") | |
| text_streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
| output = "" | |
| for out in model.generate(input_ids=inputs["input_ids"], streamer=text_streamer, max_new_tokens=max_tokens, use_cache=True): | |
| output += out | |
| response = tokenizer.decode(output, skip_special_tokens=True).split(">>> Assistant: ")[-1].strip() | |
| return response | |
| # Gradio interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Chatbot Interface") | |
| with gr.Row(): | |
| with gr.Column(): | |
| system_message = gr.Textbox(value="You are a friendly Chatbot.", label="System message") | |
| max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens") | |
| temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") | |
| top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") | |
| with gr.Column(): | |
| chatbot = gr.Chatbot() | |
| user_input = gr.Textbox(label="You:") | |
| send_button = gr.Button("Send") | |
| def respond(message, history, system_message, max_tokens, temperature, top_p): | |
| response = get_response(message, history, system_message, max_tokens, temperature, top_p) | |
| history.append((message, response)) | |
| return history | |
| send_button.click(respond, [user_input, chatbot, system_message, max_tokens, temperature, top_p], chatbot) | |
| if __name__ == "__main__": | |
| demo.launch() | |