Spaces:
Sleeping
Sleeping
Create utils.py
Browse files
utils.py
ADDED
|
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Some utility functions for the app."""
|
| 2 |
+
from base64 import b64encode
|
| 3 |
+
from io import BytesIO
|
| 4 |
+
|
| 5 |
+
from gtts import gTTS
|
| 6 |
+
from mtranslate import translate
|
| 7 |
+
from speech_recognition import AudioFile, Recognizer
|
| 8 |
+
from transformers import (BlenderbotSmallForConditionalGeneration,
|
| 9 |
+
BlenderbotSmallTokenizer)
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def stt(audio: object, language: str) -> str:
|
| 13 |
+
"""Converts speech to text.
|
| 14 |
+
Args:
|
| 15 |
+
audio: record of user speech
|
| 16 |
+
Returns:
|
| 17 |
+
text (str): recognized speech of user
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
# Create a Recognizer object
|
| 21 |
+
r = Recognizer()
|
| 22 |
+
# Open the audio file
|
| 23 |
+
with AudioFile(audio) as source:
|
| 24 |
+
# Listen for the data (load audio to memory)
|
| 25 |
+
audio_data = r.record(source)
|
| 26 |
+
# Transcribe the audio using Google's speech-to-text API
|
| 27 |
+
text = r.recognize_google(audio_data, language=language)
|
| 28 |
+
return text
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def to_en_translation(text: str, language: str) -> str:
|
| 32 |
+
"""Translates text from specified language to English.
|
| 33 |
+
Args:
|
| 34 |
+
text (str): input text
|
| 35 |
+
language (str): desired language
|
| 36 |
+
Returns:
|
| 37 |
+
str: translated text
|
| 38 |
+
"""
|
| 39 |
+
return translate(text, "en", language)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def from_en_translation(text: str, language: str) -> str:
|
| 43 |
+
"""Translates text from english to specified language.
|
| 44 |
+
Args:
|
| 45 |
+
text (str): input text
|
| 46 |
+
language (str): desired language
|
| 47 |
+
Returns:
|
| 48 |
+
str: translated text
|
| 49 |
+
"""
|
| 50 |
+
return translate(text, language, "en")
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
class TextGenerationPipeline:
|
| 54 |
+
"""Pipeline for text generation of blenderbot model.
|
| 55 |
+
Returns:
|
| 56 |
+
str: generated text
|
| 57 |
+
"""
|
| 58 |
+
|
| 59 |
+
# load tokenizer and the model
|
| 60 |
+
model_name = "facebook/blenderbot_small-90M"
|
| 61 |
+
tokenizer = BlenderbotSmallTokenizer.from_pretrained(model_name)
|
| 62 |
+
model = BlenderbotSmallForConditionalGeneration.from_pretrained(model_name)
|
| 63 |
+
|
| 64 |
+
def __init__(self, **kwargs):
|
| 65 |
+
"""Specififying text generation parameters.
|
| 66 |
+
For example: max_length=100 which generates text shorter than
|
| 67 |
+
100 tokens. Visit:
|
| 68 |
+
https://huggingface.co/docs/transformers/main_classes/text_generation
|
| 69 |
+
for more parameters
|
| 70 |
+
"""
|
| 71 |
+
self.__dict__.update(kwargs)
|
| 72 |
+
|
| 73 |
+
def preprocess(self, text) -> str:
|
| 74 |
+
"""Tokenizes input text.
|
| 75 |
+
Args:
|
| 76 |
+
text (str): user specified text
|
| 77 |
+
Returns:
|
| 78 |
+
torch.Tensor (obj): text representation as tensors
|
| 79 |
+
"""
|
| 80 |
+
return self.tokenizer(text, return_tensors="pt")
|
| 81 |
+
|
| 82 |
+
def postprocess(self, outputs) -> str:
|
| 83 |
+
"""Converts tensors into text.
|
| 84 |
+
Args:
|
| 85 |
+
outputs (torch.Tensor obj): model text generation output
|
| 86 |
+
Returns:
|
| 87 |
+
str: generated text
|
| 88 |
+
"""
|
| 89 |
+
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 90 |
+
|
| 91 |
+
def __call__(self, text: str) -> str:
|
| 92 |
+
"""Generates text from input text.
|
| 93 |
+
Args:
|
| 94 |
+
text (str): user specified text
|
| 95 |
+
Returns:
|
| 96 |
+
str: generated text
|
| 97 |
+
"""
|
| 98 |
+
tokenized_text = self.preprocess(text)
|
| 99 |
+
output = self.model.generate(**tokenized_text, **self.__dict__)
|
| 100 |
+
return self.postprocess(output)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def tts(text: str, language: str) -> object:
|
| 104 |
+
"""Converts text into audio object.
|
| 105 |
+
Args:
|
| 106 |
+
text (str): generated answer of bot
|
| 107 |
+
Returns:
|
| 108 |
+
object: text to speech object
|
| 109 |
+
"""
|
| 110 |
+
return gTTS(text=text, lang=language, slow=False)
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def tts_to_bytesio(tts_object: object) -> bytes:
|
| 114 |
+
"""Converts tts object to bytes.
|
| 115 |
+
Args:
|
| 116 |
+
tts_object (object): audio object obtained from gtts
|
| 117 |
+
Returns:
|
| 118 |
+
bytes: audio bytes
|
| 119 |
+
"""
|
| 120 |
+
bytes_object = BytesIO()
|
| 121 |
+
tts_object.write_to_fp(bytes_object)
|
| 122 |
+
bytes_object.seek(0)
|
| 123 |
+
return bytes_object.getvalue()
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def html_audio_autoplay(bytes: bytes) -> object:
|
| 127 |
+
"""Creates html object for autoplaying audio at gradio app.
|
| 128 |
+
Args:
|
| 129 |
+
bytes (bytes): audio bytes
|
| 130 |
+
Returns:
|
| 131 |
+
object: html object that provides audio autoplaying
|
| 132 |
+
"""
|
| 133 |
+
b64 = b64encode(bytes).decode()
|
| 134 |
+
html = f"""
|
| 135 |
+
<audio controls autoplay>
|
| 136 |
+
<source src="data:audio/wav;base64,{b64}" type="audio/wav">
|
| 137 |
+
</audio>
|
| 138 |
+
"""
|
| 139 |
+
return html
|