Spaces:
Running
Running
Hugues Sibille
commited on
Commit
β’
edb334d
1
Parent(s):
187990b
feat : metrics dropdown added to gradio
Browse files
app.py
CHANGED
@@ -1,263 +1,86 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
|
4 |
import gradio as gr
|
5 |
-
import pandas as pd
|
6 |
-
from huggingface_hub import HfApi, hf_hub_download, get_collection
|
7 |
-
from huggingface_hub.repocard import metadata_load
|
8 |
-
from typing import Dict
|
9 |
-
|
10 |
-
|
11 |
-
def get_datasets_nickname() -> Dict:
|
12 |
-
|
13 |
-
datasets_nickname = {}
|
14 |
-
|
15 |
-
collection = get_collection("vidore/vidore-benchmark-667173f98e70a1c0fa4db00d")
|
16 |
-
|
17 |
-
collection_items = collection.items
|
18 |
-
|
19 |
-
for item in collection_items:
|
20 |
-
dataset_name = item.item_id
|
21 |
-
|
22 |
-
if 'arxivqa' in dataset_name:
|
23 |
-
datasets_nickname[dataset_name] = 'ArxivQA'
|
24 |
-
datasets_nickname[dataset_name + '_ocr_chunk'] = 'ArxivQA'
|
25 |
-
datasets_nickname[dataset_name + '_captioning'] = 'ArxivQA'
|
26 |
-
|
27 |
-
elif 'docvqa' in dataset_name:
|
28 |
-
datasets_nickname[dataset_name] = 'DocVQA'
|
29 |
-
datasets_nickname[dataset_name + '_ocr_chunk'] = 'DocVQA'
|
30 |
-
datasets_nickname[dataset_name + '_captioning'] = 'DocVQA'
|
31 |
-
|
32 |
-
elif 'infovqa' in dataset_name:
|
33 |
-
datasets_nickname[dataset_name] = 'InfoVQA'
|
34 |
-
datasets_nickname[dataset_name + '_ocr_chunk'] = 'InfoVQA'
|
35 |
-
datasets_nickname[dataset_name + '_captioning'] = 'InfoVQA'
|
36 |
-
|
37 |
-
elif 'tabfquad' in dataset_name:
|
38 |
-
datasets_nickname[dataset_name] = 'TabFQuad'
|
39 |
-
datasets_nickname[dataset_name + '_ocr_chunk'] = 'TabFQuad'
|
40 |
-
datasets_nickname[dataset_name + '_captioning'] = 'TabFQuad'
|
41 |
-
|
42 |
-
elif 'tatdqa' in dataset_name:
|
43 |
-
datasets_nickname[dataset_name] = 'TATDQA'
|
44 |
-
datasets_nickname[dataset_name + '_ocr_chunk'] = 'TATDQA'
|
45 |
-
datasets_nickname[dataset_name + '_captioning'] = 'TATDQA'
|
46 |
-
|
47 |
-
elif 'shiftproject' in dataset_name:
|
48 |
-
datasets_nickname[dataset_name] = 'ShiftProject'
|
49 |
-
datasets_nickname[dataset_name + '_ocr_chunk'] = 'ShiftProject'
|
50 |
-
datasets_nickname[dataset_name + '_captioning'] = 'ShiftProject'
|
51 |
-
|
52 |
-
elif 'artificial_intelligence' in dataset_name:
|
53 |
-
datasets_nickname[dataset_name] = 'Artificial Intelligence'
|
54 |
-
datasets_nickname[dataset_name + '_ocr_chunk'] = 'Artificial Intelligence'
|
55 |
-
datasets_nickname[dataset_name + '_captioning'] = 'Artificial Intelligence'
|
56 |
-
|
57 |
-
elif 'energy' in dataset_name:
|
58 |
-
datasets_nickname[dataset_name] = 'Energy'
|
59 |
-
datasets_nickname[dataset_name + '_ocr_chunk'] = 'Energy'
|
60 |
-
datasets_nickname[dataset_name + '_captioning'] = 'Energy'
|
61 |
-
|
62 |
-
elif 'government_reports' in dataset_name:
|
63 |
-
datasets_nickname[dataset_name] = 'Government Reports'
|
64 |
-
datasets_nickname[dataset_name + '_ocr_chunk'] = 'Government Reports'
|
65 |
-
datasets_nickname[dataset_name + '_captioning'] = 'Government Reports'
|
66 |
-
|
67 |
-
elif 'healthcare' in dataset_name:
|
68 |
-
datasets_nickname[dataset_name] = 'Healthcare'
|
69 |
-
datasets_nickname[dataset_name + '_ocr_chunk'] = 'Healthcare'
|
70 |
-
datasets_nickname[dataset_name + '_captioning'] = 'Healthcare'
|
71 |
-
|
72 |
-
return datasets_nickname
|
73 |
-
|
74 |
-
|
75 |
-
def make_clickable_model(model_name, link=None):
|
76 |
-
|
77 |
-
if link is None:
|
78 |
-
desanitized_model_name = model_name.replace("_", "/")
|
79 |
-
|
80 |
-
if '/captioning' in desanitized_model_name:
|
81 |
-
desanitized_model_name = desanitized_model_name.replace('/captioning', '')
|
82 |
-
if '/ocr' in desanitized_model_name:
|
83 |
-
desanitized_model_name = desanitized_model_name.replace('/ocr', '')
|
84 |
-
|
85 |
-
link = "https://huggingface.co/" + desanitized_model_name
|
86 |
-
|
87 |
-
# Remove user from model name
|
88 |
-
# return (
|
89 |
-
# f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name.split("/")[-1]}</a>'
|
90 |
-
# )
|
91 |
-
return f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name}</a>'
|
92 |
-
|
93 |
-
|
94 |
-
def add_rank(df):
|
95 |
-
cols_to_rank = [
|
96 |
-
col
|
97 |
-
for col in df.columns
|
98 |
-
if col
|
99 |
-
not in [
|
100 |
-
"Model",
|
101 |
-
"Model Size (Million Parameters)",
|
102 |
-
"Memory Usage (GB, fp32)",
|
103 |
-
"Embedding Dimensions",
|
104 |
-
"Max Tokens",
|
105 |
-
]
|
106 |
-
]
|
107 |
-
if len(cols_to_rank) == 1:
|
108 |
-
df.sort_values(cols_to_rank[0], ascending=False, inplace=True)
|
109 |
-
else:
|
110 |
-
df.insert(len(df.columns) - len(cols_to_rank), "Average", df[cols_to_rank].mean(axis=1, skipna=False))
|
111 |
-
df.sort_values("Average", ascending=False, inplace=True)
|
112 |
-
df.insert(0, "Rank", list(range(1, len(df) + 1)))
|
113 |
-
df = df.round(2)
|
114 |
-
# Fill NaN after averaging
|
115 |
-
df.fillna("", inplace=True)
|
116 |
-
return df
|
117 |
-
|
118 |
-
|
119 |
-
def get_vidore_data():
|
120 |
-
api = HfApi()
|
121 |
|
122 |
-
|
123 |
-
model_infos_path = "model_infos.json"
|
124 |
-
metric = "ndcg_at_5"
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
with open(model_infos_path) as f:
|
130 |
-
MODEL_INFOS = json.load(f)
|
131 |
-
|
132 |
-
models = api.list_models(filter="vidore")
|
133 |
-
repositories = [model.modelId for model in models]
|
134 |
-
|
135 |
-
datasets_nickname = get_datasets_nickname()
|
136 |
-
for repo_id in repositories:
|
137 |
-
files = [f for f in api.list_repo_files(repo_id) if f.endswith('_metrics.json')]
|
138 |
-
if len(files) == 0:
|
139 |
-
continue
|
140 |
-
else :
|
141 |
-
for file in files:
|
142 |
-
model_name = file.split('_metrics.json')[0]
|
143 |
-
|
144 |
-
if model_name not in MODEL_INFOS:
|
145 |
-
readme_path = hf_hub_download(repo_id, filename="README.md")
|
146 |
-
meta = metadata_load(readme_path)
|
147 |
-
try:
|
148 |
-
result_path = hf_hub_download(repo_id, filename= file)
|
149 |
-
|
150 |
-
with open(result_path) as f:
|
151 |
-
results = json.load(f)
|
152 |
-
|
153 |
-
for dataset in results:
|
154 |
-
results[dataset] = {key: value for key, value in results[dataset].items() if metric in key}
|
155 |
-
|
156 |
-
MODEL_INFOS[model_name] = {"meta":meta, "results": results}
|
157 |
-
except Exception as e:
|
158 |
-
print(f"Error loading {model_name} - {e}")
|
159 |
-
continue
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
if len(MODEL_INFOS) > 0:
|
164 |
-
for model in MODEL_INFOS.keys():
|
165 |
-
res = MODEL_INFOS[model]["results"]
|
166 |
-
dataset_res = {}
|
167 |
-
for dataset in res.keys():
|
168 |
-
if "validation_set" == dataset:
|
169 |
-
continue
|
170 |
-
dataset_res[datasets_nickname[dataset]] = res[dataset][metric]
|
171 |
-
model_res[model] = dataset_res
|
172 |
-
|
173 |
-
df = pd.DataFrame(model_res).T
|
174 |
-
|
175 |
-
#save model_infos
|
176 |
-
with open(model_infos_path, "w") as f:
|
177 |
-
json.dump(MODEL_INFOS, f)
|
178 |
-
|
179 |
-
return df
|
180 |
-
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
df = add_rank(df)
|
186 |
-
df["Model"] = df["Model"].apply(make_clickable_model)
|
187 |
-
return df
|
188 |
|
|
|
|
|
|
|
|
|
189 |
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
# 4. Prevent checkbox groups from taking up too much space
|
194 |
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
}
|
199 |
|
200 |
-
|
201 |
-
|
202 |
-
}
|
|
|
203 |
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
|
208 |
-
.
|
209 |
-
|
210 |
-
|
211 |
-
"""
|
|
|
|
|
|
|
212 |
|
|
|
|
|
|
|
213 |
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
return add_rank_and_format(data_task_category)
|
218 |
|
219 |
-
|
|
|
|
|
220 |
|
221 |
-
data = get_vidore_data()
|
222 |
-
data = add_rank_and_format(data)
|
223 |
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
|
228 |
-
with gr.Blocks(css=css) as block:
|
229 |
-
gr.Markdown("# ViDoRe: The Visual Document Retrieval Benchmark ππ")
|
230 |
-
gr.Markdown("## From the paper - ColPali: Efficient Document Retrieval with Vision Language Models π")
|
231 |
|
232 |
-
|
|
|
|
|
|
|
|
|
233 |
"""
|
234 |
-
|
235 |
-
|
236 |
-
)
|
237 |
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
refresh_button = gr.Button("Refresh")
|
244 |
-
refresh_button.click(get_refresh_function(), inputs=None, outputs=dataframe, concurrency_limit=20)
|
245 |
|
246 |
-
|
247 |
-
f"""
|
248 |
-
- **Total Datasets**: {NUM_DATASETS}
|
249 |
-
- **Total Scores**: {NUM_SCORES}
|
250 |
-
- **Total Models**: {NUM_MODELS}
|
251 |
-
"""
|
252 |
-
+ r"""
|
253 |
-
Please consider citing:
|
254 |
|
255 |
-
```bibtex
|
256 |
-
INSERT LATER
|
257 |
-
```
|
258 |
-
"""
|
259 |
-
)
|
260 |
|
|
|
|
|
261 |
|
262 |
-
if __name__ == "__main__":
|
263 |
-
block.queue(max_size=10).launch(debug=True)
|
|
|
1 |
+
from data.model_handler import ModelHandler
|
2 |
+
from app.utils import add_rank_and_format, get_refresh_function
|
|
|
3 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
METRICS = ["ndcg_at_5", "recall_at_1", "recall_at_5", "mrr_at_5"]
|
|
|
|
|
6 |
|
7 |
+
def main():
|
8 |
+
model_handler = ModelHandler()
|
9 |
+
initial_metric = "ndcg_at_5"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
data = model_handler.get_vidore_data(initial_metric)
|
12 |
+
data = add_rank_and_format(data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
NUM_DATASETS = len(data.columns) - 3
|
15 |
+
NUM_SCORES = len(data) * NUM_DATASETS
|
16 |
+
NUM_MODELS = len(data)
|
|
|
|
|
|
|
17 |
|
18 |
+
css = """
|
19 |
+
table > thead {
|
20 |
+
white-space: normal
|
21 |
+
}
|
22 |
|
23 |
+
table {
|
24 |
+
--cell-width-1: 250px
|
25 |
+
}
|
|
|
26 |
|
27 |
+
table > tbody > tr > td:nth-child(2) > div {
|
28 |
+
overflow-x: auto
|
29 |
+
}
|
|
|
30 |
|
31 |
+
.filter-checkbox-group {
|
32 |
+
max-width: max-content;
|
33 |
+
}
|
34 |
+
"""
|
35 |
|
36 |
+
with gr.Blocks(css=css) as block:
|
37 |
+
gr.Markdown("# ViDoRe: The Visual Document Retrieval Benchmark ππ")
|
38 |
+
gr.Markdown("## From the paper - ColPali: Efficient Document Retrieval with Vision Language Models π")
|
39 |
|
40 |
+
gr.Markdown(
|
41 |
+
"""
|
42 |
+
Visual Document Retrieval Benchmark leaderboard. To submit, refer to the <a href="https://github.com/tonywu71/vidore-benchmark/" target="_blank" style="text-decoration: underline">ViDoRe GitHub repository</a>. Refer to the [ColPali paper](https://arxiv.org/abs/XXXX.XXXXX) for details on metrics, tasks and models.
|
43 |
+
"""
|
44 |
+
)
|
45 |
+
#all_columns = list(data.columns)
|
46 |
+
#default_columns = all_columns
|
47 |
|
48 |
+
with gr.Row():
|
49 |
+
metric_dropdown = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
|
50 |
+
#column_checkboxes = gr.CheckboxGroup(choices=all_columns, value=default_columns, label="Select Columns to Display")
|
51 |
|
52 |
+
with gr.Row():
|
53 |
+
datatype = ["number", "markdown"] + ["number"] * (NUM_DATASETS + 1)
|
54 |
+
dataframe = gr.Dataframe(data, datatype=datatype, type="pandas")
|
|
|
55 |
|
56 |
+
with gr.Row():
|
57 |
+
refresh_button = gr.Button("Refresh")
|
58 |
+
refresh_button.click(get_refresh_function(), inputs=[metric_dropdown], outputs=dataframe, concurrency_limit=20)
|
59 |
|
|
|
|
|
60 |
|
61 |
+
# Automatically refresh the dataframe when the dropdown value changes
|
62 |
+
metric_dropdown.change(get_refresh_function(), inputs=[metric_dropdown], outputs=dataframe)
|
63 |
+
#column_checkboxes.change(get_refresh_function(), inputs=[metric_dropdown, column_checkboxes], outputs=dataframe)
|
64 |
|
|
|
|
|
|
|
65 |
|
66 |
+
gr.Markdown(
|
67 |
+
f"""
|
68 |
+
- **Total Datasets**: {NUM_DATASETS}
|
69 |
+
- **Total Scores**: {NUM_SCORES}
|
70 |
+
- **Total Models**: {NUM_MODELS}
|
71 |
"""
|
72 |
+
+ r"""
|
73 |
+
Please consider citing:
|
|
|
74 |
|
75 |
+
```bibtex
|
76 |
+
INSERT LATER
|
77 |
+
```
|
78 |
+
"""
|
79 |
+
)
|
|
|
|
|
80 |
|
81 |
+
block.queue(max_size=10).launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
+
if __name__ == "__main__":
|
85 |
+
main()
|
86 |
|
|
|
|