Spaces:
Sleeping
Sleeping
import json | |
import numpy as np | |
from langchain.schema import Document | |
import faiss | |
from rank_bm25 import BM25Okapi | |
from data_processing import embedding_model | |
from sentence_transformers import CrossEncoder | |
reranker = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2") | |
retrieved_docs = None | |
def retrieve_documents_hybrid(query, q_dataset, top_k=5): | |
with open( f"data_local/{q_dataset}_chunked_docs.json", "r") as f: | |
chunked_documents = json.load(f) # Contains all documents for this dataset | |
faiss_index_path = f"data_local/{q_dataset}_quantized.faiss" | |
index = faiss.read_index(faiss_index_path) | |
# Tokenize documents for BM25 | |
tokenized_docs = [doc.split() for doc in chunked_documents] | |
bm25 = BM25Okapi(tokenized_docs) | |
query_embedding = np.array(embedding_model.embed_documents([query]), dtype=np.float32) | |
query_embedding = query_embedding.reshape(1, -1) | |
# FAISS Search | |
_, nearest_indices = index.search(query_embedding, top_k) | |
faiss_docs = [chunked_documents[i] for i in nearest_indices[0]] | |
# BM25 Search | |
tokenized_query = query.split() | |
bm25_scores = bm25.get_scores(tokenized_query) | |
bm25_top_indices = np.argsort(bm25_scores)[::-1][:top_k] | |
bm25_docs = [chunked_documents[i] for i in bm25_top_indices] | |
# Merge FAISS + BM25 Results | |
retrieved_docs = list(set(faiss_docs + bm25_docs))[:top_k] | |
reranked_docs = rerank_documents(query, retrieved_docs) | |
return reranked_docs | |
# Retrieval Function | |
# def retrieve_documents(query, top_k=5): | |
# query_dataset = find_query_dataset(query) | |
# #index, chunk_docs = load_data_from_faiss(query) | |
# with open( f"data_local/{query_dataset}_chunked_docs.json", "r") as f: | |
# documents = json.load(f) # Contains all documents for this dataset | |
# faiss_index_path = f"data_local/{query_dataset}_quantized.faiss" | |
# index = faiss.read_index(faiss_index_path) | |
# query_embedding = np.array(embedding_model.embed_documents([query]), dtype=np.float32) | |
# _, nearest_indices = index.search(query_embedding, top_k) | |
# retrieved_docs = [Document(page_content=documents[i]) for i in nearest_indices[0]] | |
# return retrieved_docs | |
def remove_duplicate_documents(documents): | |
unique_documents = [] | |
seen_documents = set() # To keep track of seen documents | |
for doc in documents: | |
# Using the page_content as a unique identifier for deduplication | |
doc_content = doc.page_content | |
if doc_content not in seen_documents: | |
unique_documents.append(doc) | |
seen_documents.add(doc_content) | |
return unique_documents | |
def find_query_dataset(query): | |
index = faiss.read_index("data_local/question_quantized.faiss") | |
with open("data_local/dataset_mapping.json", "r") as f: | |
dataset_names = json.load(f) | |
question_embedding = np.array(embedding_model.embed_documents([query]), dtype=np.float32) | |
_, nearest_index = index.search(question_embedding, 1) | |
best_dataset = dataset_names[nearest_index[0][0]] | |
return best_dataset | |
def rerank_documents(query, retrieved_docs): | |
doc_texts = [doc for doc in retrieved_docs] | |
scores = reranker.predict([[query, doc] for doc in doc_texts]) | |
ranked_docs = [doc for _, doc in sorted(zip(scores, retrieved_docs), reverse=True)] | |
return ranked_docs[:5] # Return top k most relevant | |