Spaces:
Running
Running
feat : support for results.json
Browse files- data/dataset_handler.py +45 -64
- data/model_handler.py +20 -8
data/dataset_handler.py
CHANGED
@@ -1,64 +1,45 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
datasets_nickname[dataset_name + '_ocr_chunk'] = 'Artificial Intelligence'
|
47 |
-
datasets_nickname[dataset_name + '_captioning'] = 'Artificial Intelligence'
|
48 |
-
|
49 |
-
elif 'energy' in dataset_name:
|
50 |
-
datasets_nickname[dataset_name] = 'Energy'
|
51 |
-
datasets_nickname[dataset_name + '_ocr_chunk'] = 'Energy'
|
52 |
-
datasets_nickname[dataset_name + '_captioning'] = 'Energy'
|
53 |
-
|
54 |
-
elif 'government_reports' in dataset_name:
|
55 |
-
datasets_nickname[dataset_name] = 'Government Reports'
|
56 |
-
datasets_nickname[dataset_name + '_ocr_chunk'] = 'Government Reports'
|
57 |
-
datasets_nickname[dataset_name + '_captioning'] = 'Government Reports'
|
58 |
-
|
59 |
-
elif 'healthcare' in dataset_name:
|
60 |
-
datasets_nickname[dataset_name] = 'Healthcare'
|
61 |
-
datasets_nickname[dataset_name + '_ocr_chunk'] = 'Healthcare'
|
62 |
-
datasets_nickname[dataset_name + '_captioning'] = 'Healthcare'
|
63 |
-
|
64 |
-
return datasets_nickname
|
|
|
1 |
+
VIDORE_DATASETS_KEYWORDS = [
|
2 |
+
"arxivqa",
|
3 |
+
"docvqa",
|
4 |
+
"infovqa",
|
5 |
+
"tabfquad",
|
6 |
+
"tatdqa",
|
7 |
+
"shift",
|
8 |
+
"artificial_intelligence",
|
9 |
+
"energy",
|
10 |
+
"government_reports",
|
11 |
+
"healthcare_industry",
|
12 |
+
]
|
13 |
+
|
14 |
+
|
15 |
+
def get_datasets_nickname(dataset_name) -> str:
|
16 |
+
if "arxivqa" in dataset_name:
|
17 |
+
return "ArxivQA"
|
18 |
+
|
19 |
+
elif "docvqa" in dataset_name:
|
20 |
+
return "DocVQA"
|
21 |
+
elif "infovqa" in dataset_name:
|
22 |
+
return "InfoVQA"
|
23 |
+
elif "tabfquad" in dataset_name:
|
24 |
+
return "TabFQuad"
|
25 |
+
|
26 |
+
elif "tatdqa" in dataset_name:
|
27 |
+
return "TAT-DQA"
|
28 |
+
|
29 |
+
elif "shift" in dataset_name:
|
30 |
+
return "Shift Project"
|
31 |
+
|
32 |
+
elif "artificial_intelligence" in dataset_name:
|
33 |
+
return "Artificial Intelligence"
|
34 |
+
|
35 |
+
elif "energy" in dataset_name:
|
36 |
+
return "Energy"
|
37 |
+
|
38 |
+
elif "government_reports" in dataset_name:
|
39 |
+
return "Government Reports"
|
40 |
+
|
41 |
+
elif "healthcare_industry" in dataset_name:
|
42 |
+
return "Healthcare Industry"
|
43 |
+
|
44 |
+
else:
|
45 |
+
raise ValueError(f"Dataset {dataset_name} not found in ViDoRe")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data/model_handler.py
CHANGED
@@ -3,7 +3,7 @@ import os
|
|
3 |
from typing import Dict
|
4 |
from huggingface_hub import HfApi, hf_hub_download, metadata_load
|
5 |
import pandas as pd
|
6 |
-
from .dataset_handler import get_datasets_nickname
|
7 |
|
8 |
class ModelHandler:
|
9 |
def __init__(self, model_infos_path="model_infos.json"):
|
@@ -25,14 +25,18 @@ class ModelHandler:
|
|
25 |
models = self.api.list_models(filter="vidore")
|
26 |
repositories = [model.modelId for model in models] # type: ignore
|
27 |
|
28 |
-
datasets_nickname = get_datasets_nickname()
|
29 |
for repo_id in repositories:
|
30 |
-
files = [f for f in self.api.list_repo_files(repo_id) if f.endswith('_metrics.json')]
|
|
|
|
|
31 |
if len(files) == 0:
|
32 |
continue
|
33 |
else:
|
34 |
for file in files:
|
35 |
-
|
|
|
|
|
|
|
36 |
|
37 |
if model_name not in self.model_infos:
|
38 |
readme_path = hf_hub_download(repo_id, filename="README.md")
|
@@ -51,7 +55,7 @@ class ModelHandler:
|
|
51 |
print(f"Error loading {model_name} - {e}")
|
52 |
continue
|
53 |
|
54 |
-
|
55 |
|
56 |
model_res = {}
|
57 |
if len(self.model_infos) > 0:
|
@@ -59,12 +63,17 @@ class ModelHandler:
|
|
59 |
res = self.model_infos[model]["results"]
|
60 |
dataset_res = {}
|
61 |
for dataset in res.keys():
|
62 |
-
if
|
|
|
|
|
63 |
continue
|
64 |
-
|
|
|
|
|
65 |
model_res[model] = dataset_res
|
66 |
|
67 |
df = pd.DataFrame(model_res).T
|
|
|
68 |
return df
|
69 |
return pd.DataFrame()
|
70 |
|
@@ -88,7 +97,10 @@ class ModelHandler:
|
|
88 |
df.insert(len(df.columns) - len(cols_to_rank), "Average", df[cols_to_rank].mean(axis=1, skipna=False))
|
89 |
df.sort_values("Average", ascending=False, inplace=True)
|
90 |
df.insert(0, "Rank", list(range(1, len(df) + 1)))
|
91 |
-
|
|
|
|
|
|
|
92 |
# Fill NaN after averaging
|
93 |
df.fillna("", inplace=True)
|
94 |
return df
|
|
|
3 |
from typing import Dict
|
4 |
from huggingface_hub import HfApi, hf_hub_download, metadata_load
|
5 |
import pandas as pd
|
6 |
+
from .dataset_handler import get_datasets_nickname, VIDORE_DATASETS_KEYWORDS
|
7 |
|
8 |
class ModelHandler:
|
9 |
def __init__(self, model_infos_path="model_infos.json"):
|
|
|
25 |
models = self.api.list_models(filter="vidore")
|
26 |
repositories = [model.modelId for model in models] # type: ignore
|
27 |
|
|
|
28 |
for repo_id in repositories:
|
29 |
+
files = [f for f in self.api.list_repo_files(repo_id) if f.endswith('_metrics.json') or f == 'results.json']
|
30 |
+
|
31 |
+
|
32 |
if len(files) == 0:
|
33 |
continue
|
34 |
else:
|
35 |
for file in files:
|
36 |
+
if file.endswith('results.json'):
|
37 |
+
model_name = repo_id.replace('/', '_')
|
38 |
+
else:
|
39 |
+
model_name = file.split('_metrics.json')[0]
|
40 |
|
41 |
if model_name not in self.model_infos:
|
42 |
readme_path = hf_hub_download(repo_id, filename="README.md")
|
|
|
55 |
print(f"Error loading {model_name} - {e}")
|
56 |
continue
|
57 |
|
58 |
+
self._save_model_infos()
|
59 |
|
60 |
model_res = {}
|
61 |
if len(self.model_infos) > 0:
|
|
|
63 |
res = self.model_infos[model]["results"]
|
64 |
dataset_res = {}
|
65 |
for dataset in res.keys():
|
66 |
+
#for each keyword check if it is in the dataset name if not continue
|
67 |
+
if not any(keyword in dataset for keyword in VIDORE_DATASETS_KEYWORDS):
|
68 |
+
print(f"{dataset} not found in ViDoRe datasets. Skipping ...")
|
69 |
continue
|
70 |
+
|
71 |
+
dataset_nickname = get_datasets_nickname(dataset)
|
72 |
+
dataset_res[dataset_nickname] = res[dataset][metric]
|
73 |
model_res[model] = dataset_res
|
74 |
|
75 |
df = pd.DataFrame(model_res).T
|
76 |
+
|
77 |
return df
|
78 |
return pd.DataFrame()
|
79 |
|
|
|
97 |
df.insert(len(df.columns) - len(cols_to_rank), "Average", df[cols_to_rank].mean(axis=1, skipna=False))
|
98 |
df.sort_values("Average", ascending=False, inplace=True)
|
99 |
df.insert(0, "Rank", list(range(1, len(df) + 1)))
|
100 |
+
#multiply values by 100 if they are floats and round to 1 decimal place
|
101 |
+
for col in df.columns:
|
102 |
+
if df[col].dtype == "float64":
|
103 |
+
df[col] = df[col].apply(lambda x: round(x * 100, 1))
|
104 |
# Fill NaN after averaging
|
105 |
df.fillna("", inplace=True)
|
106 |
return df
|