Spaces:
Sleeping
Sleeping
import lancedb | |
import os | |
import gradio as gr | |
from sentence_transformers import SentenceTransformer, CrossEncoder | |
from dotenv import load_dotenv | |
load_dotenv() | |
DB_PATH = os.getenv("DB_PATH", ".lancedb") | |
db = lancedb.connect(DB_PATH) | |
TABLE_NAME = os.getenv("TABLE_NAME") | |
if not TABLE_NAME: | |
raise ValueError("TABLE_NAME environment variable is not set") | |
TABLE = db.open_table(TABLE_NAME) | |
VECTOR_COLUMN = os.getenv("VECTOR_COLUMN", "vector") | |
TEXT_COLUMN = os.getenv("TEXT_COLUMN", "text") | |
BATCH_SIZE = int(os.getenv("BATCH_SIZE", 32)) | |
retriever = SentenceTransformer(os.getenv("EMB_MODEL")) | |
def retrieve(query, k): | |
query_vec = retriever.encode(query) | |
try: | |
documents = TABLE.search(query_vec, vector_column_name=VECTOR_COLUMN).limit(k).to_list() | |
documents = [doc[TEXT_COLUMN] for doc in documents] | |
documents = reranking(query, documents) | |
return documents | |
except Exception as e: | |
raise gr.Error(str(e)) | |
def reranking(query, retrieval_result): | |
model_name = 'BAAI/bge-reranker-large' | |
# model_name = 'cross-encoder/ms-marco-MiniLM-L-6-v2' | |
model = CrossEncoder(model_name, max_length=512) | |
# Prepare the list of tuples (query, document) for the model | |
pairs = [(query, curr) for curr in retrieval_result] | |
scores = model.predict(pairs) | |
scored_pairs = list(zip(scores, retrieval_result)) | |
scored_pairs.sort(reverse=True) | |
return [pair[1] for pair in scored_pairs] | |