import gradio as gr
from app.utils import add_rank_and_format, filter_models, get_refresh_function, deprecated_get_refresh_function
from data.deprecated_model_handler import DeprecatedModelHandler
from data.model_handler import ModelHandler
METRICS = [
"ndcg_at_1",
"ndcg_at_5",
"ndcg_at_10",
"ndcg_at_100",
"recall_at_1",
"recall_at_5",
"recall_at_10",
"recall_at_100",
]
def main():
# Get new results
model_handler = ModelHandler()
initial_metric = "ndcg_at_5"
model_handler.get_vidore_data(initial_metric)
data_benchmark_1 = model_handler.render_df(initial_metric, benchmark_version=1)
data_benchmark_1 = add_rank_and_format(data_benchmark_1, benchmark_version=1)
data_benchmark_2 = model_handler.render_df(initial_metric, benchmark_version=2)
data_benchmark_2 = add_rank_and_format(data_benchmark_2, benchmark_version=2)
num_datasets_1 = len(data_benchmark_1.columns) - 3
num_scores_1 = len(data_benchmark_1) * num_datasets_1
num_models_1 = len(data_benchmark_1)
num_datasets_2 = len(data_benchmark_2.columns) - 3
num_scores_2 = len(data_benchmark_2) * num_datasets_2
num_models_2 = len(data_benchmark_2)
# Get deprecated results
deprecated_model_handler = DeprecatedModelHandler()
initial_metric = "ndcg_at_5"
deprecated_model_handler.get_vidore_data(initial_metric)
deprecated_data_benchmark_1 = deprecated_model_handler.render_df(initial_metric, benchmark_version=1)
deprecated_data_benchmark_1 = add_rank_and_format(deprecated_data_benchmark_1, benchmark_version=1)
deprecated_data_benchmark_2 = deprecated_model_handler.render_df(initial_metric, benchmark_version=2)
deprecated_data_benchmark_2 = add_rank_and_format(deprecated_data_benchmark_2, benchmark_version=2)
deprecated_num_datasets_1 = len(deprecated_data_benchmark_1.columns) - 3
deprecated_num_scores_1 = len(deprecated_data_benchmark_1) * deprecated_num_datasets_1
deprecated_num_models_1 = len(deprecated_data_benchmark_1)
deprecated_num_datasets_2 = len(deprecated_data_benchmark_2.columns) - 3
deprecated_num_scores_2 = len(deprecated_data_benchmark_2) * deprecated_num_datasets_2
deprecated_num_models_2 = len(deprecated_data_benchmark_2)
css = """
table > thead {
white-space: normal
}
table {
--cell-width-1: 250px
}
table > tbody > tr > td:nth-child(2) > div {
overflow-x: auto
}
.filter-checkbox-group {
max-width: max-content;
}
#markdown size
.markdown {
font-size: 1rem;
}
"""
with gr.Blocks(css=css) as block:
with gr.Tabs():
with gr.TabItem("ViDoRe V1"):
gr.Markdown("# ViDoRe: The Visual Document Retrieval Benchmark 1 📚🔍")
gr.Markdown("### From the paper - ColPali: Efficient Document Retrieval with Vision Language Models 👀")
gr.Markdown(
"""
Visual Document Retrieval Benchmark 1 leaderboard. To submit results, refer to the corresponding tab.
Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics, tasks and models.
"""
)
datasets_columns_1 = list(data_benchmark_1.columns[4:])
with gr.Row():
metric_dropdown_1 = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
research_textbox_1 = gr.Textbox(
placeholder="🔍 Search Models... [press enter]",
label="Filter Models by Name",
)
column_checkboxes_1 = gr.CheckboxGroup(
choices=datasets_columns_1, value=datasets_columns_1, label="Select Columns to Display"
)
with gr.Row():
datatype_1 = ["number", "markdown"] + ["number"] * (num_datasets_1 + 1)
dataframe_1 = gr.Dataframe(data_benchmark_1, datatype=datatype_1, type="pandas")
def update_data_1(metric, search_term, selected_columns):
model_handler.get_vidore_data(metric)
data = model_handler.render_df(metric, benchmark_version=1)
data = add_rank_and_format(data, benchmark_version=1, selected_columns=selected_columns)
data = filter_models(data, search_term)
if selected_columns:
data = data[["Rank", "Model", "Model Size (Million Parameters)", "Average"] + selected_columns]
return data
with gr.Row():
refresh_button_1 = gr.Button("Refresh")
refresh_button_1.click(
get_refresh_function(model_handler, benchmark_version=1),
inputs=[metric_dropdown_1],
outputs=dataframe_1,
concurrency_limit=20,
)
# Automatically refresh the dataframe when the dropdown value changes
metric_dropdown_1.change(
get_refresh_function(model_handler, benchmark_version=1),
inputs=[metric_dropdown_1],
outputs=dataframe_1,
)
research_textbox_1.submit(
lambda metric, search_term, selected_columns: update_data_1(metric, search_term, selected_columns),
inputs=[metric_dropdown_1, research_textbox_1, column_checkboxes_1],
outputs=dataframe_1,
)
column_checkboxes_1.change(
lambda metric, search_term, selected_columns: update_data_1(metric, search_term, selected_columns),
inputs=[metric_dropdown_1, research_textbox_1, column_checkboxes_1],
outputs=dataframe_1,
)
gr.Markdown(
f"""
- **Total Datasets**: {num_datasets_1}
- **Total Scores**: {num_scores_1}
- **Total Models**: {num_models_1}
"""
+ r"""
Please consider citing:
```bibtex
@misc{faysse2024colpaliefficientdocumentretrieval,
title={ColPali: Efficient Document Retrieval with Vision Language Models},
author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
year={2024},
eprint={2407.01449},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2407.01449},
}
```
"""
)
with gr.TabItem("ViDoRe V2"):
gr.Markdown("# ViDoRe V2: A new visual Document Retrieval Benchmark 📚🔍")
gr.Markdown("### A harder dataset benchmark for visual document retrieval 👀")
gr.Markdown(
"""
Visual Document Retrieval Benchmark 2 leaderboard. To submit results, refer to the corresponding tab.
Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics and models.
"""
)
datasets_columns_2 = list(data_benchmark_2.columns[4:])
with gr.Row():
metric_dropdown_2 = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
research_textbox_2 = gr.Textbox(
placeholder="🔍 Search Models... [press enter]",
label="Filter Models by Name",
)
column_checkboxes_2 = gr.CheckboxGroup(
choices=datasets_columns_2, value=datasets_columns_2, label="Select Columns to Display"
)
with gr.Row():
datatype_2 = ["number", "markdown"] + ["number"] * (num_datasets_2 + 1)
dataframe_2 = gr.Dataframe(data_benchmark_2, datatype=datatype_2, type="pandas")
def update_data_2(metric, search_term, selected_columns):
model_handler.get_vidore_data(metric)
data = model_handler.render_df(metric, benchmark_version=2)
data = add_rank_and_format(data, benchmark_version=2, selected_columns=selected_columns)
data = filter_models(data, search_term)
# data = remove_duplicates(data) # Add this line
if selected_columns:
data = data[["Rank", "Model", "Model Size (Million Parameters)", "Average"] + selected_columns]
return data
with gr.Row():
refresh_button_2 = gr.Button("Refresh")
refresh_button_2.click(
get_refresh_function(model_handler, benchmark_version=2),
inputs=[metric_dropdown_2],
outputs=dataframe_2,
concurrency_limit=20,
)
with gr.Row():
gr.Markdown(
"""
**Note**: For now, all models were evaluated using the vidore-benchmark package and custom retrievers on our side.
Those numbers are not numbers obtained from the organisations that released those models.
"""
)
# Automatically refresh the dataframe when the dropdown value changes
metric_dropdown_2.change(
get_refresh_function(model_handler, benchmark_version=2),
inputs=[metric_dropdown_2],
outputs=dataframe_2,
)
research_textbox_2.submit(
lambda metric, search_term, selected_columns: update_data_2(metric, search_term, selected_columns),
inputs=[metric_dropdown_2, research_textbox_2, column_checkboxes_2],
outputs=dataframe_2,
)
column_checkboxes_2.change(
lambda metric, search_term, selected_columns: update_data_2(metric, search_term, selected_columns),
inputs=[metric_dropdown_2, research_textbox_2, column_checkboxes_2],
outputs=dataframe_2,
)
gr.Markdown(
f"""
- **Total Datasets**: {num_datasets_2}
- **Total Scores**: {num_scores_2}
- **Total Models**: {num_models_2}
"""
+ r"""
Please consider citing:
```bibtex
@misc{faysse2024colpaliefficientdocumentretrieval,
title={ColPali: Efficient Document Retrieval with Vision Language Models},
author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
year={2024},
eprint={2407.01449},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2407.01449},
}
@misc{macé2025vidorebenchmarkv2raising,
title={ViDoRe Benchmark V2: Raising the Bar for Visual Retrieval},
author={Quentin Macé and António Loison and Manuel Faysse},
year={2025},
eprint={2505.17166},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2505.17166},
}
```
"""
)
with gr.TabItem("📚 Submit your model"):
gr.Markdown("# How to Submit a New Model to the Leaderboard")
gr.Markdown(
"""
To submit a new model to the ViDoRe leaderboard, follow these steps:
1. **Evaluate your model**:
- Follow the evaluation procedure provided in the [ViDoRe GitHub repository](https://github.com/illuin-tech/vidore-benchmark/) that uses MTEB.
2. **Format your submission file**:
- Add the generated files to [MTEB results](https://github.com/embeddings-benchmark/results) project. Check the [Colpali results](https://github.com/embeddings-benchmark/results/tree/main/results/vidore__colpali-v1.3/1b5c8929330df1a66de441a9b5409a878f0de5b0) for an example.
And you're done! Your model will appear on the leaderboard when you click refresh! Once the space
gets rebooted, it will appear on startup.
Note: For proper hyperlink redirection, please ensure that your model repository name is in
kebab-case, e.g. `my-model-name`.
"""
)
with gr.TabItem("Deprecated ViDoRe V1"):
gr.Markdown(
"## Deprecation notice: This leaderboard contains the results computed with the "
"[vidore-benchmark](https://github.com/illuin-tech/vidore-benchmark) package, "
"which is no longer maintained. Results should be computed using the "
"[mteb](https://github.com/embeddings-benchmark/mteb) package as described "
"[here](https://github.com/illuin-tech/vidore-benchmark/blob/main/README.md)."
)
gr.Markdown("## Missing results in the new leaderboard are being added as they are re-computed.")
gr.Markdown("# [Deprecated] ViDoRe: The Visual Document Retrieval Benchmark 1 📚🔍")
gr.Markdown("### From the paper - ColPali: Efficient Document Retrieval with Vision Language Models 👀")
gr.Markdown(
"""
Visual Document Retrieval Benchmark 1 leaderboard. To submit results, refer to the corresponding tab.
Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics, tasks and models.
"""
)
deprecated_datasets_columns_1 = list(deprecated_data_benchmark_1.columns[3:])
with gr.Row():
deprecated_metric_dropdown_1 = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
deprecated_research_textbox_1 = gr.Textbox(
placeholder="🔍 Search Models... [press enter]",
label="Filter Models by Name",
)
deprecated_column_checkboxes_1 = gr.CheckboxGroup(
choices=deprecated_datasets_columns_1, value=deprecated_datasets_columns_1, label="Select Columns to Display"
)
with gr.Row():
deprecated_datatype_1 = ["number", "markdown"] + ["number"] * (deprecated_num_datasets_1 + 1)
deprecated_dataframe_1 = gr.Dataframe(deprecated_data_benchmark_1, datatype=deprecated_datatype_1, type="pandas")
def deprecated_update_data_1(metric, search_term, selected_columns):
deprecated_model_handler.get_vidore_data(metric)
data = deprecated_model_handler.render_df(metric, benchmark_version=1)
data = add_rank_and_format(data, benchmark_version=1, selected_columns=selected_columns)
data = filter_models(data, search_term)
# data = remove_duplicates(data) # Add this line
if selected_columns:
data = data[["Rank", "Model", "Average"] + selected_columns]
return data
with gr.Row():
deprecated_refresh_button_1 = gr.Button("Refresh")
deprecated_refresh_button_1.click(
deprecated_get_refresh_function(deprecated_model_handler, benchmark_version=1),
inputs=[deprecated_metric_dropdown_1],
outputs=deprecated_dataframe_1,
concurrency_limit=20,
)
# Automatically refresh the dataframe when the dropdown value changes
deprecated_metric_dropdown_1.change(
deprecated_get_refresh_function(deprecated_model_handler, benchmark_version=1),
inputs=[deprecated_metric_dropdown_1],
outputs=deprecated_dataframe_1,
)
deprecated_research_textbox_1.submit(
lambda metric, search_term, selected_columns: deprecated_update_data_1(metric, search_term, selected_columns),
inputs=[deprecated_metric_dropdown_1, deprecated_research_textbox_1, deprecated_column_checkboxes_1],
outputs=deprecated_dataframe_1,
)
deprecated_column_checkboxes_1.change(
lambda metric, search_term, selected_columns: deprecated_update_data_1(metric, search_term, selected_columns),
inputs=[deprecated_metric_dropdown_1, deprecated_research_textbox_1, deprecated_column_checkboxes_1],
outputs=deprecated_dataframe_1,
)
gr.Markdown(
f"""
- **Total Datasets**: {deprecated_num_datasets_1}
- **Total Scores**: {deprecated_num_scores_1}
- **Total Models**: {deprecated_num_models_1}
"""
+ r"""
Please consider citing:
```bibtex
@misc{faysse2024colpaliefficientdocumentretrieval,
title={ColPali: Efficient Document Retrieval with Vision Language Models},
author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
year={2024},
eprint={2407.01449},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2407.01449},
}
```
"""
)
with gr.TabItem("Deprecated ViDoRe V2"):
gr.Markdown(
"## Deprecation notice: This leaderboard contains the results computed with the "
"[vidore-benchmark](https://github.com/illuin-tech/vidore-benchmark) package, "
"which is no longer maintained. Results should be computed using the "
"[mteb](https://github.com/embeddings-benchmark/mteb) package as described "
"[here](https://github.com/illuin-tech/vidore-benchmark/blob/main/README.md)."
)
gr.Markdown("## Missing results in the new leaderboard are being added as they are re-computed.")
gr.Markdown("# [Deprecated] ViDoRe V2: A new visual Document Retrieval Benchmark 📚🔍")
gr.Markdown("### A harder dataset benchmark for visual document retrieval 👀")
gr.Markdown(
"""
Visual Document Retrieval Benchmark 2 leaderboard. To submit results, refer to the corresponding tab.
Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics and models.
"""
)
deprecated_datasets_columns_2 = list(deprecated_data_benchmark_2.columns[3:])
with gr.Row():
deprecated_metric_dropdown_2 = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
deprecated_research_textbox_2 = gr.Textbox(
placeholder="🔍 Search Models... [press enter]",
label="Filter Models by Name",
)
deprecated_column_checkboxes_2 = gr.CheckboxGroup(
choices=deprecated_datasets_columns_2, value=deprecated_datasets_columns_2, label="Select Columns to Display"
)
with gr.Row():
deprecated_datatype_2 = ["number", "markdown"] + ["number"] * (deprecated_num_datasets_2 + 1)
deprecated_dataframe_2 = gr.Dataframe(deprecated_data_benchmark_2, datatype=deprecated_datatype_2, type="pandas")
def deprecated_update_data_2(metric, search_term, selected_columns):
deprecated_model_handler.get_vidore_data(metric)
data = deprecated_model_handler.render_df(metric, benchmark_version=2)
data = add_rank_and_format(data, benchmark_version=2, selected_columns=selected_columns)
data = filter_models(data, search_term)
# data = remove_duplicates(data) # Add this line
if selected_columns:
data = data[["Rank", "Model", "Average"] + selected_columns]
return data
with gr.Row():
deprecated_refresh_button_2 = gr.Button("Refresh")
deprecated_refresh_button_2.click(
deprecated_get_refresh_function(deprecated_model_handler, benchmark_version=2),
inputs=[deprecated_metric_dropdown_2],
outputs=deprecated_dataframe_2,
concurrency_limit=20,
)
with gr.Row():
gr.Markdown(
"""
**Note**: For now, all models were evaluated using the vidore-benchmark package and custom retrievers on our side.
Those numbers are not numbers obtained from the organisations that released those models.
"""
)
# Automatically refresh the dataframe when the dropdown value changes
deprecated_metric_dropdown_2.change(
deprecated_get_refresh_function(deprecated_model_handler, benchmark_version=2),
inputs=[deprecated_metric_dropdown_2],
outputs=deprecated_dataframe_2,
)
deprecated_research_textbox_2.submit(
lambda metric, search_term, selected_columns: deprecated_update_data_2(metric, search_term, selected_columns),
inputs=[deprecated_metric_dropdown_2, deprecated_research_textbox_2, deprecated_column_checkboxes_2],
outputs=deprecated_dataframe_2,
)
deprecated_column_checkboxes_2.change(
lambda metric, search_term, selected_columns: deprecated_update_data_2(metric, search_term, selected_columns),
inputs=[deprecated_metric_dropdown_2, deprecated_research_textbox_2, deprecated_column_checkboxes_2],
outputs=deprecated_dataframe_2,
)
gr.Markdown(
f"""
- **Total Datasets**: {deprecated_num_datasets_2}
- **Total Scores**: {deprecated_num_scores_2}
- **Total Models**: {deprecated_num_models_2}
"""
+ r"""
Please consider citing:
```bibtex
@misc{faysse2024colpaliefficientdocumentretrieval,
title={ColPali: Efficient Document Retrieval with Vision Language Models},
author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
year={2024},
eprint={2407.01449},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2407.01449},
}
@misc{macé2025vidorebenchmarkv2raising,
title={ViDoRe Benchmark V2: Raising the Bar for Visual Retrieval},
author={Quentin Macé and António Loison and Manuel Faysse},
year={2025},
eprint={2505.17166},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2505.17166},
}
```
"""
)
block.queue(max_size=10).launch(debug=True)
if __name__ == "__main__":
main()