Spaces:
Sleeping
Sleeping
| import json | |
| import os | |
| import numpy as np | |
| import pandas as pd | |
| from src.about import Tasks | |
| from src.display.formatting import has_no_nan_values, make_clickable_model | |
| from src.display.utils import AutoEvalColumn, EvalQueueColumn | |
| from src.leaderboard.read_evals import get_raw_eval_results | |
| TASK_NAME_INVERSE_MAP = dict() | |
| for task in Tasks: | |
| TASK_NAME_INVERSE_MAP[task.value.col_name] = { | |
| "name": task.value.benchmark, | |
| "type": task.value.type, | |
| "source": task.value.source, | |
| } | |
| EMPTY_SYMBOL = "--" | |
| def get_inspect_log_url(model_name: str, benchmark_name: str) -> str: | |
| """Returns the URL to the log file for a given model and benchmark""" | |
| with open("./inspect_log_file_names.json", "r") as f: | |
| inspect_log_files = json.load(f) | |
| log_file_name = inspect_log_files[model_name].get(benchmark_name, None) | |
| if log_file_name is None: | |
| return "" | |
| else: | |
| # replace .json with .eval | |
| log_file_name = log_file_name.replace(".json", ".eval") | |
| return f"https://storage.googleapis.com/inspect-evals/eval/{model_name}/index.html?log_file=logs/logs/{log_file_name}" | |
| def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: | |
| """Creates a dataframe from all the individual experiment results""" | |
| raw_data = get_raw_eval_results(results_path, requests_path) | |
| all_data_json = [v.to_dict() for v in raw_data] | |
| df = pd.DataFrame.from_records(all_data_json) | |
| df = df[cols].round(decimals=2) | |
| # subset for model and benchmark cols | |
| df = df[[AutoEvalColumn.model.name] + benchmark_cols] | |
| df = df.fillna(EMPTY_SYMBOL) | |
| # make values clickable and link to log files | |
| for col in benchmark_cols: | |
| df[col] = df[[AutoEvalColumn.model.name, col]].apply(lambda x: f"[{x[col]}]({get_inspect_log_url(model_name=x[AutoEvalColumn.model.name].split('>')[1].split('<')[0], benchmark_name=TASK_NAME_INVERSE_MAP[col]['name'])})" if x[col] != EMPTY_SYMBOL else x[col], axis=1) | |
| return df | |
| def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: | |
| """Creates the different dataframes for the evaluation queues requestes""" | |
| entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] | |
| all_evals = [] | |
| for entry in entries: | |
| if ".json" in entry: | |
| file_path = os.path.join(save_path, entry) | |
| with open(file_path) as fp: | |
| data = json.load(fp) | |
| data[EvalQueueColumn.model.name] = make_clickable_model(data["model"], data["model_sha"]) | |
| data[EvalQueueColumn.revision.name] = data.get("revision", "main") | |
| all_evals.append(data) | |
| elif ".md" not in entry: | |
| # this is a folder | |
| sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")] | |
| for sub_entry in sub_entries: | |
| file_path = os.path.join(save_path, entry, sub_entry) | |
| with open(file_path) as fp: | |
| data = json.load(fp) | |
| data[EvalQueueColumn.model.name] = make_clickable_model(data["model"], data["model_sha"]) | |
| data[EvalQueueColumn.revision.name] = data.get("revision", "main") | |
| all_evals.append(data) | |
| pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] | |
| running_list = [e for e in all_evals if e["status"] == "RUNNING"] | |
| finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] | |
| df_pending = pd.DataFrame.from_records(pending_list, columns=cols) | |
| df_running = pd.DataFrame.from_records(running_list, columns=cols) | |
| df_finished = pd.DataFrame.from_records(finished_list, columns=cols) | |
| return df_finished[cols], df_running[cols], df_pending[cols] | |