Update main.py
Browse files
main.py
CHANGED
|
@@ -1,7 +1,10 @@
|
|
| 1 |
-
from flask import Flask, request, jsonify
|
| 2 |
from torch import Tensor
|
| 3 |
from transformers import AutoTokenizer, AutoModel
|
| 4 |
from ctranslate2 import Translator
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
def average_pool(last_hidden_states: Tensor,
|
|
@@ -13,24 +16,40 @@ def average_pool(last_hidden_states: Tensor,
|
|
| 13 |
|
| 14 |
# text-ada replacement
|
| 15 |
embeddingTokenizer = AutoTokenizer.from_pretrained(
|
| 16 |
-
'./multilingual-e5-base')
|
| 17 |
-
embeddingModel = AutoModel.from_pretrained('./multilingual-e5-base')
|
| 18 |
|
| 19 |
# chatGpt replacement
|
| 20 |
inferenceTokenizer = AutoTokenizer.from_pretrained(
|
| 21 |
-
"./ct2fast-flan-alpaca-xl")
|
| 22 |
inferenceTranslator = Translator(
|
| 23 |
-
"./ct2fast-flan-alpaca-xl", compute_type="int8", device="cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
|
|
|
| 25 |
|
| 26 |
-
app = Flask(__name__)
|
| 27 |
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
input = data["input"]
|
| 34 |
|
| 35 |
# Process the input data
|
| 36 |
batch_dict = embeddingTokenizer([input], max_length=512,
|
|
@@ -38,28 +57,24 @@ def text_embedding():
|
|
| 38 |
outputs = embeddingModel(**batch_dict)
|
| 39 |
embeddings = average_pool(outputs.last_hidden_state,
|
| 40 |
batch_dict['attention_mask'])
|
| 41 |
-
token_ids = batch_dict["input_ids"][0].tolist()
|
| 42 |
|
| 43 |
-
#
|
| 44 |
-
|
| 45 |
'embedding': embeddings[0].tolist()
|
| 46 |
}
|
| 47 |
|
| 48 |
-
return jsonify(response)
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
# Get the JSON data from the request
|
| 54 |
-
data = request.get_json()
|
| 55 |
-
input_text = data["input"]
|
| 56 |
max_length = 256
|
| 57 |
try:
|
| 58 |
-
max_length = int(
|
| 59 |
max_length = min(1024, max_length)
|
| 60 |
except:
|
| 61 |
pass
|
| 62 |
|
|
|
|
| 63 |
input_tokens = inferenceTokenizer.convert_ids_to_tokens(
|
| 64 |
inferenceTokenizer.encode(input_text))
|
| 65 |
|
|
@@ -70,31 +85,21 @@ def inference():
|
|
| 70 |
output_text = inferenceTokenizer.decode(
|
| 71 |
inferenceTokenizer.convert_tokens_to_ids(output_tokens))
|
| 72 |
|
| 73 |
-
#
|
| 74 |
-
|
| 75 |
'generated_text': output_text
|
| 76 |
}
|
| 77 |
|
| 78 |
-
return jsonify(response)
|
| 79 |
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
# Get the JSON data from the request
|
| 84 |
-
data = request.get_json()
|
| 85 |
-
input_text = data["input"]
|
| 86 |
|
| 87 |
tokens = inferenceTokenizer.convert_ids_to_tokens(
|
| 88 |
inferenceTokenizer.encode(input_text))
|
| 89 |
|
| 90 |
-
#
|
| 91 |
response = {
|
| 92 |
'tokens': tokens,
|
| 93 |
'total': len(tokens)
|
| 94 |
}
|
| 95 |
-
|
| 96 |
-
return jsonify(response)
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
if __name__ == '__main__':
|
| 100 |
-
app.run()
|
|
|
|
|
|
|
| 1 |
from torch import Tensor
|
| 2 |
from transformers import AutoTokenizer, AutoModel
|
| 3 |
from ctranslate2 import Translator
|
| 4 |
+
from typing import Union
|
| 5 |
+
|
| 6 |
+
from fastapi import FastAPI
|
| 7 |
+
from pydantic import BaseModel
|
| 8 |
|
| 9 |
|
| 10 |
def average_pool(last_hidden_states: Tensor,
|
|
|
|
| 16 |
|
| 17 |
# text-ada replacement
|
| 18 |
embeddingTokenizer = AutoTokenizer.from_pretrained(
|
| 19 |
+
'./models/multilingual-e5-base')
|
| 20 |
+
embeddingModel = AutoModel.from_pretrained('./models/multilingual-e5-base')
|
| 21 |
|
| 22 |
# chatGpt replacement
|
| 23 |
inferenceTokenizer = AutoTokenizer.from_pretrained(
|
| 24 |
+
"./models/ct2fast-flan-alpaca-xl")
|
| 25 |
inferenceTranslator = Translator(
|
| 26 |
+
"./models/ct2fast-flan-alpaca-xl", compute_type="int8", device="cpu")
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class EmbeddingRequest(BaseModel):
|
| 30 |
+
input: Union[str, None] = None
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class TokensCountRequest(BaseModel):
|
| 34 |
+
input: Union[str, None] = None
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class InferenceRequest(BaseModel):
|
| 38 |
+
input: Union[str, None] = None
|
| 39 |
+
max_length: Union[int, None] = 0
|
| 40 |
+
|
| 41 |
|
| 42 |
+
app = FastAPI()
|
| 43 |
|
|
|
|
| 44 |
|
| 45 |
+
@app.get("/")
|
| 46 |
+
async def root():
|
| 47 |
+
return {"message": "Hello World"}
|
| 48 |
|
| 49 |
+
|
| 50 |
+
@app.post("/text-embedding")
|
| 51 |
+
async def text_embedding(request: EmbeddingRequest):
|
| 52 |
+
input = request.input
|
|
|
|
| 53 |
|
| 54 |
# Process the input data
|
| 55 |
batch_dict = embeddingTokenizer([input], max_length=512,
|
|
|
|
| 57 |
outputs = embeddingModel(**batch_dict)
|
| 58 |
embeddings = average_pool(outputs.last_hidden_state,
|
| 59 |
batch_dict['attention_mask'])
|
|
|
|
| 60 |
|
| 61 |
+
# create response
|
| 62 |
+
return {
|
| 63 |
'embedding': embeddings[0].tolist()
|
| 64 |
}
|
| 65 |
|
|
|
|
| 66 |
|
| 67 |
+
@app.post('/inference')
|
| 68 |
+
async def inference(request: InferenceRequest):
|
| 69 |
+
input_text = request.input
|
|
|
|
|
|
|
|
|
|
| 70 |
max_length = 256
|
| 71 |
try:
|
| 72 |
+
max_length = int(request.max_length)
|
| 73 |
max_length = min(1024, max_length)
|
| 74 |
except:
|
| 75 |
pass
|
| 76 |
|
| 77 |
+
# process request
|
| 78 |
input_tokens = inferenceTokenizer.convert_ids_to_tokens(
|
| 79 |
inferenceTokenizer.encode(input_text))
|
| 80 |
|
|
|
|
| 85 |
output_text = inferenceTokenizer.decode(
|
| 86 |
inferenceTokenizer.convert_tokens_to_ids(output_tokens))
|
| 87 |
|
| 88 |
+
# create response
|
| 89 |
+
return {
|
| 90 |
'generated_text': output_text
|
| 91 |
}
|
| 92 |
|
|
|
|
| 93 |
|
| 94 |
+
@app.post('/tokens-count')
|
| 95 |
+
async def tokens_count(request: TokensCountRequest):
|
| 96 |
+
input_text = request.input
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
tokens = inferenceTokenizer.convert_ids_to_tokens(
|
| 99 |
inferenceTokenizer.encode(input_text))
|
| 100 |
|
| 101 |
+
# create response
|
| 102 |
response = {
|
| 103 |
'tokens': tokens,
|
| 104 |
'total': len(tokens)
|
| 105 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|