File size: 7,139 Bytes
3ec37c3
 
 
 
 
 
 
 
 
af34abb
 
 
 
 
 
 
c867e5d
 
 
 
 
 
af34abb
 
3ec37c3
 
 
 
 
 
 
 
c867e5d
 
 
 
3ec37c3
 
 
c867e5d
 
 
 
 
 
 
af34abb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22d7e06
af34abb
 
 
 
 
 
 
 
 
 
 
c867e5d
 
 
 
 
 
 
 
af34abb
 
 
 
c867e5d
 
 
 
 
 
 
 
 
af34abb
 
c867e5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ec37c3
 
 
 
 
 
 
 
 
 
 
286bd5e
3ec37c3
 
c867e5d
3ec37c3
 
 
 
 
 
 
c867e5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e87d89a
 
 
3ec37c3
 
e87d89a
3ec37c3
 
 
e87d89a
 
ef7a628
 
e87d89a
3ec37c3
e87d89a
 
 
 
ef7a628
 
 
 
 
 
3ec37c3
 
ef7a628
 
3ec37c3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# You can find this code for Chainlit python streaming here (https://docs.chainlit.io/concepts/streaming/python)

# OpenAI Chat completion
import os
from openai import AsyncOpenAI  # importing openai for API usage
import chainlit as cl  # importing chainlit for our app
from chainlit.prompt import Prompt, PromptMessage  # importing prompt tools
from chainlit.playground.providers import ChatOpenAI  # importing ChatOpenAI tools
from dotenv import load_dotenv
from langchain.document_loaders import CSVLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_openai import OpenAIEmbeddings
from langchain.embeddings import CacheBackedEmbeddings
from langchain.storage import LocalFileStore
from langchain_community.vectorstores import FAISS
from datasets import load_dataset
from langchain_core.runnables.base import RunnableSequence
from langchain_core.runnables.passthrough import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
import asyncio



load_dotenv()

# ChatOpenAI Templates
system_template = """You are a helpful assistant who always speaks in a pleasant tone!
"""

user_template = """{input}




Think through your response step by step.
"""

# used for imdb chat 
template = """Answer the question based only on the following context:
{context}

Question: {question}
"""

def setup():
    dataset = load_dataset("ShubhamChoksi/IMDB_Movies")
    print(dataset['train'][0])
    print("data from huggingface dataset\n")
    
    dataset_dict = dataset
    dataset_dict["train"] # TODO - what method do we have to use to store imdb.csv from ShubhamChoksi/IMDB_Movies?

    dataset_dict["train"].to_csv("imdb.csv")
    loader = CSVLoader(file_path='imdb.csv')
    data = loader.load()
    len(data)
    print(data[0])
    print("loaded data from csv\n")
    
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size = 1000,
        chunk_overlap = 100,
    )

    chunked_documents = text_splitter.split_documents(data)


    len(chunked_documents) # ensure we have actually split the data into chunks
    print(chunked_documents[0])
    
    openai_api_key =  os.getenv("OPENAI_API_KEY")

    embedding_model = OpenAIEmbeddings(openai_api_key=openai_api_key)
    
    
    store = LocalFileStore("./cache/")
    embedder = CacheBackedEmbeddings.from_bytes_store(
        embedding_model, store, namespace=embedding_model.model
    )
    
    vector_store = FAISS.from_documents(chunked_documents, embedder)

    vector_store.save_local("./vector_store")
    
def input_query(query):
    openai_api_key =  os.getenv("OPENAI_API_KEY")
    embedding_model = OpenAIEmbeddings(openai_api_key=openai_api_key)

    store = LocalFileStore("./cache/")
    embedder = CacheBackedEmbeddings.from_bytes_store(
        embedding_model, store, namespace=embedding_model.model
    )
    vector_store = FAISS.load_local("./vector_store", embedder, allow_dangerous_deserialization=True)

    retriever = vector_store.as_retriever()
    
    # query = "What are some good westerns movies?"
    # embedded_query = embedding_model.embed_query(query)
    # similar_documents = vector_store.similarity_search_by_vector(embedded_query)
    # for page in similar_documents:
    #     # TODO: Print the similar documents that the similarity search returns?
    #     print(page)
    #     print("00-----0000")
    #     print(page)
    #     print("-------------")
    embedded_query = embedding_model.embed_query(query)
    similar_documents = vector_store.similarity_search_by_vector(embedded_query)
    similar_documents_for_prompt = list(map(lambda page: ("assistant", page.page_content), similar_documents))
    # print(similar_documents_for_prompt)

    similar_documents_for_prompt.append(("human", query))
    # print(similar_documents_for_prompt)

    # Create the components (chefs)
    # prompt_template = # TODO: How do we create a prompt template to send to our LLM that will incorporate the documents from our retriever with the question we ask the chat model?
    alternative_prompt = ChatPromptTemplate.from_messages(
        similar_documents_for_prompt
    )
    print("alternative prompt")
    print(alternative_prompt.messages)


    prompt = ChatPromptTemplate.from_template(template)


    #retriever = # TODO: How to we create a retriever for our documents?
    retriever = vector_store.as_retriever()


    #chat_model = # TODO: How do we create a chat model / LLM?
    chat_model = ChatOpenAI(openai_api_key=openai_api_key, temperature=0)



    #parser = # TODO: How do we create a parser to parse the output of our LLM?
    parser = StrOutputParser()
    runnable_chain = alternative_prompt | chat_model | parser
    return alternative_prompt, chat_model, parser


@cl.on_chat_start  # marks a function that will be executed at the start of a user session
async def start_chat():
    settings = {
        "model": "gpt-3.5-turbo",
        "temperature": 0,
        "max_tokens": 500,
        "top_p": 1,
        "frequency_penalty": 0,
        "presence_penalty": 0,
    }
    setup()
    cl.user_session.set("settings", settings)

# need to pass the query to the input_query function
@cl.on_message  # marks a function that should be run each time the chatbot receives a message from a user
async def main(message: cl.Message):
    settings = cl.user_session.get("settings")

    client = AsyncOpenAI()

    print(message.content)
    # message.content is the input query from the user
    prompt, model, parser = input_query(message.content)

    # prompt = Prompt(
    #     provider=ChatOpenAI.id,
    #     messages=[
    #         PromptMessage(
    #             role="system",
    #             template=system_template,
    #             formatted=system_template,
    #         ),
    #         PromptMessage(
    #             role="user",
    #             template=user_template,
    #             formatted=user_template.format(input=message.content),
    #         ),
    #     ],
    #     inputs={"input": message.content},
    #     settings=settings,
    # )
    
    runnable_chain = prompt | model | parser
    # output_chunks = runnable_chain.invoke({})
    # print(''.join(output_chunks))
    # print("output chunks")


    # print([m.to_openai() for m in prompt.messages])

    msg = cl.Message(content="")

    output_stream = runnable_chain.astream({})

    # async for chunk in output_stream:
    #     print(chunk, sep='', flush=True)

    # Call OpenAI
    # async for stream_resp in await client.chat.completions.create(
    #     messages=[m.to_openai() for m in prompt.messages], stream=True, **settings
    # ):
    async for stream_resp in output_stream:
        await msg.stream_token(stream_resp)

        # token = stream_resp.choices[0].delta.content
        # if not token:
        #     token = ""
        # await msg.stream_token(token)

    # Update the prompt object with the completion
    # prompt.completion = msg.content
    # msg.prompt = prompt

    # Send and close the message stream
    await msg.send()