23RAG7 / evaluation.py
cb1716pics's picture
Upload 3 files
a523549 verified
raw
history blame
3.63 kB
import numpy as np
from sklearn.metrics import mean_squared_error, roc_auc_score
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from data_processing import load_ragbench
ground_truth_answer = ''
ground_truth_metrics = {}
def calculate_metrics(question, response, docs, time_taken):
data = load_ragbench()
retrieve_ground_truths(question, data)
# Predicted metrics
predicted_metrics = {
"context_relevance": context_relevance(question, docs),
"context_utilization": context_utilization(response, docs),
"completeness": completeness(response, ground_truth_answer),
"adherence": adherence(response, docs),
"response_time" : time_taken
}
return predicted_metrics
def retrieve_ground_truths(question,ragbench_set):
# Iterate through all splits (train, test, validation)
for dataset_name in ragbench_set.keys():
for split_name,instances in ragbench_set[dataset_name].items(): # Fixed: Removed extra '.' and corrected indentation
print(f"Processing {split_name} split")
for instance in instances: # Fixed: Corrected indentation
# Check if the question (data) matches the query
if instance['question'] == question:
# If a match is found, retrieve id and response
instance_id = instance['id']
instance_response = instance['response']
ground_truth_metrics = {
"context_relevance": instance['relevance_score'],
"context_utilization": instance['utilization_score'],
"completeness": instance['completeness_score'],
"adherence": instance['adherence_score']
}
ground_truth_answer = instance_response
print(f"Match found in {split_name} split!")
print(f"ID: {instance_id}, Response: {instance_response}")
break # Exit after finding the first match (optional)
# Step 1: Helper function to compute cosine similarity
def compute_cosine_similarity(text1, text2):
vectorizer = TfidfVectorizer()
vectors = vectorizer.fit_transform([text1, text2])
return cosine_similarity(vectors[0], vectors[1])[0][0]
# Step 2: Metric 1 - Context Relevance
def context_relevance(question, relevant_documents):
combined_docs = " ".join([doc.page_content for doc in relevant_documents])
return compute_cosine_similarity(question, combined_docs)
# Step 3: Metric 2 - Context Utilization
def context_utilization(response, relevant_documents):
combined_docs = " ".join([doc.page_content for doc in relevant_documents])
return compute_cosine_similarity(response, combined_docs)
# Step 4: Metric 3 - Completeness
def completeness(response, ground_truth_answer):
return compute_cosine_similarity(response, ground_truth_answer)
# Step 5: Metric 4 - Adherence
def adherence(response, relevant_documents):
combined_docs = " ".join([doc.page_content for doc in relevant_documents])
response_tokens = set(response.split())
relevant_tokens = set(combined_docs.split())
supported_tokens = response_tokens.intersection(relevant_tokens)
return len(supported_tokens) / len(response_tokens)
# Step 6: Compute RMSE for metrics
def compute_rmse(predicted_values, ground_truth_values):
return np.sqrt(mean_squared_error(ground_truth_values, predicted_values))