Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
4 |
+
from huggingface_hub import HfApi
|
5 |
+
import string
|
6 |
+
import os
|
7 |
+
from moviepy.editor import VideoFileClip, concatenate_videoclips, ImageClip
|
8 |
+
|
9 |
+
huggingface_token = os.getenv('NJOGERERA_TOKEN')
|
10 |
+
if not huggingface_token:
|
11 |
+
raise ValueError("Hugging Face token is not set in the environment variables.")
|
12 |
+
|
13 |
+
api = HfApi()
|
14 |
+
try:
|
15 |
+
user_info = api.whoami(token=huggingface_token)
|
16 |
+
print(f"Logged in as: {user_info['name']}")
|
17 |
+
except Exception as e:
|
18 |
+
raise ValueError("Failed to authenticate with the provided Hugging Face token.")
|
19 |
+
|
20 |
+
model_path = "vertigo23/njogerera_translation_model_V003"
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_auth_token=huggingface_token)
|
22 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_path, use_auth_token=huggingface_token)
|
23 |
+
|
24 |
+
translator = pipeline("translation", model=model, tokenizer=tokenizer)
|
25 |
+
|
26 |
+
prefix = "translate Luganda to English: "
|
27 |
+
|
28 |
+
filler_image_path = "alphabet/break.png"
|
29 |
+
|
30 |
+
def clean_and_split(text):
|
31 |
+
text = text.lower().translate(str.maketrans('', '', string.punctuation))
|
32 |
+
return text.split()
|
33 |
+
|
34 |
+
def map_word_to_media(word):
|
35 |
+
if os.path.exists(f"KSL/{word}.mp4"):
|
36 |
+
return [f"KSL/{word}.mp4"]
|
37 |
+
else:
|
38 |
+
spelled_word_media = [filler_image_path]
|
39 |
+
spelled_word_media += [f"alphabet/{letter}.png" for letter in word if os.path.exists(f"alphabet/{letter}.png")]
|
40 |
+
spelled_word_media.append(filler_image_path)
|
41 |
+
return spelled_word_media
|
42 |
+
|
43 |
+
def stitch_media(media_paths):
|
44 |
+
clips = []
|
45 |
+
for path in media_paths:
|
46 |
+
if path.endswith('.mp4'):
|
47 |
+
clips.append(VideoFileClip(path))
|
48 |
+
elif path.endswith('.png'):
|
49 |
+
image_clip = ImageClip(path).set_duration(0.7)
|
50 |
+
clips.append(image_clip)
|
51 |
+
if not clips:
|
52 |
+
raise ValueError("No media files to stitch.")
|
53 |
+
|
54 |
+
final_clip = concatenate_videoclips(clips, method="compose")
|
55 |
+
final_clip.fps = 24
|
56 |
+
final_clip_path = "KSL/final_translation.mp4"
|
57 |
+
final_clip.write_videofile(final_clip_path, codec="libx264", fps=24)
|
58 |
+
return final_clip_path
|
59 |
+
|
60 |
+
def translate_lg_to_en(text):
|
61 |
+
lg_input = prefix + text
|
62 |
+
translated_text = translator(lg_input)
|
63 |
+
english_translation = translated_text[0]['translation_text']
|
64 |
+
words = clean_and_split(english_translation)
|
65 |
+
media_paths = []
|
66 |
+
for word in words:
|
67 |
+
media_paths.extend(map_word_to_media(word))
|
68 |
+
ksl_path = stitch_media(media_paths)
|
69 |
+
return english_translation, ksl_path
|
70 |
+
|
71 |
+
# Gradio interface
|
72 |
+
gr.Interface(
|
73 |
+
fn=translate_lg_to_en,
|
74 |
+
inputs=gr.Text(),
|
75 |
+
outputs=[gr.Textbox(label="English Translation"), gr.Video(label="KSL Sign Language Animation")],
|
76 |
+
title="Njogerera Translation App",
|
77 |
+
description="Type in a Luganda sentence and see the translation.",
|
78 |
+
article="Above is some sample text to test the results of the model. Click to see the results.",
|
79 |
+
examples=[
|
80 |
+
["Ebikolwa ebitali bya buntu tebikkirizibwa mu kitundu."],
|
81 |
+
["Olugudo olugenda e Masaka lugadwawo."],
|
82 |
+
["Abalwadde ba Malaria mu dwaliro lye Nsambya bafunye obujanjabi."],
|
83 |
+
],
|
84 |
+
allow_flagging="never"
|
85 |
+
).launch()
|