import os import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline from huggingface_hub import HfApi import string import os from moviepy.editor import VideoFileClip, concatenate_videoclips, ImageClip huggingface_token = os.getenv('NJOGERERA_TOKEN') if not huggingface_token: raise ValueError("Hugging Face token is not set in the environment variables.") api = HfApi() try: user_info = api.whoami(token=huggingface_token) print(f"Logged in as: {user_info['name']}") except Exception as e: raise ValueError("Failed to authenticate with the provided Hugging Face token.") model_path = "vertigo23/njogerera_translation_model_V003" tokenizer = AutoTokenizer.from_pretrained(model_path, use_auth_token=huggingface_token) model = AutoModelForSeq2SeqLM.from_pretrained(model_path, use_auth_token=huggingface_token) translator = pipeline("translation", model=model, tokenizer=tokenizer) prefix = "translate Luganda to English: " filler_image_path = "alphabet/break.png" def clean_and_split(text): text = text.lower().translate(str.maketrans('', '', string.punctuation)) return text.split() def map_word_to_media(word): if os.path.exists(f"KSL/{word}.mp4"): return [f"KSL/{word}.mp4"] else: spelled_word_media = [filler_image_path] spelled_word_media += [f"alphabet/{letter}.png" for letter in word if os.path.exists(f"alphabet/{letter}.png")] spelled_word_media.append(filler_image_path) return spelled_word_media def stitch_media(media_paths): clips = [] for path in media_paths: if path.endswith('.mp4'): clips.append(VideoFileClip(path)) elif path.endswith('.png'): image_clip = ImageClip(path).set_duration(0.7) clips.append(image_clip) if not clips: raise ValueError("No media files to stitch.") final_clip = concatenate_videoclips(clips, method="compose") final_clip.fps = 24 final_clip_path = "KSL/final_translation.mp4" final_clip.write_videofile(final_clip_path, codec="libx264", fps=24) return final_clip_path def translate_lg_to_en(text): lg_input = prefix + text translated_text = translator(lg_input) english_translation = translated_text[0]['translation_text'] words = clean_and_split(english_translation) media_paths = [] for word in words: media_paths.extend(map_word_to_media(word)) ksl_path = stitch_media(media_paths) return english_translation, ksl_path # Gradio interface gr.Interface( fn=translate_lg_to_en, inputs=gr.Text(), outputs=[gr.Textbox(label="English Translation"), gr.Video(label="KSL Sign Language Animation")], title="Njogerera Translation App", description="Type in a Luganda sentence and see the translation.", article="Above is some sample text to test the results of the model. Click to see the results.", examples=[ ["Ebikolwa ebitali bya buntu tebikkirizibwa mu kitundu."], ["Olugudo olugenda e Masaka lugadwawo."], ["Abalwadde ba Malaria mu dwaliro lye Nsambya bafunye obujanjabi."], ], allow_flagging="never" ).launch()