Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
·
2aa9a75
1
Parent(s):
6632750
minor fix
Browse files- src/backend/model_operations.py +67 -14
- src/backend/run_eval_suite.py +2 -1
src/backend/model_operations.py
CHANGED
|
@@ -19,7 +19,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
|
| 19 |
import torch
|
| 20 |
import cohere
|
| 21 |
from openai import OpenAI
|
| 22 |
-
|
| 23 |
|
| 24 |
import src.backend.util as util
|
| 25 |
import src.envs as envs
|
|
@@ -131,6 +131,10 @@ class SummaryGenerator:
|
|
| 131 |
wait_time = 200
|
| 132 |
print(f"Model is loading, wait for {wait_time}")
|
| 133 |
time.sleep(wait_time)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
else:
|
| 135 |
print(f"Error at index {index}: {e}")
|
| 136 |
_summary = ""
|
|
@@ -161,8 +165,16 @@ class SummaryGenerator:
|
|
| 161 |
|
| 162 |
def generate_summary(self, system_prompt: str, user_prompt: str):
|
| 163 |
# Using Together AI API
|
| 164 |
-
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
url = f"https://api.together.xyz/v1/{suffix}"
|
| 167 |
|
| 168 |
payload = {
|
|
@@ -170,15 +182,17 @@ class SummaryGenerator:
|
|
| 170 |
# "max_tokens": 4096,
|
| 171 |
'max_new_tokens': 250,
|
| 172 |
"temperature": 0.0,
|
| 173 |
-
'repetition_penalty': 1.1 if 'mixtral' in self.model_id.lower() else 1
|
| 174 |
}
|
| 175 |
-
if 'mixtral' in self.model_id.lower():
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
else:
|
| 181 |
-
|
|
|
|
|
|
|
| 182 |
{"role": "user", "content": user_prompt}]
|
| 183 |
headers = {
|
| 184 |
"accept": "application/json",
|
|
@@ -216,8 +230,47 @@ class SummaryGenerator:
|
|
| 216 |
print(result)
|
| 217 |
return result
|
| 218 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
# Using HF API or download checkpoints
|
| 220 |
-
|
| 221 |
try: # try use HuggingFace API
|
| 222 |
|
| 223 |
response = litellm.completion(
|
|
@@ -229,6 +282,7 @@ class SummaryGenerator:
|
|
| 229 |
api_base=self.api_base,
|
| 230 |
)
|
| 231 |
result = response['choices'][0]['message']['content']
|
|
|
|
| 232 |
except: # fail to call api. run it locally.
|
| 233 |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id, trust_remote_code=True)
|
| 234 |
print("Tokenizer loaded")
|
|
@@ -249,8 +303,7 @@ class SummaryGenerator:
|
|
| 249 |
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 250 |
result = result.replace(prompt[0], '')
|
| 251 |
print(result)
|
| 252 |
-
|
| 253 |
-
return result
|
| 254 |
|
| 255 |
def _compute_avg_length(self):
|
| 256 |
"""
|
|
|
|
| 19 |
import torch
|
| 20 |
import cohere
|
| 21 |
from openai import OpenAI
|
| 22 |
+
import google.generativeai as genai
|
| 23 |
|
| 24 |
import src.backend.util as util
|
| 25 |
import src.envs as envs
|
|
|
|
| 131 |
wait_time = 200
|
| 132 |
print(f"Model is loading, wait for {wait_time}")
|
| 133 |
time.sleep(wait_time)
|
| 134 |
+
elif '429 Resource has been exhausted' in str(e): # for gemini models
|
| 135 |
+
wait_time = 60
|
| 136 |
+
print(f"Quota has reached, wait for {wait_time}")
|
| 137 |
+
time.sleep(wait_time)
|
| 138 |
else:
|
| 139 |
print(f"Error at index {index}: {e}")
|
| 140 |
_summary = ""
|
|
|
|
| 165 |
|
| 166 |
def generate_summary(self, system_prompt: str, user_prompt: str):
|
| 167 |
# Using Together AI API
|
| 168 |
+
using_together_api = False
|
| 169 |
+
together_ai_api_models = ['mixtral', 'dbrx', 'wizardlm', 'llama-3']
|
| 170 |
+
for together_ai_api_model in together_ai_api_models:
|
| 171 |
+
if together_ai_api_model in self.model_id.lower():
|
| 172 |
+
using_together_api = True
|
| 173 |
+
break
|
| 174 |
+
# if 'mixtral' in self.model_id.lower() or 'dbrx' in self.model_id.lower() or 'wizardlm' in self.model_id.lower(): # For mixtral and dbrx models, use Together AI API
|
| 175 |
+
if using_together_api:
|
| 176 |
+
# suffix = "completions" if ('mixtral' in self.model_id.lower() or 'base' in self.model_id.lower()) else "chat/completions"
|
| 177 |
+
suffix = "chat/completions"
|
| 178 |
url = f"https://api.together.xyz/v1/{suffix}"
|
| 179 |
|
| 180 |
payload = {
|
|
|
|
| 182 |
# "max_tokens": 4096,
|
| 183 |
'max_new_tokens': 250,
|
| 184 |
"temperature": 0.0,
|
| 185 |
+
# 'repetition_penalty': 1.1 if 'mixtral' in self.model_id.lower() else 1
|
| 186 |
}
|
| 187 |
+
# if 'mixtral' in self.model_id.lower():
|
| 188 |
+
# # payload['prompt'] = user_prompt
|
| 189 |
+
# # payload['prompt'] = "Write a summary of the following passage:\nPassage:\n" + user_prompt.split('Passage:\n')[-1] + '\n\nSummary:'
|
| 190 |
+
# payload['prompt'] = 'You must stick to the passage provided. Provide a concise summary of the following passage, covering the core pieces of information described:\nPassage:\n' + user_prompt.split('Passage:\n')[-1] + '\n\nSummary:'
|
| 191 |
+
# print(payload)
|
| 192 |
+
# else:
|
| 193 |
+
# payload['messages'] = [{"role": "system", "content": system_prompt},
|
| 194 |
+
# {"role": "user", "content": user_prompt}]
|
| 195 |
+
payload['messages'] = [{"role": "system", "content": system_prompt},
|
| 196 |
{"role": "user", "content": user_prompt}]
|
| 197 |
headers = {
|
| 198 |
"accept": "application/json",
|
|
|
|
| 230 |
print(result)
|
| 231 |
return result
|
| 232 |
|
| 233 |
+
# Using Google AI API for Gemini models
|
| 234 |
+
elif 'gemini' in self.model_id.lower():
|
| 235 |
+
genai.configure(api_key=os.getenv('GOOGLE_AI_API_KEY'))
|
| 236 |
+
generation_config = {
|
| 237 |
+
"temperature": 0,
|
| 238 |
+
"top_p": 0.95, # cannot change
|
| 239 |
+
"top_k": 0,
|
| 240 |
+
"max_output_tokens": 250,
|
| 241 |
+
# "response_mime_type": "application/json",
|
| 242 |
+
}
|
| 243 |
+
safety_settings = [
|
| 244 |
+
{
|
| 245 |
+
"category": "HARM_CATEGORY_HARASSMENT",
|
| 246 |
+
"threshold": "BLOCK_NONE"
|
| 247 |
+
},
|
| 248 |
+
{
|
| 249 |
+
"category": "HARM_CATEGORY_HATE_SPEECH",
|
| 250 |
+
"threshold": "BLOCK_NONE"
|
| 251 |
+
},
|
| 252 |
+
{
|
| 253 |
+
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
|
| 254 |
+
"threshold": "BLOCK_NONE"
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
|
| 258 |
+
"threshold": "BLOCK_NONE"
|
| 259 |
+
},
|
| 260 |
+
]
|
| 261 |
+
model = genai.GenerativeModel(model_name="gemini-1.5-pro-latest" if "gemini-1.5-pro" in self.model_id.lower() else self.model_id.lower().split('google/')[-1],
|
| 262 |
+
generation_config=generation_config,
|
| 263 |
+
system_instruction=system_prompt,
|
| 264 |
+
safety_settings=safety_settings)
|
| 265 |
+
convo = model.start_chat(history=[])
|
| 266 |
+
convo.send_message(user_prompt)
|
| 267 |
+
# print(convo.last)
|
| 268 |
+
result = convo.last.text
|
| 269 |
+
print(result)
|
| 270 |
+
return result
|
| 271 |
+
|
| 272 |
# Using HF API or download checkpoints
|
| 273 |
+
elif self.local_model is None:
|
| 274 |
try: # try use HuggingFace API
|
| 275 |
|
| 276 |
response = litellm.completion(
|
|
|
|
| 282 |
api_base=self.api_base,
|
| 283 |
)
|
| 284 |
result = response['choices'][0]['message']['content']
|
| 285 |
+
return result
|
| 286 |
except: # fail to call api. run it locally.
|
| 287 |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id, trust_remote_code=True)
|
| 288 |
print("Tokenizer loaded")
|
|
|
|
| 303 |
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 304 |
result = result.replace(prompt[0], '')
|
| 305 |
print(result)
|
| 306 |
+
return result
|
|
|
|
| 307 |
|
| 308 |
def _compute_avg_length(self):
|
| 309 |
"""
|
src/backend/run_eval_suite.py
CHANGED
|
@@ -48,7 +48,8 @@ def run_evaluation(eval_request: EvalRequest, batch_size, device,
|
|
| 48 |
batch_size, device, no_cache, limit, write_out=True,
|
| 49 |
output_base_path='logs')
|
| 50 |
results = evaluator.evaluate()
|
| 51 |
-
|
|
|
|
| 52 |
except Exception as e:
|
| 53 |
logging.error(f"Error during evaluation: {e}")
|
| 54 |
raise
|
|
|
|
| 48 |
batch_size, device, no_cache, limit, write_out=True,
|
| 49 |
output_base_path='logs')
|
| 50 |
results = evaluator.evaluate()
|
| 51 |
+
if write_results:
|
| 52 |
+
evaluator.write_results()
|
| 53 |
except Exception as e:
|
| 54 |
logging.error(f"Error during evaluation: {e}")
|
| 55 |
raise
|