import torch from keybert import KeyBERT from keyphrase_vectorizers import KeyphraseCountVectorizer from transformers import T5ForConditionalGeneration,T5Tokenizer import nltk from nltk.tokenize import sent_tokenize nltk.download('stopwords') nltk.download('punkt') import streamlit as st device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load KeyBert Model kw_extractor = KeyBERT('valurank/MiniLM-L6-Keyword-Extraction', use_auth_token=st.secrets["hf-auth-token"]) # Load T5 for Paraphrasing t5_model = T5ForConditionalGeneration.from_pretrained('valurank/t5-paraphraser', use_auth_token=st.secrets["hf-auth-token"]) t5_tokenizer = T5Tokenizer.from_pretrained('t5-base') t5_model = t5_model.to(device) def get_keybert_results_with_vectorizer(text, number_of_results=20): keywords = kw_extractor.extract_keywords(text, vectorizer=KeyphraseCountVectorizer(), stop_words=None, top_n=number_of_results) return keywords def t5_paraphraser(text, number_of_results=10): text = "paraphrase: " + text + " " max_len = 2048 encoding = t5_tokenizer.encode_plus(text, pad_to_max_length=True, return_tensors="pt") input_ids, attention_masks = encoding["input_ids"].to(device), encoding["attention_mask"].to(device) beam_outputs = t5_model.generate( input_ids=input_ids, attention_mask=attention_masks, do_sample=True, max_length=2048, top_k=50, top_p=0.95, early_stopping=True, num_return_sequences=number_of_results ) final_outputs =[] for beam_output in beam_outputs: sent = t5_tokenizer.decode(beam_output, skip_special_tokens=True, clean_up_tokenization_spaces=True) final_outputs.append(sent) return final_outputs #### Extract Sentences with Keywords -> Paraphrase multiple versions -> Extract Keywords again def extract_paraphrased_sentences(article): original_keywords = [i[0] for i in get_keybert_results_with_vectorizer(article)] article_sentences = sent_tokenize(article) target_sentences = [sent for sent in article_sentences if any(kw[0] in sent for kw in original_keywords)] start1 = time.time() t5_paraphrasing_keywords = [] for sent in target_sentences: ### T5 t5_paraphrased = t5_paraphraser(sent) t5_keywords = [get_keybert_results_with_vectorizer(i) for i in t5_paraphrased] t5_keywords = [word[0] for s in t5_keywords for word in s] t5_paraphrasing_keywords.extend(t5_keywords) print(f'T5 Approach2 PARAPHRASING RUNTIME: {time.time()-start1}\n') print('T5 Keywords Extracted: \n{}\n\n'.format(t5_paraphrasing_keywords)) print('----------------------------') print('T5 Unique New Keywords Extracted: \n{}\n\n'.format([i for i in set(t5_paraphrasing_keywords) if i not in original_keywords])) return t5_paraphrasing_keywords doc = st.text_area("Enter a custom document") if doc: keywords = extract_paraphrased_sentences(doc) st.write(keywords)