movie_chatbot / app.py
Victor Hom
update
af34abb
raw
history blame
4.44 kB
# You can find this code for Chainlit python streaming here (https://docs.chainlit.io/concepts/streaming/python)
# OpenAI Chat completion
import os
from openai import AsyncOpenAI # importing openai for API usage
import chainlit as cl # importing chainlit for our app
from chainlit.prompt import Prompt, PromptMessage # importing prompt tools
from chainlit.playground.providers import ChatOpenAI # importing ChatOpenAI tools
from dotenv import load_dotenv
from langchain.document_loaders import CSVLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_openai import OpenAIEmbeddings
from langchain.embeddings import CacheBackedEmbeddings
from langchain.storage import LocalFileStore
from langchain_community.vectorstores import FAISS
from datasets import load_dataset
load_dotenv()
# ChatOpenAI Templates
system_template = """You are a helpful assistant who always speaks in a pleasant tone!
"""
user_template = """{input}
Think through your response step by step.
"""
def setup():
dataset = load_dataset("ShubhamChoksi/IMDB_Movies")
print(dataset['train'][0])
print("data from huggingface dataset\n")
dataset_dict = dataset
dataset_dict["train"] # TODO - what method do we have to use to store imdb.csv from ShubhamChoksi/IMDB_Movies?
dataset_dict["train"].to_csv("imdb.csv")
loader = CSVLoader(file_path='imdb.csv')
data = loader.load()
len(data)
print(data[0])
print("loaded data from csv\n")
text_splitter = RecursiveCharacterTextSplitter(
chunk_size = 1000,
chunk_overlap = 100,
)
chunked_documents = text_splitter.split_documents(data)
len(chunked_documents) # ensure we have actually split the data into chunks
print(chunked_documents[0])
openai_api_key = os.getenv("OPENAI_API_KEY")
embedding_model = OpenAIEmbeddings(openai_api_key=openai_api_key)
store = LocalFileStore("./cache/")
embedder = CacheBackedEmbeddings.from_bytes_store(
embedding_model, store, namespace=embedding_model.model
)
vector_store = FAISS.from_documents(chunked_documents, embedder)
vector_store.save_local("./vector_store")
vector_store = FAISS.load_local("./vector_store", embedder, allow_dangerous_deserialization=True)
retriever = vector_store.as_retriever()
query = "What are some good westerns movies?"
embedded_query = embedding_model.embed_query(query)
similar_documents = vector_store.similarity_search_by_vector(embedded_query)
for page in similar_documents:
# TODO: Print the similar documents that the similarity search returns?
print(page)
print("00-----0000")
print(page)
print("-------------")
@cl.on_chat_start # marks a function that will be executed at the start of a user session
async def start_chat():
settings = {
"model": "gpt-3.5-turbo",
"temperature": 0,
"max_tokens": 500,
"top_p": 1,
"frequency_penalty": 0,
"presence_penalty": 0,
}
cl.user_session.set("settings", settings)
@cl.on_message # marks a function that should be run each time the chatbot receives a message from a user
async def main(message: cl.Message):
settings = cl.user_session.get("settings")
client = AsyncOpenAI()
print(message.content)
prompt = Prompt(
provider=ChatOpenAI.id,
messages=[
PromptMessage(
role="system",
template=system_template,
formatted=system_template,
),
PromptMessage(
role="user",
template=user_template,
formatted=user_template.format(input=message.content),
),
],
inputs={"input": message.content},
settings=settings,
)
print([m.to_openai() for m in prompt.messages])
msg = cl.Message(content="")
# Call OpenAI
async for stream_resp in await client.chat.completions.create(
messages=[m.to_openai() for m in prompt.messages], stream=True, **settings
):
token = stream_resp.choices[0].delta.content
if not token:
token = ""
await msg.stream_token(token)
# Update the prompt object with the completion
prompt.completion = msg.content
msg.prompt = prompt
# Send and close the message stream
await msg.send()