Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# β
Install dependencies
|
2 |
+
|
3 |
+
# π Imports
|
4 |
+
import fitz # PyMuPDF
|
5 |
+
import requests
|
6 |
+
import gradio as gr
|
7 |
+
import tempfile
|
8 |
+
import os
|
9 |
+
import io
|
10 |
+
|
11 |
+
# π Enter your OpenRouter API key here
|
12 |
+
OPENROUTER_API_KEY = "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"
|
13 |
+
|
14 |
+
# Global variable to store the extracted text
|
15 |
+
pdf_text = ""
|
16 |
+
|
17 |
+
# π Extract text from PDF
|
18 |
+
def extract_text_from_pdf(file_obj):
|
19 |
+
global pdf_text
|
20 |
+
|
21 |
+
if file_obj is None:
|
22 |
+
return "Please upload a PDF file first."
|
23 |
+
|
24 |
+
try:
|
25 |
+
# Get the file path from the file object
|
26 |
+
# In Gradio, the file object has a name attribute that contains the path
|
27 |
+
file_path = file_obj.name
|
28 |
+
|
29 |
+
# Now open the file with PyMuPDF
|
30 |
+
doc = fitz.open(file_path)
|
31 |
+
text = ""
|
32 |
+
for page in doc:
|
33 |
+
text += page.get_text()
|
34 |
+
doc.close()
|
35 |
+
|
36 |
+
# Store the text for later use
|
37 |
+
pdf_text = text
|
38 |
+
|
39 |
+
# Return preview of the extracted text
|
40 |
+
preview = text[:500] + "..." if len(text) > 500 else text
|
41 |
+
return f"β
PDF uploaded and processed successfully. Preview:\n\n{preview}"
|
42 |
+
|
43 |
+
except Exception as e:
|
44 |
+
return f"β Error processing PDF: {str(e)}"
|
45 |
+
|
46 |
+
# π¬ Ask the open-source LLM (Mistral-7B via OpenRouter)
|
47 |
+
def ask_open_source_llm(question, model_choice="nvidia/llama-3.1-nemotron-nano-8b-v1:free"):
|
48 |
+
global pdf_text
|
49 |
+
|
50 |
+
if not pdf_text:
|
51 |
+
return "β οΈ Please upload a PDF document first."
|
52 |
+
|
53 |
+
# Limit text to prevent token overflow
|
54 |
+
limited_text = pdf_text[:3000] # First 3000 characters
|
55 |
+
|
56 |
+
# Create prompt based on question
|
57 |
+
if not question:
|
58 |
+
prompt = f"Summarize the following document:\n\n{limited_text}"
|
59 |
+
else:
|
60 |
+
prompt = f"The document says:\n\n{limited_text}\n\nNow answer this: {question}"
|
61 |
+
|
62 |
+
# Call the API
|
63 |
+
url = "https://openrouter.ai/api/v1/chat/completions"
|
64 |
+
headers = {
|
65 |
+
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
|
66 |
+
"Content-Type": "application/json"
|
67 |
+
}
|
68 |
+
|
69 |
+
data = {
|
70 |
+
"model": model_choice,
|
71 |
+
"messages": [{"role": "user", "content": prompt}]
|
72 |
+
}
|
73 |
+
|
74 |
+
try:
|
75 |
+
response = requests.post(url, headers=headers, json=data)
|
76 |
+
if response.status_code == 200:
|
77 |
+
return response.json()["choices"][0]["message"]["content"]
|
78 |
+
else:
|
79 |
+
return f"β Error: {response.text}"
|
80 |
+
except Exception as e:
|
81 |
+
return f"β An error occurred: {str(e)}"
|
82 |
+
|
83 |
+
# Gradio app function
|
84 |
+
def process_query(pdf_file, question, model_choice):
|
85 |
+
# First extract text if a PDF is uploaded
|
86 |
+
if pdf_file is not None:
|
87 |
+
result = extract_text_from_pdf(pdf_file)
|
88 |
+
if result.startswith("β Error"):
|
89 |
+
return result
|
90 |
+
|
91 |
+
# Then process the question
|
92 |
+
if question:
|
93 |
+
return ask_open_source_llm(question, model_choice)
|
94 |
+
else:
|
95 |
+
return ask_open_source_llm("Please summarize this document.", model_choice)
|
96 |
+
|
97 |
+
# Create Gradio interface
|
98 |
+
with gr.Blocks(title="PDF Document Analysis") as app:
|
99 |
+
gr.Markdown("# π PDF Document Analysis with LLM")
|
100 |
+
gr.Markdown("Upload a PDF document and ask questions about its content.")
|
101 |
+
|
102 |
+
with gr.Row():
|
103 |
+
with gr.Column(scale=1):
|
104 |
+
pdf_input = gr.File(label="Upload PDF Document", file_types=[".pdf"])
|
105 |
+
model_choice = gr.Dropdown(
|
106 |
+
choices=[
|
107 |
+
"nvidia/llama-3.1-nemotron-nano-8b-v1:free",
|
108 |
+
"mistralai/mistral-7b-instruct-v0.1:free",
|
109 |
+
"meta-llama/llama-2-13b-chat:free"
|
110 |
+
],
|
111 |
+
label="LLM Model",
|
112 |
+
value="nvidia/llama-3.1-nemotron-nano-8b-v1:free"
|
113 |
+
)
|
114 |
+
question_input = gr.Textbox(label="Ask a question (or leave empty for summary)", lines=2)
|
115 |
+
submit_btn = gr.Button("Process", variant="primary")
|
116 |
+
|
117 |
+
with gr.Column(scale=2):
|
118 |
+
output = gr.Textbox(label="Response", lines=15)
|
119 |
+
|
120 |
+
# Set up event handlers
|
121 |
+
submit_btn.click(
|
122 |
+
fn=process_query,
|
123 |
+
inputs=[pdf_input, question_input, model_choice],
|
124 |
+
outputs=output
|
125 |
+
)
|
126 |
+
|
127 |
+
gr.Markdown("### π Notes")
|
128 |
+
gr.Markdown("- For large documents, only the first 3000 characters are analyzed")
|
129 |
+
gr.Markdown("- You can change the LLM model from the dropdown menu")
|
130 |
+
gr.Markdown("- Leave the question field empty to get a general summary")
|
131 |
+
|
132 |
+
# Launch the app
|
133 |
+
app.launch(debug=True, share=True)
|