Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +5 -5
- retrieval.py +9 -7
app.py
CHANGED
@@ -2,17 +2,17 @@ import streamlit as st
|
|
2 |
from generator import generate_response_from_document
|
3 |
from retrieval import retrieve_documents
|
4 |
from evaluation import calculate_metrics
|
5 |
-
from data_processing import load_data_from_faiss
|
6 |
import time
|
7 |
|
8 |
# Page Title
|
9 |
st.title("RAG7 - Real World RAG System")
|
10 |
|
11 |
-
@st.cache_data
|
12 |
-
def load_data():
|
13 |
-
|
14 |
|
15 |
-
data_status = load_data()
|
16 |
|
17 |
time_taken_for_response = 'N/A'
|
18 |
|
|
|
2 |
from generator import generate_response_from_document
|
3 |
from retrieval import retrieve_documents
|
4 |
from evaluation import calculate_metrics
|
5 |
+
#from data_processing import load_data_from_faiss
|
6 |
import time
|
7 |
|
8 |
# Page Title
|
9 |
st.title("RAG7 - Real World RAG System")
|
10 |
|
11 |
+
# @st.cache_data
|
12 |
+
# def load_data():
|
13 |
+
# load_data_from_faiss()
|
14 |
|
15 |
+
# data_status = load_data()
|
16 |
|
17 |
time_taken_for_response = 'N/A'
|
18 |
|
retrieval.py
CHANGED
@@ -1,27 +1,29 @@
|
|
1 |
import json
|
2 |
import numpy as np
|
3 |
from langchain.schema import Document
|
4 |
-
|
5 |
|
6 |
-
from data_processing import embedding_model,
|
|
|
|
|
7 |
|
8 |
# Retrieval Function
|
9 |
def retrieve_documents(query, top_k=5):
|
10 |
-
|
|
|
|
|
11 |
query_embedding = np.array(embedding_model.embed_documents([query]), dtype=np.float32)
|
12 |
|
13 |
-
# Search in FAISS (top 5 results)
|
14 |
_, nearest_indices = index.search(query_embedding, top_k)
|
15 |
|
16 |
-
|
17 |
-
with open(f"data_local\rag7_docs.json", "r") as f:
|
18 |
documents = json.load(f) # Contains all documents for this dataset
|
19 |
|
20 |
-
# Retrieve the actual documents and create Document objects
|
21 |
retrieved_docs = [Document(page_content=documents[i]) for i in nearest_indices[0]]
|
22 |
|
23 |
return retrieved_docs
|
24 |
|
|
|
25 |
def remove_duplicate_documents(documents):
|
26 |
unique_documents = []
|
27 |
seen_documents = set() # To keep track of seen documents
|
|
|
1 |
import json
|
2 |
import numpy as np
|
3 |
from langchain.schema import Document
|
4 |
+
import faiss
|
5 |
|
6 |
+
from data_processing import embedding_model #, index, actual_docs
|
7 |
+
|
8 |
+
retrieved_docs = None
|
9 |
|
10 |
# Retrieval Function
|
11 |
def retrieve_documents(query, top_k=5):
|
12 |
+
faiss_index_path = f"rag7_index.faiss"
|
13 |
+
index = faiss.read_index(faiss_index_path)
|
14 |
+
|
15 |
query_embedding = np.array(embedding_model.embed_documents([query]), dtype=np.float32)
|
16 |
|
|
|
17 |
_, nearest_indices = index.search(query_embedding, top_k)
|
18 |
|
19 |
+
with open(f"rag7_docs.json", "r") as f:
|
|
|
20 |
documents = json.load(f) # Contains all documents for this dataset
|
21 |
|
|
|
22 |
retrieved_docs = [Document(page_content=documents[i]) for i in nearest_indices[0]]
|
23 |
|
24 |
return retrieved_docs
|
25 |
|
26 |
+
|
27 |
def remove_duplicate_documents(documents):
|
28 |
unique_documents = []
|
29 |
seen_documents = set() # To keep track of seen documents
|