import lancedb import os import gradio as gr from sentence_transformers import SentenceTransformer, CrossEncoder from dotenv import load_dotenv load_dotenv() DB_PATH = os.getenv("DB_PATH", ".lancedb") db = lancedb.connect(DB_PATH) TABLE_NAME = os.getenv("TABLE_NAME") if not TABLE_NAME: raise ValueError("TABLE_NAME environment variable is not set") TABLE = db.open_table(TABLE_NAME) VECTOR_COLUMN = os.getenv("VECTOR_COLUMN", "vector") TEXT_COLUMN = os.getenv("TEXT_COLUMN", "text") BATCH_SIZE = int(os.getenv("BATCH_SIZE", 32)) retriever = SentenceTransformer(os.getenv("EMB_MODEL")) def retrieve(query, k): query_vec = retriever.encode(query) try: documents = TABLE.search(query_vec, vector_column_name=VECTOR_COLUMN).limit(k).to_list() documents = [doc[TEXT_COLUMN] for doc in documents] documents = reranking(query, documents) return documents except Exception as e: raise gr.Error(str(e)) def reranking(query, retrieval_result): model_name = 'BAAI/bge-reranker-large' # model_name = 'cross-encoder/ms-marco-MiniLM-L-6-v2' model = CrossEncoder(model_name, max_length=512) # Prepare the list of tuples (query, document) for the model pairs = [(query, curr) for curr in retrieval_result] scores = model.predict(pairs) scored_pairs = list(zip(scores, retrieval_result)) scored_pairs.sort(reverse=True) return [pair[1] for pair in scored_pairs]