import numpy as np from sklearn.metrics import mean_squared_error, roc_auc_score from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity from data_processing import load_query_dataset global ground_truth_answer, ground_truth_metrics ground_truth_answer = '' ground_truth_metrics = {} # def calculate_metrics(question, response, docs, time_taken): # data = load_ragbench() # retrieve_ground_truths(question, data) # # Predicted metrics # predicted_metrics = { # "ground_truth": ground_truth_answer, # "context_relevance": context_relevance(question, docs), # "context_utilization": context_utilization(response, docs), # "completeness": completeness(response, ground_truth_answer), # "adherence": adherence(response, docs), # "response_time" : time_taken # } # return predicted_metrics # def retrieve_ground_truths(question,ragbench_set): # for dataset_name in ragbench_set.keys(): # for split_name,instances in ragbench_set[dataset_name].items(): # Fixed: Removed extra '.' and corrected indentation # print(f"Processing {split_name} split") # for instance in instances: # Fixed: Corrected indentation # # Check if the question (data) matches the query # if instance['question'] == question: # # If a match is found, retrieve id and response # instance_id = instance['id'] # instance_response = instance['response'] # ground_truth_metrics = { # "context_relevance": instance['relevance_score'], # "context_utilization": instance['utilization_score'], # "completeness": instance['completeness_score'], # "adherence": instance['adherence_score'] # } # ground_truth_answer = instance_response # print(f"Match found in {split_name} split!") # print(f"ID: {instance_id}, Response: {instance_response}") # break # Exit after finding the first match (optional) # Step 1: Helper function to compute cosine similarity def compute_cosine_similarity(text1, text2): if not text1 or not text2: # Check for empty or None values print("Error: One or both input texts are empty. Returning similarity as 0.") return 0.0 vectorizer = TfidfVectorizer(stop_words="english") try: vectors = vectorizer.fit_transform([text1, text2]) similarity = cosine_similarity(vectors[0], vectors[1])[0][0] return similarity except ValueError as e: print(f"Error in vectorization: {e}. Returning similarity as 0.") return 0.0 # Step 2: Metric 1 - Context Relevance def context_relevance(question, relevant_documents): # combined_docs = " ".join([doc.page_content for doc in relevant_documents]) combined_docs = " ".join([doc for doc in relevant_documents]) return compute_cosine_similarity(question, combined_docs) # Step 3: Metric 2 - Context Utilization def context_utilization(response, relevant_documents): #combined_docs = " ".join([doc.page_content for doc in relevant_documents]) combined_docs = " ".join([doc for doc in relevant_documents]) return compute_cosine_similarity(response, combined_docs) # Step 4: Metric 3 - Completeness def completeness(response, ground_truth_answer): return compute_cosine_similarity(response, ground_truth_answer) # Step 5: Metric 4 - Adherence def adherence(response, relevant_documents): #combined_docs = " ".join([doc.page_content for doc in relevant_documents]) combined_docs = " ".join([doc for doc in relevant_documents]) response_tokens = set(response.split()) relevant_tokens = set(combined_docs.split()) supported_tokens = response_tokens.intersection(relevant_tokens) return len(supported_tokens) / len(response_tokens) # Step 6: Compute RMSE for metrics def compute_rmse(predicted_values, ground_truth_values): return np.sqrt(mean_squared_error(ground_truth_values, predicted_values)) def calculate_metrics(question, q_dataset, response, docs, time_taken): data = load_query_dataset(q_dataset) ground_truth_answer = retrieve_ground_truths(question, data) # Store the ground truth answer # Ensure ground_truth_answer is not empty before proceeding if ground_truth_answer is None: ground_truth_answer = "" # Default to an empty string if no ground truth is found # Predicted metrics predicted_metrics = { "RAG_model_response": response, "ground_truth": ground_truth_answer, "context_relevance": context_relevance(question, docs), "context_utilization": context_utilization(response, docs), "completeness": completeness(response, ground_truth_answer), "adherence": adherence(response, docs), "response_time": time_taken } return predicted_metrics def retrieve_ground_truths(question, dataset): for split_name, instances in dataset.items(): print(f"Processing {split_name} split") for instance in instances: if instance['question'] == question: instance_id = instance['id'] instance_response = instance['response'] # ground_truth_metrics = { # "context_relevance": instance['relevance_score'], # "context_utilization": instance['utilization_score'], # "completeness": instance['completeness_score'], # "adherence": instance['adherence_score'] # } print(f"Match found in {split_name} split!") print(f"ID: {instance_id}, Response: {instance_response}") return instance_response # Return ground truth response immediately return None # Return None if no match is found