Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
·
6919058
1
Parent(s):
066863b
minor fix to work for recent models
Browse files- src/backend/model_operations.py +122 -103
src/backend/model_operations.py
CHANGED
|
@@ -11,15 +11,19 @@ import pandas as pd
|
|
| 11 |
import spacy
|
| 12 |
import litellm
|
| 13 |
from tqdm import tqdm
|
| 14 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, AutoModelForTokenClassification, AutoConfig
|
| 15 |
from peft import PeftModel
|
| 16 |
import torch
|
| 17 |
import cohere
|
| 18 |
from openai import OpenAI
|
|
|
|
| 19 |
import anthropic
|
| 20 |
import replicate
|
| 21 |
-
import google.generativeai as genai
|
|
|
|
|
|
|
| 22 |
from mistralai import Mistral
|
|
|
|
| 23 |
|
| 24 |
|
| 25 |
import src.backend.util as util
|
|
@@ -156,7 +160,7 @@ class SummaryGenerator:
|
|
| 156 |
def generate_summary(self, system_prompt: str, user_prompt: str):
|
| 157 |
# Using Together AI API
|
| 158 |
using_together_api = False
|
| 159 |
-
together_ai_api_models = ['mixtral', 'dbrx', 'wizardlm', 'llama-3-', '
|
| 160 |
using_replicate_api = False
|
| 161 |
replicate_api_models = ['snowflake', 'llama-3.1-405b']
|
| 162 |
using_pipeline = False
|
|
@@ -181,99 +185,80 @@ class SummaryGenerator:
|
|
| 181 |
|
| 182 |
# if 'mixtral' in self.model_id.lower() or 'dbrx' in self.model_id.lower() or 'wizardlm' in self.model_id.lower(): # For mixtral and dbrx models, use Together AI API
|
| 183 |
if using_together_api:
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
"
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
response = requests.post(url, json=payload, headers=headers)
|
| 204 |
-
print(response)
|
| 205 |
-
try:
|
| 206 |
-
result = json.loads(response.text)
|
| 207 |
-
# print(result)
|
| 208 |
-
result = result["choices"][0]
|
| 209 |
-
if 'message' in result:
|
| 210 |
-
result = result["message"]["content"].strip()
|
| 211 |
-
else:
|
| 212 |
-
result = result["text"]
|
| 213 |
-
result_candidates = [result_cancdidate for result_cancdidate in result.split('\n\n') if len(result_cancdidate) > 0]
|
| 214 |
-
result = result_candidates[0]
|
| 215 |
-
# print(result)
|
| 216 |
-
except:
|
| 217 |
-
# print(response)
|
| 218 |
-
result = ''
|
| 219 |
print(result)
|
| 220 |
return result
|
| 221 |
|
| 222 |
# Using OpenAI API
|
| 223 |
-
elif '
|
| 224 |
client = OpenAI()
|
| 225 |
response = client.chat.completions.create(
|
| 226 |
model=self.model_id.replace('openai/',''),
|
| 227 |
messages=[{"role": "system", "content": system_prompt},
|
| 228 |
-
{"role": "user", "content": user_prompt}]
|
| 229 |
-
|
| 230 |
-
|
|
|
|
| 231 |
)
|
| 232 |
# print(response)
|
| 233 |
result = response.choices[0].message.content
|
| 234 |
print(result)
|
| 235 |
return result
|
| 236 |
-
|
| 237 |
-
# Using Google AI API for Gemini models
|
| 238 |
elif 'gemini' in self.model_id.lower():
|
| 239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
generation_config = {
|
| 241 |
"temperature": 0,
|
| 242 |
-
"
|
| 243 |
-
"top_k": 0,
|
| 244 |
-
"max_output_tokens": 250,
|
| 245 |
-
# "response_mime_type": "application/json",
|
| 246 |
}
|
| 247 |
safety_settings = [
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
]
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
convo.send_message(user_prompt)
|
| 272 |
-
# print(convo.last)
|
| 273 |
-
result = convo.last.text
|
| 274 |
print(result)
|
| 275 |
return result
|
| 276 |
-
|
| 277 |
elif using_replicate_api:
|
| 278 |
print("using replicate")
|
| 279 |
if 'snowflake' in self.model_id.lower():
|
|
@@ -338,7 +323,6 @@ class SummaryGenerator:
|
|
| 338 |
print(result)
|
| 339 |
return result
|
| 340 |
|
| 341 |
-
|
| 342 |
elif 'mistral-large' in self.model_id.lower():
|
| 343 |
api_key = os.environ["MISTRAL_API_KEY"]
|
| 344 |
client = Mistral(api_key=api_key)
|
|
@@ -363,35 +347,30 @@ class SummaryGenerator:
|
|
| 363 |
print(result)
|
| 364 |
return result
|
| 365 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 366 |
# Using HF API or download checkpoints
|
| 367 |
elif self.local_model is None and self.local_pipeline is None:
|
| 368 |
-
# try: # try use HuggingFace API
|
| 369 |
-
# print('** using huggingface api')
|
| 370 |
-
# response = litellm.completion(
|
| 371 |
-
# model=self.model,
|
| 372 |
-
# messages=[{"role": "system", "content": system_prompt},
|
| 373 |
-
# {"role": "user", "content": user_prompt}],
|
| 374 |
-
# temperature=0.0,
|
| 375 |
-
# max_tokens=250,
|
| 376 |
-
# api_base=self.api_base,
|
| 377 |
-
# )
|
| 378 |
-
# result = response['choices'][0]['message']['content']
|
| 379 |
-
# result = result.split('<|im_end|>')[0]
|
| 380 |
-
# print(result)
|
| 381 |
-
# return result
|
| 382 |
-
# except Exception as e:
|
| 383 |
-
# if 'Rate limit reached' in str(e) :
|
| 384 |
-
# wait_time = 300
|
| 385 |
-
# current_time = datetime.now().strftime('%H:%M:%S')
|
| 386 |
-
# print(f"Rate limit hit at {current_time}. Waiting for 5 minutes before retrying...")
|
| 387 |
-
# time.sleep(wait_time)
|
| 388 |
-
# else:
|
| 389 |
if using_pipeline:
|
| 390 |
self.local_pipeline = pipeline(
|
| 391 |
"text-generation",
|
| 392 |
model=self.model_id,
|
| 393 |
tokenizer=AutoTokenizer.from_pretrained(self.model_id),
|
| 394 |
-
|
| 395 |
device_map="auto",
|
| 396 |
trust_remote_code=True
|
| 397 |
)
|
|
@@ -404,12 +383,18 @@ class SummaryGenerator:
|
|
| 404 |
attn_implementation="flash_attention_2",
|
| 405 |
device_map="auto",
|
| 406 |
use_mamba_kernels=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 407 |
else:
|
| 408 |
self.local_model = AutoModelForCausalLM.from_pretrained(self.model_id, trust_remote_code=True, device_map="auto", torch_dtype="auto")
|
| 409 |
# print(self.local_model.device)
|
| 410 |
print("Local model loaded")
|
| 411 |
-
|
| 412 |
-
|
| 413 |
# Using local model/pipeline
|
| 414 |
if self.local_pipeline:
|
| 415 |
print('Using Transformers pipeline')
|
|
@@ -432,7 +417,7 @@ class SummaryGenerator:
|
|
| 432 |
if 'gemma' in self.model_id.lower() or 'mistral-7b' in self.model_id.lower():
|
| 433 |
messages=[
|
| 434 |
# gemma-1.1, mistral-7b does not accept system role
|
| 435 |
-
{"role": "user", "content": system_prompt + '
|
| 436 |
]
|
| 437 |
prompt = self.tokenizer.apply_chat_template(messages,add_generation_prompt=True, tokenize=False)
|
| 438 |
|
|
@@ -442,6 +427,21 @@ class SummaryGenerator:
|
|
| 442 |
elif 'intel' in self.model_id.lower():
|
| 443 |
prompt = f"### System:\n{system_prompt}\n### User:\n{user_prompt}\n### Assistant:\n"
|
| 444 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 445 |
else:
|
| 446 |
messages=[
|
| 447 |
{"role": "system", "content": system_prompt},
|
|
@@ -455,14 +455,27 @@ class SummaryGenerator:
|
|
| 455 |
outputs = self.local_model.generate(**input_ids, max_new_tokens=250, do_sample=True, temperature=0.01, pad_token_id=self.tokenizer.eos_token_id)
|
| 456 |
if 'glm' in self.model_id.lower():
|
| 457 |
outputs = outputs[:, input_ids['input_ids'].shape[1]:]
|
| 458 |
-
|
| 459 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 460 |
if 'gemma-2' in self.model_id.lower():
|
| 461 |
result = result.split(user_prompt + '\nmodel')[-1].strip()
|
| 462 |
elif 'intel' in self.model_id.lower():
|
| 463 |
result = result.split("### Assistant:\n")[-1]
|
| 464 |
elif 'jamba' in self.model_id.lower():
|
| 465 |
result = result.split(messages[-1]['content'])[1].strip()
|
|
|
|
|
|
|
| 466 |
else:
|
| 467 |
# print(prompt)
|
| 468 |
# print('-'*50)
|
|
@@ -572,6 +585,12 @@ class EvaluationModel:
|
|
| 572 |
hem_scores.append(score)
|
| 573 |
sources.append(doc)
|
| 574 |
summaries.append(summary)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 575 |
except Exception as e:
|
| 576 |
logging.error(f"Error while running HEM: {e}")
|
| 577 |
raise
|
|
|
|
| 11 |
import spacy
|
| 12 |
import litellm
|
| 13 |
from tqdm import tqdm
|
| 14 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, AutoModelForTokenClassification, AutoConfig, Qwen2VLForConditionalGeneration, AutoProcessor
|
| 15 |
from peft import PeftModel
|
| 16 |
import torch
|
| 17 |
import cohere
|
| 18 |
from openai import OpenAI
|
| 19 |
+
from together import Together
|
| 20 |
import anthropic
|
| 21 |
import replicate
|
| 22 |
+
# import google.generativeai as genai
|
| 23 |
+
import vertexai
|
| 24 |
+
from vertexai.generative_models import GenerativeModel, Part, SafetySetting, FinishReason
|
| 25 |
from mistralai import Mistral
|
| 26 |
+
from qwen_vl_utils import process_vision_info
|
| 27 |
|
| 28 |
|
| 29 |
import src.backend.util as util
|
|
|
|
| 160 |
def generate_summary(self, system_prompt: str, user_prompt: str):
|
| 161 |
# Using Together AI API
|
| 162 |
using_together_api = False
|
| 163 |
+
together_ai_api_models = ['mixtral', 'dbrx', 'wizardlm', 'llama-3-', 'qwen2-72b-instruct', 'zero-one-ai', 'llama-3.2-'] #, 'mistralai'
|
| 164 |
using_replicate_api = False
|
| 165 |
replicate_api_models = ['snowflake', 'llama-3.1-405b']
|
| 166 |
using_pipeline = False
|
|
|
|
| 185 |
|
| 186 |
# if 'mixtral' in self.model_id.lower() or 'dbrx' in self.model_id.lower() or 'wizardlm' in self.model_id.lower(): # For mixtral and dbrx models, use Together AI API
|
| 187 |
if using_together_api:
|
| 188 |
+
print('using together api')
|
| 189 |
+
client = Together(api_key=os.environ.get('TOGETHER_API_KEY'))
|
| 190 |
+
if 'llama-3.2-90b-vision' in self.model_id.lower() or 'llama-3.2-11b-vision' in self.model_id.lower():
|
| 191 |
+
messages = [
|
| 192 |
+
{"role": "system","content": system_prompt},
|
| 193 |
+
{"role": "user","content": [{"type": "text","text": user_prompt}]}
|
| 194 |
+
]
|
| 195 |
+
else:
|
| 196 |
+
messages = [{"role": "system", "content": system_prompt},
|
| 197 |
+
{"role": "user", "content": user_prompt}]
|
| 198 |
+
response = client.chat.completions.create(
|
| 199 |
+
model=self.model_id,
|
| 200 |
+
messages = messages,
|
| 201 |
+
max_tokens=250,
|
| 202 |
+
temperature=0,
|
| 203 |
+
)
|
| 204 |
+
# print(response)
|
| 205 |
+
result = response.choices[0].message.content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
print(result)
|
| 207 |
return result
|
| 208 |
|
| 209 |
# Using OpenAI API
|
| 210 |
+
elif 'openai' in self.model_id.lower():
|
| 211 |
client = OpenAI()
|
| 212 |
response = client.chat.completions.create(
|
| 213 |
model=self.model_id.replace('openai/',''),
|
| 214 |
messages=[{"role": "system", "content": system_prompt},
|
| 215 |
+
{"role": "user", "content": user_prompt}] if 'gpt' in self.model_id
|
| 216 |
+
else [{"role": "user", "content": system_prompt + '\n' + user_prompt}],
|
| 217 |
+
temperature=0.0 if 'gpt' in self.model_id.lower() else 1.0, # fixed at 1 for o1 models
|
| 218 |
+
max_completion_tokens=250 if 'gpt' in self.model_id.lower() else None, # not compatible with o1 series models
|
| 219 |
)
|
| 220 |
# print(response)
|
| 221 |
result = response.choices[0].message.content
|
| 222 |
print(result)
|
| 223 |
return result
|
| 224 |
+
|
|
|
|
| 225 |
elif 'gemini' in self.model_id.lower():
|
| 226 |
+
vertexai.init(project=os.getenv("GOOGLE_PROJECT_ID"), location="us-central1")
|
| 227 |
+
gemini_model_id_map = {'gemini-1.5-pro-exp-0827':'gemini-pro-experimental', 'gemini-1.5-flash-exp-0827': 'gemini-flash-experimental'}
|
| 228 |
+
model = GenerativeModel(
|
| 229 |
+
self.model_id.lower().split('google/')[-1],
|
| 230 |
+
system_instruction = [system_prompt]
|
| 231 |
+
)
|
| 232 |
generation_config = {
|
| 233 |
"temperature": 0,
|
| 234 |
+
"max_output_tokens": 250
|
|
|
|
|
|
|
|
|
|
| 235 |
}
|
| 236 |
safety_settings = [
|
| 237 |
+
SafetySetting(
|
| 238 |
+
category=SafetySetting.HarmCategory.HARM_CATEGORY_HATE_SPEECH,
|
| 239 |
+
threshold=SafetySetting.HarmBlockThreshold.BLOCK_NONE
|
| 240 |
+
),
|
| 241 |
+
SafetySetting(
|
| 242 |
+
category=SafetySetting.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT,
|
| 243 |
+
threshold=SafetySetting.HarmBlockThreshold.BLOCK_NONE
|
| 244 |
+
),
|
| 245 |
+
SafetySetting(
|
| 246 |
+
category=SafetySetting.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT,
|
| 247 |
+
threshold=SafetySetting.HarmBlockThreshold.BLOCK_NONE
|
| 248 |
+
),
|
| 249 |
+
SafetySetting(
|
| 250 |
+
category=SafetySetting.HarmCategory.HARM_CATEGORY_HARASSMENT,
|
| 251 |
+
threshold=SafetySetting.HarmBlockThreshold.BLOCK_NONE
|
| 252 |
+
)
|
| 253 |
]
|
| 254 |
+
response = model.generate_content(
|
| 255 |
+
user_prompt,
|
| 256 |
+
safety_settings=safety_settings,
|
| 257 |
+
generation_config=generation_config
|
| 258 |
+
)
|
| 259 |
+
result = response.text
|
|
|
|
|
|
|
|
|
|
| 260 |
print(result)
|
| 261 |
return result
|
|
|
|
| 262 |
elif using_replicate_api:
|
| 263 |
print("using replicate")
|
| 264 |
if 'snowflake' in self.model_id.lower():
|
|
|
|
| 323 |
print(result)
|
| 324 |
return result
|
| 325 |
|
|
|
|
| 326 |
elif 'mistral-large' in self.model_id.lower():
|
| 327 |
api_key = os.environ["MISTRAL_API_KEY"]
|
| 328 |
client = Mistral(api_key=api_key)
|
|
|
|
| 347 |
print(result)
|
| 348 |
return result
|
| 349 |
|
| 350 |
+
elif 'deepseek' in self.model_id.lower():
|
| 351 |
+
client = OpenAI(api_key=os.getenv("DeepSeek_API_KEY"), base_url="https://api.deepseek.com")
|
| 352 |
+
response = client.chat.completions.create(
|
| 353 |
+
model=self.model_id.split('/')[-1],
|
| 354 |
+
messages=[
|
| 355 |
+
{"role": "system", "content": system_prompt},
|
| 356 |
+
{"role": "user", "content": user_prompt},
|
| 357 |
+
],
|
| 358 |
+
max_tokens=250,
|
| 359 |
+
temperature=0,
|
| 360 |
+
stream=False
|
| 361 |
+
)
|
| 362 |
+
result = response.choices[0].message.content
|
| 363 |
+
print(result)
|
| 364 |
+
return result
|
| 365 |
+
|
| 366 |
# Using HF API or download checkpoints
|
| 367 |
elif self.local_model is None and self.local_pipeline is None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 368 |
if using_pipeline:
|
| 369 |
self.local_pipeline = pipeline(
|
| 370 |
"text-generation",
|
| 371 |
model=self.model_id,
|
| 372 |
tokenizer=AutoTokenizer.from_pretrained(self.model_id),
|
| 373 |
+
torch_dtype=torch.bfloat16 if 'llama-3.2' in self.model_id.lower() else "auto",
|
| 374 |
device_map="auto",
|
| 375 |
trust_remote_code=True
|
| 376 |
)
|
|
|
|
| 383 |
attn_implementation="flash_attention_2",
|
| 384 |
device_map="auto",
|
| 385 |
use_mamba_kernels=False)
|
| 386 |
+
|
| 387 |
+
elif 'qwen2-vl' in self.model_id.lower():
|
| 388 |
+
self.local_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 389 |
+
self.model_id, torch_dtype="auto", device_map="auto"
|
| 390 |
+
)
|
| 391 |
+
self.processor = AutoProcessor.from_pretrained(self.model_id)
|
| 392 |
+
|
| 393 |
else:
|
| 394 |
self.local_model = AutoModelForCausalLM.from_pretrained(self.model_id, trust_remote_code=True, device_map="auto", torch_dtype="auto")
|
| 395 |
# print(self.local_model.device)
|
| 396 |
print("Local model loaded")
|
| 397 |
+
|
|
|
|
| 398 |
# Using local model/pipeline
|
| 399 |
if self.local_pipeline:
|
| 400 |
print('Using Transformers pipeline')
|
|
|
|
| 417 |
if 'gemma' in self.model_id.lower() or 'mistral-7b' in self.model_id.lower():
|
| 418 |
messages=[
|
| 419 |
# gemma-1.1, mistral-7b does not accept system role
|
| 420 |
+
{"role": "user", "content": system_prompt + '\n' + user_prompt}
|
| 421 |
]
|
| 422 |
prompt = self.tokenizer.apply_chat_template(messages,add_generation_prompt=True, tokenize=False)
|
| 423 |
|
|
|
|
| 427 |
elif 'intel' in self.model_id.lower():
|
| 428 |
prompt = f"### System:\n{system_prompt}\n### User:\n{user_prompt}\n### Assistant:\n"
|
| 429 |
|
| 430 |
+
elif 'qwen2-vl' in self.model_id.lower():
|
| 431 |
+
messages = [
|
| 432 |
+
{
|
| 433 |
+
"role": "system",
|
| 434 |
+
"content": [
|
| 435 |
+
{"type": "text", "text": system_prompt}
|
| 436 |
+
]
|
| 437 |
+
},
|
| 438 |
+
{
|
| 439 |
+
"role": "user",
|
| 440 |
+
"content": [
|
| 441 |
+
{"type": "text", "text": user_prompt},
|
| 442 |
+
],
|
| 443 |
+
}
|
| 444 |
+
]
|
| 445 |
else:
|
| 446 |
messages=[
|
| 447 |
{"role": "system", "content": system_prompt},
|
|
|
|
| 455 |
outputs = self.local_model.generate(**input_ids, max_new_tokens=250, do_sample=True, temperature=0.01, pad_token_id=self.tokenizer.eos_token_id)
|
| 456 |
if 'glm' in self.model_id.lower():
|
| 457 |
outputs = outputs[:, input_ids['input_ids'].shape[1]:]
|
| 458 |
+
elif 'qwen2-vl' in self.model_id.lower() or 'qwen2.5' in self.model_id.lower():
|
| 459 |
+
outputs = [
|
| 460 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(input_ids.input_ids, outputs)
|
| 461 |
+
]
|
| 462 |
+
|
| 463 |
+
|
| 464 |
+
if 'qwen2-vl' in self.model_id.lower():
|
| 465 |
+
result = self.processor.batch_decode(
|
| 466 |
+
outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 467 |
+
)[0]
|
| 468 |
+
else:
|
| 469 |
+
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 470 |
+
|
| 471 |
if 'gemma-2' in self.model_id.lower():
|
| 472 |
result = result.split(user_prompt + '\nmodel')[-1].strip()
|
| 473 |
elif 'intel' in self.model_id.lower():
|
| 474 |
result = result.split("### Assistant:\n")[-1]
|
| 475 |
elif 'jamba' in self.model_id.lower():
|
| 476 |
result = result.split(messages[-1]['content'])[1].strip()
|
| 477 |
+
elif 'qwen2-vl' in self.model_id.lower() or 'qwen2.5' in self.model_id.lower():
|
| 478 |
+
pass
|
| 479 |
else:
|
| 480 |
# print(prompt)
|
| 481 |
# print('-'*50)
|
|
|
|
| 585 |
hem_scores.append(score)
|
| 586 |
sources.append(doc)
|
| 587 |
summaries.append(summary)
|
| 588 |
+
if score < 0.5:
|
| 589 |
+
print(score)
|
| 590 |
+
print(doc)
|
| 591 |
+
print('-'*20)
|
| 592 |
+
print(summary)
|
| 593 |
+
print('='*50)
|
| 594 |
except Exception as e:
|
| 595 |
logging.error(f"Error while running HEM: {e}")
|
| 596 |
raise
|